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ABSTRACT
The parallelization of two applications in symmetric cryp-
tography is considered: block ciphering and a new method
based on random sampling for the selection of basic substi-
tution boxes (S-box) with good algebraic properties. While
both consists mainly in loops with independent computa-
tions and possibly early termination, they are subject to
changing computation loads and processor speeds which can
be managed by distributed workstealing. To take benefit
of workstealing, we propose in this paper a generic way to
rewrite loops in a recursive way, involving three complemen-
tary levels of parallelism. Dealing with early termination is
performed by an amortized control, original to our knowl-
edge. Those schemes have been embedded in STL-like par-
allel algorithms implemented on top of Kaapi library that
provides distributed workstealing on a wide range of plat-
forms. Experiments and performances are reported on SMP
(up to 16 processors) and grid architectures (up to 2120 pro-
cessors) for benchmarks (e.g. STL find if) and for the two
target cryptography applications. These experiments ex-
hibit the stability of the library and its usability by external
users for effective applications.

Categories and Subject Descriptors: D.1.3 [Program-
ming Techniques]: Concurrent Programming

General Terms: Algorithms, Design, Experimentation

Keywords: Adaptive parallelism, grid computation, paral-
lel STL, symmetric cryptography, workstealing
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1. INTRODUCTION AND CONTEXT
Cryptography involves exact arithmetic computations that

may take benefit of various level of parallelism. At fine grain,
taking benefit of the available parallelism (multicore proces-
sors, co-processors such as FPU or GPU) may increase the
performance of applications which require a high through-
put. An example in cryptography is block ciphering where
performance is a critical issue [1]; then, using multicore par-
allelism may reduce the delay between reading the source
data and writing the ciphered data on the output (either a
disk or the network) which is crucial for performance. Fur-
thermore, at a coarser grain, other applications in cryptog-
raphy may require a huge number of computations. Obvious
examples include breaking a protocol or exhibiting its level
of security. Yet, the design and analysis of secure protocols
often relies on statistical computations, like selecting cryp-
tographic S-boxes with good properties. For such computa-
tions, large scale architectures (grids) are mostly considered.
In this paper, the parallelization of two real cryptographic
applications is considered: multicore optimization of a block
cipher and selection of S-boxes. For both real applications,
sequential codes have been previously developed and opti-
mized without taking into account any parallelization. The
goal is to provide parallelizations that achieve effective per-
formances with respect to the initial sequential codes which
are expressed as the following generic loop:

Algorithm 1 Core Sequential Loop Algorithm

Data : An input initial value Acc0;

Result: Accn = Acc0
L
f(1)

L
. . .
L
f(n)

while !Terminated(n,Accn) do
xn+1 = f(n) ;
Accn+1 = Accn

L
xn+1 ;

n = n+ 1 ;
end

where
L

is an associative, but not necessarily commuta-
tive, operation. Such a loop is generic in many applications:
with some restrictions to enable parallelism, it encompasses
the C++ STL algorithms such as accumulate, for each,
find if or transform [25]. For instance, generic modular



computations follow such a loop (eg iterative computation
of the determinant of integer sparse matrices).

While both applications lead to a similar high level loop
parallelism (with mainly independent tasks), the execution
contexts (multicore SMP machine on one hand; heteroge-
neous grid on the other one) may suggest drastically dif-
ferent implementations. However, in both cases, resources
are heterogeneous and must be efficiently used. Heterogene-
ity may be due to hardware design on the grid but also
to different loads. For example, on a multi-user multicore
SMP machine, we cannot always control the load of the
different processors due to concurrent applications or con-
current components inside a single application. Then, we
have to manage processors with different observable speeds.
Workstealing is an on-line scheduling on heterogeneous pro-
cessors [3, 8, 17] with provable performances. It is often
used in symbolic computations where unpredictable recur-
sive parallelism often appears at execution time due to input
data characteristics.

But, to be efficient, the application should contain a high
level of parallelism. Then it will work only if the applica-
tion is correctly structured with regards to its parallelism
so that the runtime is able to automatically and efficiently
schedule the parallel tasks of the application. To run our
experiments, we choose to use the Kaapi runtime. Imple-
menting workstealing based on a work-first principle [15,
17], Kaapi is able to run parallel tasks on heterogeneous
machines (cluster or grid), on SMP machines and it has a
flexibility and easy to use C++ interface for programming
recursive parallel tasks with data dependencies. Theoretical
foundation of workstealing and the Kaapi software are de-
scribed in the next section. Then, in Section 3, we introduce
the three levels of parallelism used to parallelize the previous
loop with applications to find if. This theoretical develop-
ment is applied in section 4 to the block cipher application
on a SMP machine. Then, in Section 5, it is used for a real
cryptographic application that aims at finding substitution
boxes with good cryptographic invariants and no quadratic
relations; the results obtained on a grid of 2120 processors
are presented in Section 6.

Related works on adaptive loop parallelization
Parallelization of loops is a classical problem in parallelism.
Parallel and distributed containers are provided in PSTL [18]
and STAPL [5] without relying on workstealing. STAPL
provides a framework for algorithm selection and tuning
(FAST) which is performed at runtime based on a per-
formance prediction model. Our approach gives a generic
way to exhibit adaptive parallelism in a loop with provable
performances on heterogeneous processors. Based on work-
stealing, the multi-core STL (MCSTL) [27], is restricted to
multi-core architectures with a small number of processors.
Moreover, the MCSTL does not deal with early termination.

2. KAAPI AND WORKSTEALING
Kaapi [24] is a C++ runtime library that allows one to

execute multithreaded computation with data flow synchro-
nization between threads. Kaapi is ported on a large class
of parallel computing platforms: multicore and SMP archi-
tectures; clusters; network with heterogeneous processors;
global computing platforms (grids and P2P platforms). Fur-
thermore Kaapi supports fault-tolerance as well as run-time
addition and resilience of resources [19]. Yet, Kaapi im-

plements the application programming interface Athapas-
can [16] that enables to separate the expression of the par-
allelism in the application (described by the data flow graph
which is related to the execution and unfold at runtime) from
its scheduling (specified by code annotations). Athapascan
supports dynamic recursive parallelism with data dependen-
cies. It has been successfully used for parallelization of nu-
merical and combinatorial optimization computations[17].

The default scheduling in Kaapi 2.2, called DDS and de-
scribed in [17], is workstealing. It is based on the work-first
principle [15]: the overhead of parallelism is transferred from
local task creation to task migration. Actually, each pro-
cessor maintains a local double-ended queue, called deque.
When a processor performs a task creation Fork<f>()(args)

instruction, it pushes the corresponding closure at the bot-
tom of its deque which is accessed by non-blocking locks
(e.g. compare-and-swap). Read-write data dependencies
between tasks are chained according to a sequential order
(depth-first called reference order); when a task completes,
the next task (if any) at the bottom of its stack is ready
and is popped for execution. If there is no ready task at
the bottom of its deque, the processor becomes a stealer: it
steals a ready task (the oldest one) on a randomly chosen
victim processor (the topmost task on the front of the vic-
tim processor, i.e. its oldest ready task) and allocates a new
deque for its execution. Most overhead due to computation
of data dependencies is moved to this steal operation [17].
Indeed steal operations are very rare events as stated in [6,
8] on a grid when processors speeds ratios may vary only
within a bounded interval.

Athapascan/Kaapi provides a language-based perfor-
mance model using work and depth [4] to predict the execu-
tion time T on a distributed architecture. The work W is the
total number of elementary (unit) operations performed; the
depth D is the critical-path, i.e. the number of (unit) oper-
ations for an execution on an unbounded number of proces-
sors. Note that D accounts not only for data-dependencies
among tasks but also for recursive task creations. The work
(and depth) of an Athapascan parallel program includes
both the sequential work (WS) and the cost of task creations
but without considering the scheduling overhead; similarly
to a sequential function call, the cost of a task creation with
n unit arguments is τfork + nτarg. If the cost of those task
creations is negligible in front of Ws, then W 'Ws.

A distributed (heterogeneous) architecture with proces-
sors of changing speed is modelled as in [8]. Given p pro-
cessors, let Πi(t) be the instantaneous speed of processor i
that participates to the computation at time t, measured as
the number of elementary operations per unit of time; let

Πave =
PT

t=1
Pp

i=1 Πi(t)

p.T
be the average speed of a processor

for a computation with duration T . The next theorem from
[8] makes explicit a bound on T with respect to Πave, p, D
and W for recursive parallel creation of parallelism (fully-
strict computation).

Theorem(see [8, 17]) With high probability, the number
of steal operations is O(pD) and the execution time T is

bounded by T ≤ W
pΠave

+O
“

D
Πave

”
.

Thus, when D � W , the resulting time is close to the
expected optimal one W

pΠave
. Then, to fit to Kaapi and

previous theorem, the following sections explicit the paral-
lelization of the sequential loop (Algorithm 1) to ensure that
its depth D is very small and its work W is close to Ws.



3. ADAPTIVE LOOP PARALLELIZATION
This section presents the parallelization of the sequential

loop (Algorithm 1). To receive the benefit of workstealing,
three levels are distinguished: micro-loop provides paral-
lelization by recursing halving of the iteration (which is a
fully strict computation); nano-loop amortizes the overhead
introduced by micro-loop and workstealing; macro-loop en-
ables to detect early termination with provable performances
with respect to a sequential execution of the loop. The next
section considers the restricted case where the size of the
loop is fixed, while the following ones extend to the general
case.

3.1 Recursive parallelism: parallel micro-loop
In this section, we consider a restricted version of the loop

in Algorithm 1 where the number N of computations f(i) to
perform is an input. As a result, the Terminated(n,Accn)
test reduces to the n ≤ N test. In all the sequel, we
will assume that the associative operation

L
takes a con-

stant time. Let Ws be the total number of unit opera-
tions performed by the loop. The number of operations
wf(n) performed by f(n) may depend on n; we denote by
Df = maxni=1 wf(i) the maximal number of operations per-
formed by f(i), 1 ≤ i ≤ N . We assume that the degree of
potential parallelism Ws

Df
is large enough to motivate the use

of p processors to compute the loop.
Then, to exploit recursive parallelism, the loop from i to

j may be recursively split into two parallel parts of size N/2
and n−N/2 till the finest grain f(i), each part corresponding
to a task scheduled by workstealing. This recursive extrac-
tion is referred in the sequel as micro-loop since it extracts
parallelism until fine grain tasks. Then the total arithmetic
work of the computation is W = Ws + αN ; the overhead
αN encompasses the 2N local task creations (for f and
⊕ computations). The critical depth of the computation,
that dominates the number of steals, is D = Df + β logN ;
the overhead β logN encompasses the b1 + log2 Nc ≤ ni ≤
d1+log2 Ne task creations on the path of length ni from the
leave task node f(i) to the root

L
. Then, from theorem 2,

the time T of the computation is bounded by

T ≤ Ws + αN

pΠave
+O

„
Df + β logN)

Πave

«
.

Assuming D � W and p � N , this bound is close to opti-
mal if Ws � α.N but not if Ws = Θ(N). The next section
extends it to this general case where Ws = Ω(N).

3.2 Local sequential nano loop
When β logN is large compared to Df , the overhead of

task creation may be hidden without increasing the depth
of the computation. Indeed, the previous recursive splitting
is stopped when the input interval contains less than β logN

Df

computations of f to perform: then it is computed by a
single task that performs a sequential loop (similar to the
initial loop in Algorithm 1). Let w be the maximal work
performed by such a sequential loop: Df + β logN

Df
≤ w ≤

β logN . Since D
2
≤ w < D, this work is critical: then the

loop is called nano-loop. Considering both the micro-loop
(recursive splitting) and the nano-loops, the resulting depth
D′ verifies D ≤ D′ ≤ 2β logN = 2D and remains of the
same order as D.

Note that the nano-loop hides the overhead due to task

creations and access to the local deque. As a result, it de-
creases the work W ′ of the parallel program to the one per-
formed by the reference sequential loop: W ′ = Ws +α N

logN
.

Considering W ′ and D′, the corresponding execution time
T is now bounded by

T ≤ Ws

pΠave
+ α

N

(logN) pΠave
+O

„
D

Πave

«
.

Yet, assuming D �W and p� N as before, T ' Ws
pΠave

. in

the general case where Ws = Ω(N).

Remark 1. Based on work-stealing, the extraction of par-
allelism (i.e. a fraction of the remaining work Wr) can
be performed on line. Then each non-idle processor per-
forms a local micro loop, each step of the micro-loop being
a nano-loop with non preemptive execution. Then, the cor-
responding size of the nano loop in this case is self-tuned
to Θ(logWr) since, in the best case, the depth to execute a
work Wr on an unbounded number of processors is at least
Ω(logWr).

3.3 Self-adaptive computation with early ter-
mination: global sequential macro loop

We now consider the general case of the loop Algorithm
1 where the number N of effective computations performed
is not an input but decided on-line by Terminated(n,Accn).
A typical example is the STL find if algorithm: taking in
input an iterator in the range [f, l), it returns the first iter-
ator N ∈ [f, l) such that the predicate pred(*N) is true and
l if no such predicate is found1. Then the work performed
by the loop in Algorithm 1 is Ws =

PN
k=1 wf(i).

To ensure that the work W performed by the parallel al-
gorithm is close to Ws, we use the general scheme proposed
in [7] based on an amortized technique inspired by Floyd’s
algorithm to detect periodicity in a sequence.

The global loop is broken into several macro steps each
consisting in consecutive iterations of the loop. Let sn be the
number of iterations in the m-th macro-step and let nm =Pm
i=1 si. The m-th macro-step takes in input the value

xnm−1 of the previous macro-step and computes xnm by
the micro-loop/nano-loop previous scheme. Inside a macro-
step, no termination test is performed. At the end of the
macro-step, Accn is reconstructed using xnm and the termi-
nation test is performed. The way the termination test is
computed depends on the Terminated function. The first
value N and corresponding AccN that makes the termina-
tion test true can be recovered from three main schemes:

1. either directly by the
L

function: this is the case when
for instance

L
reduces to a min computation like in

find if;

2. or by a dichotomic search when the termination test
remains true for any n larger than N [7];

3. or, in the general case, by a parallel partial sum (pre-
fix) computation [28] followed by a dichotomic search.
Note that in this case, due to the nano-loop inside a
macro-step, the number of prefix to compute in the
m-th macro-step is O( sn

log sn
) that compares favorably

to the arithmetic work Ω(sn).

1To exhibit parallelism, the predicate pred is assumed to
implement a fixed function of its input, not depending on
the context.



(i-1)-th macro-step

first macro-step

Acc(1)

f(n) f(n+1) f(n+s-1)

+ +

f(i)

+

Termination test

++

Acc(i)

continuation

Acc(i)

Figure 1: Scheme of the macro-step iteration.

In any case, the amount of potential extra-work is bounded
by the size of the macro-steps. However, with paralleliza-
tion in mind, the global number of macro-steps should be
kept small: each macro-step involves a global synchroniza-
tion; and the larger the size of a macro-step, the better the
parallelism. When the termination test remains true for
any i ≥ N , various tradeoff are studied in [7], in particular

sn = ρ
n

log n with 1 < ρ < 2. Table 1 explicits the extra-work
for some values of sn.

sk #macro-steps extra work

constant O(N) O(1)

2k O(logN) O(N)

ρ
k

log k O(logN log logN) O
“

N
log logN

”
Table 1: Tradeoffs for the size sk of macro-step k.

3.4 STL interface: find if experiments
The previous three levels of parallelism (micro, nano and

macro loops) have been developed on top of Kaapi provid-
ing parallel implementation for the following generic STL al-
gorithms: for each, transform, accumulate, and find if.
Those parallel implementations are restricted to random it-
erators; when involved, a binary operator is not assumed
commutative but associative; both unary and binary opera-
tors are assumed to return the same value for a given input
whatever the order of evaluation is. We report in this para-
graph experimental results for the find if implementation
which requires the three levels of parallelism. Experiments
are performed on an AMD Opteron machine with sixteen
2200 MHz processors (8 dual-core). The time of find if in-
creases (almost proportionally) with respect to the smallest
index N that makes the predicate true. For each exper-
iment, Ts denotes the time of the the sequential find if

of the STL native implementation and Tp the one of our
parallel implementation on p processors; the relative speed-
up Ts

Tp
is exhibited. The native STL find if is also called

to perform the nano-loop. The size sk chosen for the k-th

macro-loop step is sk = 1
2

Pk−1
i=1 si which ensures a theoreti-

cal average work overhead of 25% (with upper bound 50%).
Two classes A and B of experiments consisting in comput-

ing find if on an array of n double floating point numbers
are reported for a number of processors varying from 1 to 16.
The size of the nanoloop has been tuned to obtain the best
experimental time. In class A (fig. 2), n = 106 and the cost
of the predicate is τPred = 30.71µs; each colour represents a
specific value of N ∈ {10, 102, 103, 104, 105, 5.105, 106} cor-
responding to a sequential reference computation time Ts
from 0.3ms to 30s. In B, n = 10000 and τPred = 30.02
ms; N ∈ {1, 10, 100, 1000, 5000, 10000} corresponding to a
sequential reference computation time Ts from 30ms to 30s.

On both figures, we observe saw tooths in particular for
small values of N . However, those saw tooths are indeed
much less apparent in the speed-up T1

Tp
relative to the ex-

ecution of the parallel algorithm on 1 processor: yet, they
are mainly due to the arithmetic overhead of the macro-
loop with respect to the sequential execution, this overhead
depending on N .

We observe speed-up only from Ts ≥ 3ms (N ≥ 104 in
A, N ≥ 1 in B): this exhibits the minimal grain for our
implementation combining the three loops on Kaapi. But,
once speed-up is observed, it scales almost linearly. This
exhibits the efficiency of the parallelization on 16 processors
even for fine grain computations (less than 1 second) and
unpredictable work.

Figure 2: find if – A: n = 106, τPred = 30.71µs

4. STREAM CIPHER
The previous adaptive parallel transform loop has been

used to parallelize a stream cipher. A stream cipher is de-
fined from a block cipher Enc that takes in input a secret
key and a block Mi with fixed size (e.g. 64 bits in the Data
Encryption Standard, DES) and returns an encrypted block
Ci of Mi with the same size. There are different ways to
encrypt/decrypt a data stream using a block cipher Enc.
These methods are called modes of operation and were orig-
inally designed for DES in Federal Information Processing
Standard (FIPS 81).In 2000 and 2001 the National Institute
of Standards and Technology (NIST) sponsored an interna-
tional workshop in order to give a list of modes of operations
for symmetric bloc ciphers [2]). It came out five modes of
operations for symmetric block ciphers: Electronic Code-
Book (ECB), Cipher Block Chaining (CBC), Cipher Feed-



Figure 3: find if – B: n = 104, τPred = 3.02 ms

Back (CFB), Output FeedBack (OFB) and Counter. As
detailed in [29] each mode has its specificity in term of se-
curity, efficiency and fault tolerance.

The initial sequential application benchmark is based on
CBC mode, each 64 bits block being ciphered by a black
box. For the application context, high security against re-
play attacks was required and therefore Counter mode cho-
sen [21]. Figure 4 shows the counter mode block diagram for

Figure 4: Counter Mode

encryption: Mi is the ith block of the plaintext, its size cor-
responds to the block size of the symmetric block cipher; K
is the secret key used for encryption; Counter0 is an agreed
upon value (does not need to be secret but must be differ-
ent for each messages encrypted with a given secret key K);
∀i, Counteri = f(Counter0, i) where f is a function easy
to compute with a period on i very large, greater than the
number of blocks in the whole plaintext, such as addition
as used below; Ci is the ith block of ciphertext (encrypted
block); Enc represents the block cipher encryption function.

As one can see, the counter mode allows parallelism since
each value Counteri is encrypted with the block cipher en-
cryption function independently of each other. Furthermore,
assuming that the value Counter0 is used only once for a
given key, this mode of operation ensures a total security
against replay attacks.

Counter mode has been implemented on top of the previ-
ous parallel STL transform and measured on the same 16-
way Opteron machine used on previous find if benchmark.
The Enc is the 64 bits blackbox used in the sequential ini-
tial benchmark. In Figure 5 the output is written in memory
while in Figure 6 it is written to output. In both cases, par-
allelism improves performances: however, while speed-up is

optimal with respect to arithmetic (Figure 5), it is limited
by input-output bandwidth (Figure 6).

In this application, the macro-loop is used to avoid waiting
for the a priori unknown end of the input stream before
starting to encrypt/decrypt (similar to the early termination
previously explained).

Figure 5: Counter stream cipher in memory (549MB)

Figure 6: Counter stream cipher with I/O (921MB)

5. SELECTION OF INTERESTING CRYP-
TOGRAPHIC BOXES

The secret key cryptology has a well known standard —
the Advanced Encryption Standard (AES) — which suc-
ceeded in 2002 to the Data Encryption Standard. Two of
the main qualities of the AES are, first a very good diffu-
sion, and second a substitution box with exceptionally good
invariants2 (δ, λ) coming from the algebraic inversion on a
finite field. It was exhibited in [26] for these properties :
(δ, λ) = (4, 16). Note that other ciphers have recently been
proposed whose boxes exhibit really worse invariants than
AES.

In [12] some algebraic attacks of the AES were developed
using the algebraic definition of the substitution box. In-
deed for this substitution there are 39 quadratic relations
between the input bits and the output bits. These attacks
can be expressed as the search for solutions of a system of low

2see 5.1.3 for the definitions



degree algebraic equations, translating the search of the key
and the plain text as a system of 8 000 algebraic quadratic
equations in 1 600 unknowns. We are far from being able to
solve such a system because it comprises around 210 mono-
mials, but the progress in (parallel) computations may help
in a near future. As a result, it is very important to develop
research on new good boxes. The substitution boxes are a
critical element of a symmetric cipher. Their study is still
very sparse.

5.1 Sequential algorithm
One-byte substitution boxes is a one to one map for the

[|0; 255|] interval. There exist 256! (i.e. about 22000) differ-
ent ones, too many to test them all. Instead, we propose to
take random substitution boxes and test the two properties.
This allows us to select the best boxes with regards to these
two properties. For these selected boxes, we can then check
if they have no quadratic relation. Note that [13] already
studied 2 million such boxes finding only substitution boxes
with (δ, λ) = (10, 30) or (8, 32).

A simple sequential program as been written that tested
about 230 within 3 weeks on a standard PC. To get better
statistics (and perhaps even better substitution boxes), we
need an efficient parallel version that will be able to use as
many processors as available. So, at first, we describe here
the core (sequential) algorithm. Then, the next subsection
(Section 5.2) will explain how it has been parallelized with
Kaapi. Eventually the next section (Section 6) will present
the results we got on the grid.

5.1.1 Core sequential algorithm
We summarize the sequential algorithm used as the basis

of the grid computation. It begins by computing a random
substitution on 256 elements then computes cryptographic
invariants (δ, λ). Note that because computation of the in-
variant λ is much longer than the one of δ, we compute the
first one only when δ is good enough. We’ll briefly recall
later the definition of δ and λ, as well as the standard algo-
rithm for random substitutions.

Algorithm 2 Core Sequential Algorithm

Data : Fix N , for example N = 230;

Result: a list of B with (δ, λ) = (8, 30) or better.

for i = 0; i < N ; i+ + do
Compute a random substitution box B using the
seed i;
Compute its δ;
Record statistics about δ;
if δ ≤ 8 then

Compute its λ;
Record statistics about λ;
if λ ≤ 30 or δ ≤ 6 then

print i and B;
end

end
end

In addition to record good substitution boxes, we also
record statistics about δ and λ (when it is computed for the
second one). That is, we count how many boxes we find
with a given value of δ and λ. As we are only interested in
small values of δ and λ, we keep only one class for all values
greater or equals to 40.

5.1.2 Random substitution
The core algorithm needs to get random substitution boxes.

The easiest way providing random substitutions is explained
in [20], see also [14]. We summarize it for substitutions on
256 elements:

Algorithm 3 Building a random permutation

build a 256 array T with T [i] = i , i = 0, . . . , 255;
for i = 0; i < 255; i+ + do

swap i with a random j, with i ≤ j < 256
end
return T

To get uniform random substitution boxes, all we need
with this algorithm is a uniform random choice of j. For
getting these random numbers we use the famous Mersenne
twistor algorithm, see [23], fast with a huge period: 219937−
1. See the comments for the adaptation in Grid setting.

5.1.3 Cryptographic invariants for a substitution F

A substitution function F : Fn2 −→ Fn2 used in a block
cipher is the only non linear part in it.
If x = (x0, . . . , xn−1) ∈ Fn2 , let y = (y0, . . . , yn−1) = F (x).

We now recall the quantities δF and λF related to differen-
tial and linear cryptanalysis that measure the non-linearity
of F . They should be small; the AES substitution is excep-
tionally good with (δF , λF ) = (4, 16).

Differential invariant. The differential invariant δF [9,
10] measures the deviation from a linear function verifying
F (a⊕ x) = F (a)⊕ F (x) where ⊕ is the xor operator.
It is defined by δF = max

a,b∈Fn
2 ,a 6=0

{δF (a, b)}

with δF (a, b) = # {x ∈ Fn2 : F (x)⊕ F (a⊕ x) = b}
Note that δF is an even number ≥ 2.
Besides, if F is linear, then ∀x, y F (x)⊕F (a⊕x) = F (a).

So δF (a, b) = 2n if b = F (a). Otherwise δF (a, b) = 0.

Linear invariant. The linear invariant λF indicates whether
there exist linear relations between input bits and output
bits. Only a likely relation would be useful for an attack.

It is defined by λF = max
a,b∈Fn

2 ,b6=0
{λF (a, b)} with

λF (a, b) =
˛̨
−2n−1 + # {x ∈ Fn2 ; 〈a, x〉 ⊕ 〈b, F (x)〉 = 0}

˛̨
where 〈α, β〉 =

n−1X
i=0

αiβi is the scalar product in Fn2 .

5.2 Parallel algorithm and implementation
The sequential algorithm is a loop similar to Algorithm

1 we have to parallelize. We will see how this can be done
efficiently with Kaapi and how such an application can be
deployed on a grid.

5.2.1 Kaapi

As explain in Section 2, Kaapi can efficiently schedule
tasks on a grid with respect to their dependencies. How-
ever, when splitting the outer loop of the core sequential
algorithm in several tasks, we have to ensure that the cost
of stealing and scheduling tasks, sending results, etc. will re-
main low. Creating one task for each loop would not allow
efficient scheduling: each remote node would steal a task,
run it, send its results and restart this again and again.
There would be far to much steals and communications to



be efficient. So, the algorithm is parallelized with the three
nested loops scheme proposed in Section 3.

The nano-loop ensures that each task does not have too
much overhead over the sequential algorithm. This means
that a Kaapi task will compute several boxes at once. Then
task creation, locking and so on will be amortized by this
loop. The size of this loop can be automatically computed
and dynamically adjusted (see 3.2). However, for this exper-
iment, as the inner loop is very regular, we choose a fixed
size and adjust it so that such a task costs about3 30s.

Algorithm 4 Nano-loop

Data : N1 and N2 such as N1 < N2

Result: Good boxes and statistics for all n ∈ [N1;N2[

List={};
for i = N1; i < N2; i+ + do

Compute a random substitution box B using the
seed i;
Compute its δ;
Record statistics about δ;
if δ ≤ 8 then

Compute its λ;
Record statistics about λ;
if λ ≤ 30 or δ ≤ 6 then

store i in List;
end

end
end
return List and statistics about δ and λ;

The micro-loop (Section 3.1) is the one responsible for an
efficient work stealing by recursive splitting of the research
space. This allows remote nodes to steal a large part of the
remaining tasks. Since workstealing ensure a small number
of steals, remote nodes can make lots of computation before
needing to send back results and steal other tasks.

Algorithm 5 Micro-loop

Data : N1 and N2 such as N1 < N2

Result: Good boxes and statistics for all n ∈ [N1;N2[

if N2 −N1 < threshold (nanoloop) then
return nanoloop(N1, N2);

end
else

size = N2−N1
2

;
(List1, Stat1) = Fork 〈microloop(N1, N1 + size)〉;
(List2, Stat2) = Fork 〈microloop(N1 + size,N2)〉;
return Fork 〈Merge(List1, Stat1, List2, Stat2)〉 ;

end

Dependencies between created Kaapi tasks will be au-
tomatically managed by the runtime. So, for example, a
Merge task will not be scheduled before List1, Stat1, List2,
and Stat2, are available, that is, before both previous micro-
loops completed.

Eventually, the macro-loop is here to ensure some kind of
fault tolerance and a correct management of the allocated

3This 30s time interval was chosen such that the depth D =
30s + Trecursive tasks creation is negligible compared to the
total cost of one macro-loop (W ≈ 106 s for a chunk of 232

boxes) and such that the cost of one task creation (< 0.1 s) is
negligible compared to the cost of one nano-loop (i.e. 30 s).

time on the available resources. It deals with to early ter-
mination due to plate-form crash, network failure or change
in machines’ reservation. For example, we are able to stop
and restart the instance if we need to free a part of the grid
we use.

Algorithm 6 Macro-loop

Data : N1 and N2 such as N1 < N2

Result: Good boxes and statistics for all n ∈ [N1;N2[

for i = N1; i < N2; i+= threshold(macroloop) do
(L, St) = microloop(i, i+ threshold(macroloop));
Record(L, St);

end

Following Section 3.3, the threshold used for this loop
can also be dynamic. For example, if we set it to twice its
previous value at each loop, we ensure we do not lose more
than half of the work done. However, as computers on the
grid we used are allocated by chunks of hours, we use a fixed
threshold of 232, i.e. we call the micro-loop with chunks of
232 boxes to test.

5.2.2 Parallel random generator
To minimize communication costs and memory footprint

of the intermediate results (selected boxes), when we find a
good substitution box, we do not record the whole box (i.e.
256 integers) but only the seed of the random generator that
allows to rebuild it (i.e. about 64 bits).

The Mersenne twistor library we used in the sequential
program did not work ’as is’ in the Kaapi version of the
program. Indeed, it uses some global variables to track the
series between each invocation. However, as Kaapi use sev-
eral threads on multiprocessor machines to run several task
in parallel, random boxes generated from a seed were not re-
producible: random series were “corrupted” by calls made
to the library by the other threads. But, as sources of the
library were available, we made it thread safe: each library
function was added a parameter. This new parameter is
in fact a pointer to a structure that stores previous values
of global variables. These structures are allocated by each
threads. As a result, the library becomes thread-safe.

5.2.3 Grid deployment on Grid5000
Grid5000 is a French platform whose main purpose is to

serve as an experimental testbed for research in Grid Com-
puting. The physical platform consists of 9 local sites, each
with 100 to a thousand PCs, connected by the RENATER
Education and Research Network with a 10Gb/s link (or
at least 1 Gb/s, when 10Gb/s is not available yet). This
platform offers many facilities to create and deploy specific
environments and to monitor experiments.

To deploy our software on the grid, we used the Tak-
Tuk[22] software. It allowed us to replicate our environment
on all sites. The heterogeneity of speed between the dif-
ferent machines is directly handled by Kaapi’s scheduling.
To port the application on each site, we just needed to per-
form a recompilation to correctly link the application with
the local used libraries. TakTuk also offered us a parallel
launcher of our application. This parallel launcher takes a
list of machines (the machines we reserved), detects dead
nodes, and runs our Kaapi program only on good nodes.
This feature turned out to be really useful as, each time we
reserved hundreds of nodes, several of them were dead.



δ # instances fraction of
instances

≤ 6 0 0%

8 28,027 0.0026 %

10 425,465,687 39.6%
12 578,922,640 53.9%

14 64,858,233 6.04%
16 4,218,423 0.39%
18 236,480 0.022%

20 11,756 0.0011 %
22 544 0.000051%
24 33 0.0000031%

26 2 0.00000017%

(a) δ statistics

λ # instances fraction of
instances

≤ 28 0 0%
30 153 0.55%
32 19,181 68%

34 6,115 22%
36 1,895 6.8%
38 504 1.8%

≥ 40 179 0.64%

(b) λ statistics
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230 boxes have been tested on 1 processor in 3 weeks. The number of boxes found for each value of δ
in presented in Table 7a. For the 28,027 boxes with δ ≤ 8, the λ value has been computed (Table 7b).
All these results are also presented in the Figure 7c (log scale).

Figure 7: Sequential program

δ # instances fraction of
instances

≤ 6 0 0%
8 112,484 0.0026%

10 1,701,987,184 39.6%

12 2,315,610,867 53.9%
14 259,395,688 6.04%

16 16,867,689 0.39%
18 944,112 0.022%
20 47,008 0.0011%

22 2,168 0.000051%
24 94 0.0000022%

26 1 0.000000023%

(a) δ statistics

λ # instances fraction of
instances

≤ 28 0 0%

30 686 0.61%
32 76,498 68%
34 25,032 22%

36 7,633 6.8%
38 1,943 1.7%

≥ 40 692 0.62%

(b) λ statistics
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(c) cryptographic invariants histogram (log scale)

232 boxes have been tested on 200 processors in 2 hours. The number of boxes found for each value
of δ in presented in Table 8a. For the 112,484 boxes with δ ≤ 8, the λ value has been computed
(Table 8b). All these results are also presented in the Figure 8c (log scale).

Figure 8: Kaapi program on a cluster

6. VALIDATION ON LARGE SCALE GRIDS
OF CLUSTERS WITH SMP NODES

Our experiments are described in Sections 6.1 and 6.2.
Comments about the results we got are in Section 6.3.

6.1 Preliminary results
Preliminary tests have been conducted with the sequen-

tial program on a standard PC (AMD 2600+ 32 bits, 1GB
RAM). We have been able to test 230 substitution boxes
within about 3 weeks. This shows us the need for an effi-
cient parallel version of the program to get more interesting
results.

153 substitution boxes with (δ, λ) = (8, 30) have been
found. All statistics are presented in Figure 7.

Then, a first version of the Kaapi program has been writ-
ten, without the macro-loop. This version has been run on
200 AMD processors 64bits. On this cluster, we have been
able to test 232 substitution boxes within about 2 hours.

686 substitution boxes with (δ, λ) = (8, 30) have been
found. All statistics are presented in Figure 8.

6.2 Results on the grid
Eventually, we added the macro-loop and run the Kaapi

program on Grid5000. We also optimized the computation

of δ and λ with loop unrolls and partial pre-computation.
In this case, we reserved 997 machines, that is 2120 pro-
cessors (most machines are AMD64 bi-processors, some are
quadri-processors) for a time between 24 hours and 65 hours
(depending on other reservations already done on Grid5000).
So we get 66280 hours of processor time. These machines
were located on 10 clusters on 7 different sites in France. We
have been able to test 264 chunks of 232 substitution boxes.

6 substitution boxes with (δ, λ) = (8, 28) have been found.
All statistics are presented in Figure 9.

6.3 Discussion about the results

6.3.1 Cryptographic results
It is interesting to note that the distribution is quite reg-

ular: we got around 670 substitution boxes fore each chunks
of 232 computations. We had 264 such chunks with a min
of 548 and a max of 778. The average ratio is 1/7× 106 and
is pretty stable.

It was a good surprise to see (δ, λ) = (8, 28) boxes appear-
ing. Although we obtained only 6 of them. We also wished
(6, 30) would have occurred but we would need even more
boxes for that result!

Note that NO substitution boxes our program selected



# instances per chunk fraction

δ of all
min max average instances

≤ 6 0 0 0 0%
8 111,078 113,197 112,070 0.0026%

10 1,701,882,332 1,702,054,969 1,701,963,689 39.6%

12 2,315,523,588 2,315,722,018 2,315,612,368 53.9%
14 259,369,423 259,452,977 259,416,281 6.04%

16 16,857,620 16,881,634 16,869,866 0.39%

18 940,786 945,721 943,391 0.022%
20 46,762 47,954 47,372 0.0011%

22 2,051 2,267 2,160 5×10−05 %

24 68 112 90 2×10−06 %
26 0 10 3 8×10−08 %

28 0 2 0 3×10−09 %
30 0 1 0 9×10−11 %

(a) δ statistics for chunks

240 boxes have been tested on 2120 processors in a time between
24 hours and 65 hours (depending on the machines availability).
The macro-loop had a threshold of 232. The number of boxes by
chunk found for each value of δ in presented in Table 9a. For the
boxes with δ ≤ 8, the λ value has been computed (Table 9b).
The graph (Figure 9c) displays the average number of substitution
boxes found in each tested chunk for each value of δ and λ when
δ ≤ 8. The (rather small) line on top of each box of the graph
shows the maximum and the minimum number of substitution
boxes between all chunks.

# instances per chunk fraction of
λ min max average all instances

28 0 1 (in 6 chunks) 0 2.04e-05%
30 548 778 669 0.597%

32 75,552 77,044 76,226 68%
34 24,480 25,318 24,918 22.2%
36 7,289 7,744 7,504 6.7%

38 1,962 2,208 2,073 1.85%
≥ 40 614 762 678 0.605%

(b) λ statistics for chunks
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Figure 9: Kaapi on Grid5000

had quadratic relations, a key advantage against algebraic
attacks.

Note also that we checked our 30 000 substitution boxes
were all different. Even more, their linear affine classes were
different: we used the algorithm in [11] to check them all.

6.3.2 Security of Results
When executing large computation on numerous machines,

one can be concerned about the correctness of the result
they get. Indeed, some machine can have buggy libraries
or buggy processors. Additionally, some machines can be
compromised. Such concerns are very important for crypto-
graphic works.

In this work, there are several ways to verify the results.
The first one is the use of redundancy within the statistics we
collect. For example, we count the number of boxes for each
classes of δ, but we also count the total number of boxes
we try. If the sum of classes does not equal the number
of boxes, it means an error occurred. Actually, during the
development process, such problem occurred. It was due to
a program bug that was thus quickly tracked and resolved.

We can also be sure we got no false-positives. Indeed,
once interesting boxes have been identified, it is easy and
quick to recompute δ and λ. It was this check that revealed
the Mersenne twistor library we used was not thread-safe:
rebuild boxes gave wrong δ and λ (see Section 5.2.2). In
fact, we need to recompute them among other computations
to verify that there are no quadratic relations between the
input bits and the output bits of the cryptographic substi-
tution boxes. So, if some computers are compromised, they
can hide some good boxes, but they cannot give bad boxes.

7. CONCLUSION AND FUTURE WORK
Many programs are structured around a loop with mostly

independent computations. To efficiently parallelize such
programs, three complementary levels of parallelism are
needed. So, an efficient workstealing scheme can be built
which is able to amortize most of the parallelization costs.

Kaapi library and its Athapascan interface allow to ef-
ficiently schedule a graph of tasks with dependencies on a
set of machines. We succeeded in using Kaapi to paral-
lelize programs structured around a loop. Kaapi offers some
standard interfaces that can directly be used to parallelize
a (part of a) program. For example, some operations of
the stl library have been parallelized to encapsulate the
three proposed levels. This enables to automatically and
efficiently parallelize codes with Kaapi. For more complex
programs, it is still required to use low level tools. The
Kaapi/Athapascan interface is powerful enough to allow
easy writing and customization of the three parallel loops
with it. This has been done for a cryptographic application
that has been launched on a grid with 2120 processors. The
results showed that the application uses efficiently most of
the available resources.

We are currently working on a new programming interface
that would allow one to automatically parallelize this class
of programs. This involves for instance dynamical thresh-
olds management [5]. Thresholds will be automatically com-
puted instead of using fixed ones such as our 30 s nano-loop
and our chunk size of 232 boxes. We are also adding a stable
support in Kaapi to be fault tolerant [19]. This will allow
us to continue a grid-application that has been interrupted
without the need to restart all the computations. For grid-
computing runtime, this is a requirement since interruptions
due to resource failure or reallocation are frequent and in-
herent to grids. Our current preliminary developments in
these domains already exhibit promising results.
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