
Certification of Large Distributed Computations
with Task Dependencies in Hostile Environments∗

Axel W. Krings, Jean-Louis Roch and Samir Jafar
Laboratoire ID-IMAG

(CNRS-INPG-INRIA-UJF – UMR 5132)
38330 Montbonnot Saint-Martin, France

{axel.krings, jean-louis.roch, samir.jafar}@imag.fr

Abstract

This research addresses certification of large distributed
applications executing in hostile environments, where tasks
or the results they produce may have been corrupted due to
benign or malicious act. We extend recent results address-
ing applications with task dependencies and introduce new
probabilistic certification algorithms that establish whether
the computations have been massively attacked. The proba-
bilistic approach does not make any assumptions about task
behavior as the result of an attack and certification errors
are only due to unlucky random choices. Bounds associated
with certification are provided for general graphs and for
out-trees found in medical image analysis applications of
the FrenchRagtimeproject.

1. Introduction

Global computing systems, e.g. GRID and Peer-to-peer
environments, gather thousands of resources for computa-
tionally intensive applications. They use middleware such
as the Open Grid Service Architecture (OGSA) [2] to pro-
vide strong authentication, secure communications [3] and
resource management. However, the computational nodes
operate in an unbounded environment and are subjected to a
wide range of attacks [1]. Whereas the global computations
are expected to tolerate certain low rates of faults [4, 10],
one should consider the possibility ofmassive attacksre-
sulting in an error rate larger than can be tolerated by the
application. Such massive attacks are especially of concern
due to the potential of common-mode faults, might they be
the result of virus or Trojan attacks or orchestrated attacks
against widespread vulnerabilities of specific operating sys-
tems.

∗This work has been supported by CNRS, ACI Grid-DOCG and the
Region Rĥone-Alpes (Ragtime project).

Most research related to protecting large computations
against massive attacks has been in the restrictive context
of independent tasks. Concepts like voting, spot-checking,
blacklisting or credibility-based fault-tolerance have been
applied to detect or minimize the influence of attacks [10].
However, there are limitations of such approaches that can
be exploited by intelligent adversaries and there is no guar-
antee that any given faulty execution will be detected as
faulty.

An approach using on statistical testing was shown
in [4], where a majority of nodes are assumed honest while
those nodes compromised by an attack will always falsify
their results. Certification was based on randomly selected
independent tasks for re-execution on reliable nodes. The
approach was extended to consider any parallel computa-
tion with dependent tasks, but dependencies were only used
for correction [6]. Maximizing the expected number of cor-
rected results under consideration of task dependencies was
presented in [5]. However, the problem was shown to be
NP-hard and could be exploited by an attacker.

Making no assumptions on the attack and the distribution
of errors in the context of a general parallel computation
with dependencies, [7] presented certification inspired by
probabilistic algorithms. Specifically, given the results of a
global computation with task dependencies, it was certified
that the computation had not been subjected to a massive
attack. We improve on these results and present lower cost
probabilistic algorithms that make random choices and re-
turn whether an execution is correct or has been massively
attacked. Since certification is probabilistic, its output may
be wrong. However, the probability of certification error is
not related to the application, i.e. the global computation,
but only to the unlucky random choices associated with task
selection for verification.

user

s1

f5f4

f3
f2

s2

f1

Internet

Workers

Checkpoint
Server

Verifiers

Figure 1. Global computing platform, including workers, checkpoint server and verifiers.

2. Background

We adopt the definitions and assumptions of [7], which
are partially restated. The basis for application execution is
the global computing platform [6] shown in Figure 1, con-
sisting of workers, user(s), checkpoint server(s) and veri-
fier(s). We assume that a global computation initiated by the
user is represented by a direct acyclic graphG, describing
the data-flow between all elementary tasks. This graph is as-
sumed to be known by the user a priori. The global comput-
ing platform includes two types of resources calledworkers
andverifiers. Workers are unreliable resources which com-
pute the tasks inG in an non-secure environment. Veri-
fiers are reliable resources which verify the correctness of
selected tasks by re-executing them. Communications be-
tween workers and verifiers are only performed through a
(possibly distributed) checkpoint server, containing compu-
tations submitted by workers [6]. Whereas any attack can
occur on a worker or between a worker and the checkpoint
server, the checkpoint server and verifiers are considered
secure.

Data-flow graph: The application is represented by a
macro data-flow graphG. Specifically,G = (V, E) is a
directed graph, whereV is the finite set of verticesvj andE
is the set of edgesejk, j 6= k, representing precedence re-
lations betweenvj , vk ∈ V. The vertex set consists of two
kinds of tasks. LetTj denote the tasks as seen in the tradi-
tional context of task scheduling, i.e. a task is the smallest
program unit of execution. LetDk denote a data task, rep-
resenting inputs and outputs of a task. In Figure 1 tasks and
data are represented as circles and squares respectively. In

the remainder of this paper, when talking about a task, it is
implied to be a taskTj . Data tasks will be referred to as
inputs or outputs of tasksTj . The total number of tasksTj

in G is n.

Executions and the impact of faults: Let E denote the
execution of a program, represented byG, on a set of un-
reliable workers. Each taskT in E executes with inputs
i(T, E) and creates outputo(T, E). The inputs of a taskTj

are composed of either the initial program inputs or outputs
of other tasksTk, i.e. o(Tk, E).

The number of forged tasks inG is denoted bynF . A
massive attackwith attack ratioq consists of falsifying the
execution of at leastnq = dqne ≤ nF tasks.E is said to be
“attacked with ratioq” and nF

n ≥ q. We assume that either
all tasks execute correctly, i.e.nF = 0, or nF is large,
corresponding to a massive attack. These assumptions will
be referred to as themassive attack hypothesis.

Let Ê denote the execution of the program on a verifier,
i.e. a reliable resource, or set thereof. If under the mas-
sive attack hypothesisE = Ê, i.e. if every task inE uses
the same inputs and computes the same outputs as those in
Ê, thenE is said to be “correct”. Conversely, ifE 6= Ê,
then at least one task inE produced a wrong result and the
execution is said to have “failed”.

The execution of a taskT can be with reference to a
worker or a verifier, and its inputs can be fromE or Ê. Let
i(T, E) denote the input ofT in E andî(T, Ê) the input of
T in Ê. Furthermore, leto(T, E) denote the output ofT on
the worker,̂o(T, E) the output ofT on the verifier based on
inputs fromE, andô(T, Ê) the output ofT on the verifier
based on inputs from̂E. Note that the notationŝo(T, E)

and ô(T, Ê) differ. Both indicate outputs generated on a
verifier, but the first assumesî(T, E) and the latter̂i(T, Ê)
as inputs.

Probabilistic certification: Within the context of this re-
search a probabilistic certification is a probabilistic algo-
rithm that uses randomization in order to state ifE is failed
or not. GivenE, a Monte Carlo certificationis defined
as a randomized algorithm that takes as input an arbitrary
ε, 0 < ε ≤ 1, and delivers (1) eitherCORRECTor (2)
FAILED, together with a proof thatE has failed. The prob-
abilistic certification is said with errorε if the probability
of the answerCORRECT, whenE is actually failed, is less
than or equal toε. The objective is to provide a probabilis-
tic Monte Carlo certification against massive attacks and the
massive attack hypothesis is only a suitable mechanism to
discount low rates of attacks.

3. Certification with dependencies

In [7] two certification algorithms,Monte Carlo Test
(MCT) andExtended Monte Carlo Test(EMCT), suitable
for graphs with dependencies were introduced. We will im-
prove on these algorithms and introduce two kinds of cer-
tification tests with lower cost. However, we first need to
present several definitions.

Let G<(T) denote the sub-graph induced by all prede-
cessors of a taskT or a set of tasksV , i.e. G<(V). Further-
more, letG≤(T) = G<(T) ∪ {T}.

Certification based on task re-execution on verifiers
presents challenges when considering task dependencies.
This is due to limitations of re-execution in the presence of
fault-propagation. We will utilize the concept ofinitiators
in order to address the problem of fault-propagation.

Let F denote the set of all falsified tasks for a givenG
with n tasks. An initiator is a taskTi ∈ F which has no
predecessors inF , i.e. it has not falsified predecessors. The
initiator setI(F) is defined as the set of all initiators, i.e.

I(F) = {Ti ∈ F : F ∩G<(Ti) = ∅}.

Let nI denote the total number of initiators, i.e.nI =
|I(F)|. It is obvious that the actual tasks inF andI(F)
are not known, since otherwise certification would be triv-
ial.

Next, the minimum number of initiators with respect to
given subgraph ofG is defined. LetV be a set of tasks in
G and letk ≤ nF be the number of falsified tasks assumed.
DefineγV (k) as theminimum number of initiatorswith re-
spect toV andk such that

γV (k) = min|G≤(V) ∩ I(F)|

over allF ⊆ G, s.t. |F | ≥ k andG≤(V)∩I(F) 6= ∅. Thus
γG(nF), for nF = nq, is the smallestnI possible, i.e. the
nI associated with a pathological attack scenario.

Now, we will define theminimal initiator ratioΓV (k) as

ΓV (k) =
γV (k)
|G≤(V)|

.

The minimal initiator ratio is helpful in determining bounds
on the probabilities associated with selecting initiators in
predecessor sets.

3.1. Relationships between quantities

For an arbitrary subset of tasksV in G, the relationship
betweenγV (k), γG(k), andnI with respect tok = nF or
k = nq is not obvious. By definition, we haveq ≤ nF

n and
thusnq ≤ nF . Also, by definitionnI ≤ nF . The minimum
number of initiators is defined with respect to the patho-
logical attack scenario, whereasnI andnF are the actual
number of initiators and falsified tasks respectively. Thus,
we always have

γV (nF) ≤ γG(nF) ≤ nI ≤ nF .

However, where doesnq fit into this inequality? The only
certain relationship isnq ≤ nF . On the other hand, with
respect tonq we can always say that

γV (nq) ≤ γG(nq) ≤ nq ≤ nF .

However, where doesnI fit into this inequality? The only
certain relationship isγG(nq) ≤ nI ≤ nF . On the other
hand, with respect tonq ≤ nF the different quantities
can be directly compared, i.e.γV (nq) ≤ γV (nF) and
γG(nq) ≤ γG(nF). This implies thatΓV (nq) ≤ ΓV (nF)
andΓG(nq) ≤ ΓG(nF).

3.2. Verifying fractions of G≤(T)

We first consider an algorithm that re-executes a fraction
α, 0 < α ≤ 1, of tasks in predecessor graphs. It differs
from AlgorithmEMCT (E) presented in [7] only in Step 2,
where the entireG≤(T) rather than a fraction thereof was
re-executed.

Algorithm EMCTα(E)

1. Uniformly choose one taskT in G.

2. Uniformly selectnα = dα|G≤(T)|e tasks inG≤(T)
and let this set be denoted byA. If for any Tj ∈ A,
that has not been verified yet, re-execution on a verifier
results inô(Tj , E) 6= o(Tj , E) then return FAILED.

3. Return CORRECT.

If the algorithm returns CORRECT it implies thatnα tasks
in G≤(T) have been verified. Now the following lemma can
be stated:

Lemma 1 Let T be a task randomly chosen by
EMCTα(E). Then the probability of error,eα, when
EMCTα(E) returns CORRECT is given by

eα ≤
{

(1− qαΓT(nq)) for 0 < α ≤ 1− ΓT(nq)
(1− q) otherwise.

Proof: Assume thatE has been falsified, butEMCTα(E)
returns CORRECT. Letp denote the probability that the re-
sult of T is correct. The result ofT is either correct or it
is incorrect, implying that there is at least one initiator in
G≤(T). The probability thatEMCTα(E) returns COR-
RECT is composed of (1) the probabilityp that the result of
T was indeed correct and (2) the probability that the result
of T is incorrect but none of thenα randomly chosen tasks
in A turned out to be initiators. Thus

eα ≤ p + (1− p)Prob(no initiator in A). (1)

Depending on the value ofα two cases exist:

1. First, there is a probability thatA contains no initator
when nα ≤ |G≤(T)| − γT(nq) and thusα ≤ 1 −
γT (nq)

|G≤(T)| = 1− ΓT(nq).

2. Second, A contains at least one initator
when nα > |G≤(T)| − γT(nq) and thus
Prob(no initiator in A) = 0. This is the case
whenα > 1− ΓT(nq). We say thatα is saturated.

We first consider Equation 1 forα ≤ 1 − ΓT(nq). For
a given attack scenario, the minimum number of tasks that
have incorrect results isnF . This is the case when there
is no error propagation to any non-faulty task. Thusp ≤
1− nF

n and substitutingp in Equation 1 we get

eα ≤ p + (1− p)(1− αΓT(nF))

≤ 1− nF

n
αΓT(nF)

≤ 1− nq

n
αΓT(nF)

≤ 1− qαΓT(nF)
≤ 1− qαΓT(nq).

Next, we consider Equation 1 forα > 1− ΓT(nq), i.e. α is
saturated. Now

eα ≤ p + (1− p)Prob(no initiator in A) = p

≤ 1− nF

n
≤ 1− nq

n
≤ 1− q. �

Given Lemma 1 we can now relateε, α, q andN .

Theorem 1 Let E be an execution with dependencies that
is either correct or massively attacked with ratioq. Given
ε and0 < α ≤ 1, N independent invocations of Algorithm
EMCTα(E) provide a certification with error probability

ε ≤
{

(1− qαΓG(nq))N for 0 < α ≤ 1− ΓT(nq)
(1− q)N otherwise.

Proof: To prove the first case, we know from Lemma 1 that
a single invocation of AlgorithmEMCTα(E) can produce
a maximal error of1−qαΓT(nq). This term is largest when
ΓT(nq) is minimal and it depends on theT selected. There-
fore ΓT(nq), and thus the actual number of independent
invocations, can only be determined at run-time when the
specificT is known. However, in the worst case, for any
T ∈ G we haveΓT(nq) ≥ ΓG(nq) and thus1 − ΓT(nq) ≤
1 − ΓG(nq). Then fromε ≤ (1 − qαΓG(nq))N we get the
bound

N ≥ log ε

log(1− qαΓG(nq))
.

The proof of the second case follows immediately from
the fact that each invocation contributes a maximal error of
1− q shown in Lemma 1.�

3.3. Verifying fixed numbers of tasks

Rather than verifying a fraction of tasks as discussed pre-
viously we now fix the number of tasks inG≤(T) to be
tested. We limit our consideration to the optimal case of
unity, i.e. only one task inG≤(T) is verified.

Algorithm EMCT 1(E)

1. Uniformly choose one taskT in G.

2. Uniformly select a singleTj in G≤(T). If re-execution
of Tj on a verifier results in̂o(Tj , E) 6= o(Tj , E) then
return FAILED.

3. Return CORRECT.

Now the following lemma, which is similar to Lemma 1,
can be stated.

Lemma 2 Let T be a task randomly chosen by
EMCT 1(E) and let V = G≤(T). Then the proba-
bility of error, e1, whenEMCT 1(E) returns CORRECT is
given by

e1 ≤ 1− nF

n
ΓT(nF) ≤ 1− qΓT(nq)

Proof: Let Tj be the task selected fromG≤(T) in step 2
of EMCT 1(E). Assume thatE has been falsified, but
EMCT 1(E) returns CORRECT. Again, letp be the proba-
bility that the result ofT is correct. The output ofT is either

correct or it is incorrect, implying that there is at least one
initiator in G≤(T). Then the probability thatEMCT 1(E)
returns CORRECT is composed of (1) the probabilityp that
the result ofT was indeed correct and (2) the probability
that the result ofT is incorrect butTj was not an initiator.
Thus

e1 ≤ p + (1− p)Prob(Tj is not an initiator)
= p + (1− p)(1− ΓT(nF)).

For a given attack scenario, the minimum number of tasks
that have incorrect results isnF . Thusp ≤ 1 − nF

n and
substitutingp in the previous equation we get

e1 ≤ 1− nF

n
ΓT(nF)

≤ 1− nq

n
ΓT(nF)

≤ 1− nq

n
ΓT(nq) �

We can now relateε, q andN .

Theorem 2 Let E be an execution with dependencies that
is either correct or massively attacked with ratioq. Givenε
thenN independent invocations of AlgorithmEMCT 1(E)
provide a certification with error probability

ε ≤ (1− qΓG(nq))N .

The proof is similar to the one in Theorem 1.

4. Results

In order to show the strength of theEMCTα(E)
and EMCT 1(E) algorithms we compare them with the
MCT (E) andEMCT (E) algorithm of [7] in Table 1.

For each algorithm the number ofeffective initiatorsis
indicated. We use the term “effective initiator” to empha-
size that this is the number of initiators as perceived by the
algorithm. Whereas the real number of initiators is given
only for MCT (E), the number for the others is reflecting
the probability of stumbling onto an initiator. For example,
sinceEMCT (E) re-executes the entire predecessor sub-
graph, a falsified task inG≤(T) is alwaysfound, if it ex-
ists. The largest number of effective initiators that can be
achieved isnq. This is the case whenG has no dependen-
cies and thus every falsified tasks is an initiator [4, 6, 7].

Theconvergence, i.e. the numberN of invocations of the
specific algorithms necessary to certify an execution for a
givenε depends on the probability of error contributed by a
single invocation of the algorithm. For each algorithm, this
probability is shown in the second row of Table 1. However,
it depends on the graph and the specific taskT selected by
the algorithm for those algorithms affected byΓT(nq), i.e.

for EMCTα(E) with 0 < α ≤ 1−ΓT(nq) (see Lemma 1)
andEMCT 1(E).

Next we want to indicate the convergence, i.e.N , for
all algorithms in general. Letqe denote theeffective attack
ratio associated with an algorithm. Then for a single invo-
cation of an algorithm the contribution to the certification
error is1 − qe. If εe denotes the current cumulative error
of a certification, then after another single invocation of an
algorithm we haveεe = εe(1− qe).

The number of invocations necessary to achieve a Monte
Carlo certification for a givenε can be determined in two
ways, (1) a priori and (2) at run-time.

1. In the first case it is the result of a fixed number of in-
vocations determined a priori. However, this approach
is more pessimistic, since it cannot take advantage of
ΓT(nq) but rather has to useΓG(nq). The a priori con-

vergence can be computed asN ≥ log(ε)
log(1−qe) (see The-

orem 1) and is shown in the table. The effective attack
ratios (qe a priori) associated with each algorithm is
shown as well.

2. In the second case it is the result of a run-time depen-
dent process that starts withεe = 1 − qe for the first
invocation and continues invoking the algorithm, com-
putingεe = εe(1 − qe) each time, untilεe ≤ ε. Since
the number of invocations is run-time dependent, it
cannot be explicitly stated. However, the a priori con-
vergence shown in Table 1 constitutes an upper bound.
The effective attack ratio (qe run-time) associated with
each invocation is also shown.

The convergence indicates the number of invocations of
the respective algorithms to achieve certification withε.
Whereas it is a good measure of how fast the certification
achieves the desiredε, it does not indicate the cost associ-
ated with each invocation.

The verification costrefers to the number of tasks to
be verified in one invocation of the algorithm. The exact
verification costs are shown first. It should be noted that
EMCTα(E) reduces the verification cost ofEMCT (E)
by factorα. As was shown in Theorem 1, for certain val-
ues ofα this comes at no penalty with respect to conver-
gence. The same can be said about algorithmsMCT (E)
andEMCT 1(E), where for the same cost of unity the lat-
ter algorithm shows faster convergence.

It is interesting to note the difference in the performance
of EMCTα(E) (with unsaturatedα) andEMCT 1(E) that
clearly favors the latter. In fact,EMCT 1(E) has a lower
verification cost of unityand faster convergence, since it is
not burdened by the termα in the denominator.

This certification research was motivated by medical ap-
plications [8] studied in the context of the French research
project Ragtime [9], which are heavily based on out-trees,
for which the maximum verification cost is shown last.

MCT (E) [7] EMCT (E) [7] EMCTα(E) EMCT 1(E)
of effective initiators d nq(

1−dh

1−d

)e nq nqαΓT(nq) or nq nqΓT(nq)

Probability of error 1−
d nq(

1−dh

1−d

) e
n 1− q 1− qαΓT(nq) or 1− q 1− qΓT(nq)

A priori convergence log ε

log(1−

d
nq(

1−dh

1−d

) e
n)

log ε
log(1−q)

log ε
log(1−qαΓG(nq)) or log ε

log(1−q)
log ε

log(1−qΓG(nq))

qe a priori

d nq(
1−dh

1−d

) e
n q qαΓG(nq) or q qΓG(nq)

qe run-time

d nq(
1−dh

1−d

) e
n q qαΓT(nq) or q qΓT(nq)

Verification cost (exact) 1 |G≤(T)| dα|G≤(T)|e 1
Max. cost (out-tree) 1 h αh 1

Table 1. Results for pathological general case and out-trees

5. Conclusion

This paper expanded the theory of certification of large
distributed computations in hostile environments, where
tasks or data may be falsified by malicious intruders.
Whereas it is assumed that an application can tolerate a
certain small number of falsified results, it is necessary to
know if a massive attack has taken place, surpassing the ap-
plication’s fault-tolerance. Themassive attack hypothesis
was used as the basis for Monte Carlo certification against
massive attacks suitable for the global computing platform.
The probabilistic certification is based on task re-execution
on reliable resources, using tasks and data available from
macro data-flow checkpointing.

Two probabilistic algorithms, EMCTα(E) and
EMCT 1(E), were introduced that improve on the algo-
rithms presented in [7]. They make no assumptions about
the behavior of faults and utilize the concept of initiators
to address impact of fault-propagation. The algorithms
have lower convergence and certification cost compared to
previous work.

The issues of certification under consideration of infor-
mation available at run-time, after the random selections of
the algorithms, were discussed. It was shown that a priori
convergence constitutes an upper bound to run-time conver-
gence. For each algorithm the verification cost was given
for general graphs and for out-trees, which represent the
typical application graphs associated with medical applica-
tions in the context of the French Ragtime project.

References

[1] CERT/CC Statistics 1988-2004, CERT Coordination
Center, http://www.cert.org/stats/certstats.html

[2] Foster, I., et.al.,Grid Services for Distributed System
Integration, IEEE Computer, No. 6, Vol. 35, 2002.

[3] Foster, I., et.al.,Security for Grid Services, Twelfth
International Symposium on High Performance Dis-
tributed Computing (HPDC-12), 2003.

[4] Germain, C. and Playez, N.,Result Checking in Global
Computing Systems, Proc. 17th Annual ACM Interna-
tional Conference on Supercomputing (ICS 03), June 23-
26, 2003

[5] Gao, L. and Malewicz, G.,Internet Computing of Tasks
with Dependencies using Unreliable Workers, 8th Inter-
national Conference on Principles of Distributed Sys-
tems (OPODIS’04), to appear in Springer Verlag LNCS.

[6] Jafar S., et.al.,Using Data-Flow Analysis for Resilence
and Result Checking in Peer to Peer Computations, 15th

Intl. Workshop on Database and Expert Systems Appli-
cations, 2004, pp. 512-516.

[7] Krings, A.W., et.al..A Probabilistic Approach for Task
and Result Certification of Large-scale Distributed Ap-
plications in Hostile Environments, EGC-2005, LNCS
3470, 2005.

[8] Montagnat, J. and Breton, V. and Magnin, I.,Partition-
ing medical image databases for content-based queries
on grid, Methods of Information in Medicine, Special
Issue HealthGrid04, to appear.

[9] Ragtime: Grille pour le Traitement d’Informations
Médicales, Ŕegion Rĥone-Alpes
http://liris.univ-lyon2.fr/ miguet/ragtime/

[10] Sarmenta, Luis F.G.,Sabotage-Tolerance Mechanisms
for Volunteer Computing Systems, Future Generation
Computer Systems, No. 4, Vol. 18, 2002.

