
FlowCert : Probabilistic Certification for Peer-to-Peer Computations

Sébastien Varrette, Jean-Louis Roch Franck Leprévost

Laboratoire ID-IMAG (UMR 5132) Université du Luxembourg

Projet APACHE (CNRS/INPG/INRIA/UJF), Faculté de Droit, Economie et Finance

51, av. Jean Kuntzmann 162 A, Avenue de la Fäıencerie

38330 Montbonnot Saint-Martin, FRANCE L-1511 Luxembourg, LUXEMBOURG

FRANCE LUXEMBOURG

{Sebastien.Varrette,Jean-Louis.Roch}@imag.fr Franck.Leprevost@univ.lu

Abstract

Large scale cluster, Peer-to-Peer computing systems
and grid computer systems gather thousands of nodes for
computing parallel applications. At this scale, it raises
the problem of the result checking of the parallel execu-
tion of a program on an unsecured grid. This domain is
the object of numerous works, either at the hardware or
at the software level. We propose here an original soft-
ware method based on the dynamic computation of the
data-flow associated to a partial execution of the program
on a secure machine. This data-flow is a summary of the
execution : any complete execution of the program on an
unsecured remote machine with the same inputs supplies
a flow which summary has to correspond to the one ob-
tained by partial execution.

1. Introduction

Large scale distributed platforms, such as grid and
Peer-to-Peer computing systems, gather thousands of
nodes for computing parallel applications. The use of
remote resources in parallel processingis the object of
numerous research, particularly in the field of security.

We assume the disposal of a large scale distributed
platform where a secure system architecture such as
Globus [4, 5] is deployed. Allocation of the resources to
the application is performed almost transparently to
the user; the user submits its parallel application de-
scribed as a set of tasks together with their dependen-
cies. To increase security, the system provides strong
authentication and secure communications. Yet, even
on such a secured environment, the outputs results of
the program which is executed on a remote resource
(also called worker henceforth) may be modified with

no control of the client application. In all this paper,
a task is said forged (or faked) when its output results
are different than the results it would have delivered if
executed on an equivalent resource but under the full
control of the client. Task forgery may of course oc-
cur when the remote resource is the victim of a Tro-
jan horse that emulates the behavior of a correct sys-
tem to the outside. However there are more pernicious
situations (see §6). Result checking consists then to de-
tect (and eventually correct) tasks forgeries.

A strong certification for the execution of a program
on a remote architecture requires that this architecture
has a specific secure hardware[8]; various works pro-
pose hardware solutions in this frame[13]. Nevertheless,
this hardware approach is not suitable for peer-to-peer
computing where the hardware is composed of ”stan-
dard” platforms. As a consequence, several studies pro-
pose software solutions that supply intermediate certi-
fications in the case of independent tasks (§2). We pro-
pose a probabilistic algorithm for intermediate certifi-
cation : it ensures that the probability of non-detection
of forgery is lesser than an arbitrary threshold ε fixed
by the user.

More precisely, we consider a peer-to-peer applica-
tion composed with n tasks (or jobs) with dependen-
cies: the inputs of those tasks can be produced by other
tasks and their outputs can eventually be consumed by
other tasks. Since all workers are anonymous in a peer-
to-peer platform, we assume that the result of a given
task is forged with a probability q ∈]0, 1[and the forg-
eries between two distinct tasks are assumed indepen-
dent: this hypothesis is reasonable as it introduces no
restriction on the kind of sabotage that may be per-
formed. Also, the distribution of errors is modelled as
a Bernoulli distribution B(n, q). We first show (§3) that
the error threshold ε can be reached by partial dupli-

cation of only Nε,q = ln ε
ln(1−q) randomly chosen tasks on

trusted machines (oracles); this quantity is quickly neg-
ligible to n. From this result, an original software ap-
proach based on the dependencies analysis of the par-
allel program to execute is proposed. This approach of-
fers two advantages. First, the knowledge of the graph
of tasks dependencies - which can be generated before
the execution of the tasks that composed it - supplies
a partial summary of the program execution. The ad-
ditional cost of this generation is limited and allows to
check the (partial) result conformity of any task with-
out duplication (§4). Secondly, when the forgery of a
task t is detected, the knowledge of the graph allows to
invalidate the successors tasks of t while pursuing the
partial certification of the other tasks. Therefore, we
obtain a dynamic algorithm of certification that avoids
the complete re-execution of the program (§5). Finally,
§6 expounds a distributed software architecture imple-
menting this approach and its advantages against clas-
sical attacks, while experimental evaluations are devel-
oped in §7.

2. Context of software approaches

Since result checking is performed by software, there
is no absolute guarantee that the results are correct.
Then, the objective is to minimize the certification cost
while ensuring an arbitrary small probability of certifi-
cation error. Basically, software certification consists of
adding informations to the execution to accept/refuse
the result(s) of the jobs.

Software approaches for the certification of execu-
tion can be divided in two categories:

1. ”simple checkers” [2] : for some computations,
the time required to carry out the computation
is asymptotically greater than the time required,
given a certain result, to determine whether or not
that result is correct. This is possible thanks to a
post-condition the results have to verify.

Whereas this approach seems to be very sim-
ple and elegant, it is often impossible to automati-
cally extract such post-condition on any program.

Furthermore, let assume that the execution of
the job J is parallelized on m machines. The detec-
tion of the forgery of the final result (that is only
checked) does not supply any information on the
peer(s) responsible for the forgery. Yet, the knowl-
edge of the dependency graph provides a partial
post-condition to any program as it will be de-
scribed in §4.

2. duplication [12, 7] : this approach is based on sev-
eral executions of each task (or job) on many re-

sources. Among the jobs, some are dedicated to
Global Computation - i.e. sequential tasks within
the parallel program - while the others (the or-
acles) check these tasks by duplication i.e. re-
execution.

Figure 1 describes the general principle of the ap-
proach by complete duplication. An important addi-
tional cost is generated by this model : the cost of
the certification corresponds to the number of ora-
cles queries which is equal to the size of the batch. If
the jobs are assumed independent, C. Germain and N.
Playez in [7] suggest to limit the additional cost by us-
ing a sequential test of Wald [15] at the level of the
tester. Yet, this approach is limited as it assumes that
the program is composed of independent tasks. We pro-
pose now an extension of this approach for the case
of tasks with dependencies. The following section ex-
pounds how to limit the number of queries to oracles
with a probability of certification error bounded by an
arbitrary chosen threshold.

3. Certification by partial execution

A peer-to-peer application G0 composed of n tasks
with dependencies is considered. The purpose is to cer-
tify some or all outputs of the program.

Our approach is to provide a probabilistic certifi-
cate by analogy to the Miller-Rabin Monte-Carlo test
of composition (see [9] p. 139). That test considers that
a number is prime if the probability of non-detection
of composition is small enough. Similarly, we consider
that the results to certify are correct if the probabil-
ity of non-detection of forgery results is small enough.
Hence, we will define a Monte-Carlo test of forgery. This
test is based on duplication of randomly chosen tasks
on trusted machines (called oracles); communications
and computations on oracles are assumed as totally re-
liable. Thus, if oracles are used in an hypothesis test
and if α is the risk of first kind (false alarm) in the or-
acle answer, then it is assumed that α = 0.

The problem is to decide whether or not G0 con-
tains forged tasks, with a risk of second kind (false
negative or non-detection) β ≤ ε, where ε is an arbi-
trary threshold fixed by the user. Let H0 be the event
”G0 does not contain any forged tasks” and H1 = H0

(”G0 contains at least a forged task”). Let G be a sub-
set of k uniformly chosen tasks in G0. These tasks will
be submitted to oracles (as described in figure 1). The
tester takes one of the following decisions: ”ACCEPT”
(no tested task was detected forged) or ”REJECT” (at
least one task was detected faked).

The next proposition states that if the number of
tasks is large enough, then a partial duplication of

2

j
2

jn

j
1

W1

W2

Wn

1
r

2
r

nr

x 1

x 2

x n

ORACLE

ORACLE

ORACLE

Jobs Workers

B

batch

ACCEPT

REJECT

Resultts

Tester

Figure 1. Approach by complete duplication. Let ri be the result of a job ji. This result is submitted to a reliable oracle

which re-executes the job, compares the result of the duplication with ri and provides a binary result xi (0=correct,

1=default). In a Global Computation composed of n independent jobs, the vector [x1, ..., xn] is a batch submitted to a

tester that determines if the batch is accepted or not.

only Nε,q = ln(ε)
ln(1−q) tasks, is sufficient to guarantee a

given quality of certification (the risk of second kind is
bounded by the arbitrary threshold ε). Note that Nε,q

does not depend on the number n of tasks.

Proposition 1. Let n be the number of tasks of the pro-
gram; If the probability of tasks forgery is lesser than q,

then ∀ε > 0, ∃n0/n > n0: it is sufficient to check

Nε,q = ln(ε)
ln(1−q) tasks uniformly chosen to have β =

P(ACCEPT |H1) ≤ ε.

Proof. If Ti is the number of tasks that have been de-
tected forged in a set G after i tests, then Ti follows the
binomial law B(i, q). Let k be the number of tasks uni-
formly chosen among the n tasks of the program for
checking. We have :
P(H1) = 1 − P(H0) = 1 − P(Tn = 0) = 1 − (1 − q)n

and P(ACCEPT) = P(Tk = 0) = (1 − q)k. Now, if
the tester answers ”REJECT”, then at least one task

of G0 is forged. Hence, β = 1 − P(REJECT∩H1)
P(H1)

=

1 − P(REJECT)
P(H1)

. Then,

β ≤ ε ⇐⇒
(1 − q)k − (1 − q)n

1 − (1 − q)n
≤ ε

⇐⇒ k ≥
ln[(1 − q)n(1 − ε) + ε]

ln(1 − q)
= fε,q(n).

Now, for n > 0, fε,q(n) is a non-decreasing and pos-

itive function, and fε,q(n)
n→+∞
−−−−−→ Nε,q = ln(ε)

ln(1−q) . Con-

sequently, β ≤ ε as long as k ≥ Nε,q. Figure 2 exhibits
the evolution of fε,q(n) when n is increasing. We can
see that it quickly tends to the constant value Nε,q.

To illustrate the proposition, the following experi-
ment has been set up. A program composed of n = 106

tasks is considered. The probability of tasks forgery is
raised by q = 0.01. The maximum values for the risk
of second kind is bounded by ε = 5%. In each exper-
iment, the number of tasks uniformly chosen to check

600

400

n1

200

n5

0
10 100 1000 10000

fε,q(n)

#tasks, ε=5%, ni = Nε,i

#tasks
q=1%
q=5%

q=10%

Figure 2. Minimum number of tasks to check w.r.t.

the total number of tasks n leading to β ≤ ε.

before the first detection of forgery is computed. Fig-
ure 3 illustrates this algorithm repeated 100 times. In
practice, as n is large enough (large size programs are
considered), min {Nε,q, n} = Nε,q = o(n) tasks will be
checked. This value is very small regarding the total
number of tasks; in the context of the experiment de-
scribed in fig. 3, Nε,q ' 298. Thus, the additional cost
required for the certification is quickly negligible. This
behavior is illustrated by the experimentations done in
§7 (figure 9).

Proposition 1 directly leads to a simple algorithm
for error detection: either the test ends after Nε,q suc-
cessful checks or else an error as been detected.

Figure 3 represents also the value of Nε,q under the
hypotheses of the experiment. It can be seen that this
algorithm for error detection would have failed 4 times.
With this experiment, we have consequently β = 4%.
This value has to be compared with the threshold ε
fixed to 5%: the relation β ≤ ε is verified. This is a
general behavior.

The last algorithm enables the detection of forgery
by the execution of random chosen tasks. Yet, it re-

3

100

200

300

400

500

#tests

Context : #tasks=106;q=1%;ε=5%

Nε,q ' 298
=

#experiment
Nε,q

Figure 3. Number of necessary tests before detec-

tion of error in 100 successive experiments.The value

of Nε,q is also represented in this context.

quires that we have the possibility to test tasks
independently to each other. Consequently, the in-
puts/outputs of the tasks have to be identified. This
is possible thanks to dependencies analysis. This con-
cept is introduced in the following section.

4. Data-Flow analysis

A parallel program will be represented by a bipar-
tite direct acyclic graph G: the first class of vertices is
associated to the tasks whereas the second one repre-
sents the parameters of the tasks (either inputs or out-
puts according to the direction of the edge). A terminal
output indicates a leaf parameter with eventually a re-
sult value to certify.

Previous approaches (§2) delimited indepen-
dent jobs {ji}i≥0 executed on workers, and certi-
fied the computation of ji by checking the reliability
of the worker where ji is executed; we rather con-
sider a set of terminal outputs S = {s1, ..., sm} to cer-
tify. S can contain all or part of the last outputs of the
program. Those outputs are independent and their val-
ues result from the execution of jobs on one or several
worker(s). Let GS ⊂ G be the subgraph restricted to
the ancestors of the vertices in S. GS is called the ter-
minal subgraph associated to S. Figure 4 illustrates
those notions. The computation of the terminal sub-
graph GS can be done in linear time O(|GS |) [3]. GS

supplies then a set of tasks to certify. Modelling an ex-
ecution by a data-flow graph is part of many parallel
programming languages such as Jade [11] or Athapas-
can [6]. We propose to adapt such language in order
to generate the subgraph GS .

f1

f5

task

associated to s3 and s4

f4

f3
f2

s1 s2

s4

e1 e2

1 1 14
8

27

0 1 72

311517

s3

e4
e3

terminal output

terminal subgraph

Figure 4. Instance of a data-flow graph associated to

the execution of five tasks {f1, ..., f5}. The input pa-

rameters of the program are {e1, ..., e4} whereas the

outputs (i.e the results) are {s1, ..., s4}.

4.1. Deterministic tasks re-execution hy-

pothesis

We exhibit two hypothesis H1 and H2 on a macro
data-flow parallel program that ensure deterministic
results based on any individual tasks re-execution.
Those hypothesis are verified by most peer-to-peer ap-
plications:
H1 : all synchronizations between tasks are explic-
itly described in the data-flow graph;
H2 : tasks are deterministic; any execution of a task
with same input delivers the same result.

4.2. A Generic Partial Post-Condition

A complete execution of the program supplies then
a graph GS in which all the parameter values are ex-
plicit, as in fig.4. This graph is called the execution

track of the program. Now let’s consider the same
graph where all the parameters values are symbolic, ex-
cept the input parameters of the program ({e1, ..., e4}
in fig.4). This partial graph is a summary of the ex-
ecution track called the certification track. It only
describes the tasks to execute and their dependencies.
Hypothesis assumed in §4.1 ensure that the certifica-
tion track is deterministic. It has to be generated on re-
liable resources (oracles) and verify the following prop-
erties:

Proposition 2. The certification track is a summary
of the execution track; a partial execution is sufficient to
generate it and any correct execution of the program (with
the same inputs) on a remote unsecured worker supplies
an execution track which summary has to correspond to
the certification track.

4

By the way, a partial post-condition that can be ap-
plied to any program is defined. Even if it does not al-
low to certify the reliability of the computation (more
precisely of the set of terminal outputs S), it makes
it possible to control the general structure of the exe-
cuted DAG. Besides, once this post-condition is veri-
fied, the execution track can be used to certify the set
of terminal outputs S to detect (and eventually cor-
rect) attacks which do not change the structure of the
DAG. This is the subject of the following section.

5. Checking algorithm with error cor-

rection

In the algorithm defined in §3, tasks have to be
checked on secure oracles. Thus, an elementary ora-
cle is defined as a task checker operating in a secure
environment. Its running is illustrated in figure 5.

14 1515

f1

1127
1979

task to check (extracted from
the data−flow graph)

Verif_f1(14,1515,
27,11,1979);

task checker

//duplication and comparison

accept computation

(0)

test result

ELEMENTARY ORACLE

reject computation

(1)

call to a checking function :

Figure 5. Running of an elementary oracle

The execution track GS allows to identify the tasks
of the program and to access to their execution con-
text (such as the values of inputs/outputs parame-
ters). Thanks to the input parameters of a task f1,
an elementary oracle can perform a re-execution of f1
by calling the associated checking function (Verif_f1
in fig.5). The results from this re-execution have to
match the previous output parameters already ex-
tracted from the execution track; otherwise, the task
has been forged. In the sequel, Oe(t) indicates this op-
eration. As in fig.5, Oe(t) = 1 if t has been forged.

In a certification with an arbitrary fixed threshold
ε > 0, the execution track GS is submitted to an or-
acle O which decides whether the values of the termi-
nal outputs included in S are correct or not, with re-
spect to the relation β ≤ ε. Yet, if a forged task t is de-
tected, the knowledge of the graph allows to invalidate
the successor tasks of t:the related sub-graph has to be
replayed and the partial certification of the other tasks
can be continued in parallel. Therefore, a dynamic par-
allel certification algorithm is defined and allows to cor-
rect the forgeries. This algorithm is detailed in Algo-

rithm 1. As the partial post-condition defined in §4.2
ensures the general structure of the program for any ex-
ecution (the tracks are supposed deterministic), the re-
lation GS = GC ∪ GF is satisfied along the recursive
calls to the procedure Check.

Let C be the certification cost i.e. the num-
ber of operations. If no forgery is detected,
C ≤ min {Nε,q, |GS |}. Otherwise, in the case of er-
ror correction and if a certification is obtained after
d detections then the additional cost for the full cer-
tification is ≤ (d + 1)min {Nε,q, |GS |}. Of course,
if the tasks of GF are to be re-executed, the un-
avoidable cost of this duplication has to be added to
C.

Algorithm 1: Dynamic parallel certification algorithm

with error correction

Data : GS : execution track to certify Result : O(GS)

Check(∅,GS);

Procedure Check

Input: GF : subgraph of forged tasks and their suc-
cessors,
GC : the rest of the graph (GC ∩ GF = ∅)

G = GC ∪ GF , TasksChecked = 0;
repeat

Pick up a new task t uniformly chosen;
if (t ∈ GC) OR IsEndOfExecution(GF)

then

if Oe(t) == 1 then

//Detection of a forgery ;
GF = GF∪ Successors(t);
GC = G\GF ;
//GF must be re-executed ;
LaunchExecution(GF);
//Checking tasks of GC can
continue;
//while GF is being executed ;
Check(GF ,GC);

else

TasksChecked+=1;

until TasksChecked == min {Nε,q, n(G)};

The memory cost of the certification is O(|GS |), and
hence depends on the granularity of the graph. More-
over, there is a trade-off between the operations num-
ber and the memory space: weak granularity implies
a large number of tasks. Consequently, the memory
cost increases but the certification time (asymptoti-
cally bounded by the constant value Nε,q) is negligi-
ble. The following section illustrates the previous no-
tions in the definition of a distributed software archi-
tecture for certification.

5

6. Distributed architecture for certifica-

tion

Trusted third Party

(for signature purpose)
CA

prog.c

Program Certificate

prog.c

� � �� � �

� � � � � � � � � � � � �
� � � � � � � � � � � � �

� � � � � � � � � � � �
� � � � � � � � � � � �

Certification Track Generation

Certification Code Verification Code
(checking functions etc...)

Execution Code

Executon Track Generation

Execution Track

Source Code

data−flow graph

certification result

Certificate generation

trusted environment

untrusted environment

Execution_ModulePCG_Module

Certification_Module

Compilation_Module

Figure 6. Global view of the architecture

In this section, the source code of a program to cer-
tify is considered. The previous notions are integrated
in a software architecture to provide the certification
of this program. Figure 6 gives an overview of the pro-
posed architecture that is divided in four modules re-
lated to the four steps of the certification.

1. The Compilation Module takes in input the initial
source code of the program to certify and, thanks
to the macro data-flow API, generates three codes
that will be used by the other modules:

• The Certification Code is the code which exe-
cution provides a partial data-flow graph that
is the certification track of the initial pro-
gram. This graph requires only a partial ex-
ecution of the source code to be generated.

• The Execution Code provides the execution
track of the program, a data-flow graph which
modelled the execution of the source code.

• The Verification Code contains all the check-
ing functions that will be used by the elemen-
tary oracles.

Note that the Compilation Module corresponds
to an initialization step and has to be executed in
a secure environment: the three different codes it
provides have to be signed by a trusted third party
for further authentication. -

2. The PCG Module for ”Program Certificate Genera-
tion Module” provides a certificate of the program.
This certificate consists in representations of both
the certification track and the verification code; it
is also signed by a trusted third party for authen-
tication purpose.

3. The Execution Module submits the Execution
Code to the clusters grid it is linked to. It pro-
vides the execution track (including effective out-
put results of all tasks) that has to be certified.

4. The Certification Module is performed on
trusted oracles and decides whether the com-
putation is accepted or not. Its behavior is
detailed in figure 7. Firstly, it checks the par-
tial post-condition defined in §4.2: the execu-
tion track has to match the pattern described
by the certification track. Secondly, it per-
forms the dynamic parallel algorithm with error
correction described in §5 to deliver a proba-
bilistic certification of the output results in the
execution track. Note that both phases are in-
dependent and can be done in parallel: the par-
tial post-condition checks the aspect of the tracks
whereas the certification algorithm checks a set of
terminal outputs to certify.

Track
Certification

Partial Post−Condition
Comparison with

Execution track aspect

prog.c

...

Program Certificate

Elementary
Oracles

void f(...){...}

void Verif_f()}

Verification Code

execution refused execution accepted

Certification Algorithm
− error detection only
− extention with error

correction

oracle grid
Safe

data−flow graph

Execution Track

Extraction

Signature Checking/

Certification_Module

Certification

Oracle

certification result :

Figure 7.The Certification Module certifies the ex-

ecution track provided by the Execution Module.

Robustness to attacks and resilience. Historically, the
first infrastructure which highlighted the certification
issue was the SETI@Home project [1] in 1999. Whereas

6

the project succeeded beyond the wildest dreams of its
creators, people who believed the SETI@Home client
software too slow decided to provide a patch to makes
the client faster [10]. The previous architecture would
have managed to detect the patched clients thanks to
the partial post-condition checking.
By using a trusted third party which signs the certifi-
cates and the codes generated by the Compilation Mod-
ule, this architecture provides solutions for authenti-
cation and integrity checking. Confidentiality can also
be set thanks to SSL protocols for example. By the
way, usurpation threats and snooping attacks can be
avoided. Yet, DoS attacks are still dangerous on this ar-
chitecture (like many others), more particularly if the
safe grid used for the oracles can be targeted. It intro-
duces the issue of the resilience in the nodes availabil-
ity. Classic solutions implements periodic challenges (or
with an adaptive step). Typically, an authentication
challenge with public key as the one used in SSL is con-
sidered. Such challenge allows to guarantee not only the
presence of a resource but also its authentication. Nev-
ertheless, an alternative could be to assimilate the chal-
lenge to a particular computation which is not differ-
ent than a real computation for the worker point of
view. Such tasks will not be duplicated during the cer-
tification. Under these assumptions, challenges check-
ing allows to estimate the confidence to place in the
distant resource.

7. Illustration and experimentation

Experimental results on a didactic example are ex-
hibited in figures 8 and 9. Figure 8 confirms that a par-

 0

 20

 40

 60

 80

 100

212 213 214 215 216 217 218 219 220 221
 0

 10

 20

 30

 40

 50

P
er

ce
nt

ag
e

G
en

er
at

io
n

T
im

e

Number of tasks

Ratio (%)
Certification Track

Execution track

Figure 8. Comparison between times needed to gen-

erate both types of tracks relatively to the number of

tasks in the tracks with ε = 5%

tial execution of the program (around 20% of the time
needed to compute an execution track) is sufficient to
generate a certification track. In the experiment de-

scribed in figure 9, no error was introduced in the com-
putation of the program. In this context, the certifi-
cation time by complete duplication (all the tasks are
replayed) introduced in §2 is compared to the certifica-
tion time by partial duplication expounded in §3 (only
Nε,q uniformly chosen tasks are replayed, with ε = 0, 1
and q = 0, 01). If the number of tasks is small, the sec-
ond approach comes down to the first one as all the
tasks are checked. But an increase of the number of
tasks quickly favours the partial duplication approach
in terms of certification time, even if the certification
is then probabilistic.

 0

 20

 40

 60

 80

 100

29 210 211 212 213 214 215
 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

P
er

ce
nt

ag
e

C
er

tif
ic

at
io

n
T

im
e

Number of tasks

Ratio (%)
Complete Duplication

Partial Duplication

Figure 9. Comparison between certification by com-

plete and partial duplication. In the later case, the pa-

rameters are ε = 0, 1 and q = 0, 01

8. Conclusion

In this article, a certification scheme for programs
with dependencies is proposed. The knowledge of the
dependencies thanks to a data-flow graph allows two
levels of certification: on the one hand, the structure of
the graph given by the certification track supplies a par-
tial post-condition that can be applied to any program.
In addition, the complete graph of dependencies, also
known as the execution track allows to define a result
certification with a customizable error level. Asymptot-
ically, and if the number of tasks is large enough, we
proved that this error level can be reached by the reli-
able certification of a limited number of uniformly cho-
sen tasks. This number does not depend on the total
number of the executed tasks. This method, associated
with the post-condition mentioned previously, allows
the detection of forgeries with a customizable proba-
bility of errors. This result is obtained under the as-
sumption that all the tasks of the graph have the same
probability to be forged. A subject of future research
consists in considering that the tasks (or even the com-

7

putation machines - the workers) have different fault
probabilities.

On the other hand, the execution track allows to cor-
rect the detected errors by executing again only a sub-
graph composed of the tasks detected as forged and
their successors. Furthermore, this correction can be
done in parallel to the global certification of the pro-
gram. Finally, a certification architecture based on the
previous concepts has been proposed. Experimenta-
tions have been done on a didactic example to compare
the additional cost required to generate both types of
tracks, and to highlight the interest of certification ap-
proach by partial duplication with regards to the com-
plete duplication. It is important to notice that our
method addresses general parallel programs, not only
those written in a data flow language.

This study is part of the framework of the French
ACI Grid-DOCG: in this context, we study the de-
velopment of certification architectures optimized and
adapted to scalability on distributed grids for applica-
tions on optimization problems. In the context of the
RAGTIME project (Région Rhône-Alpes) FlowCert is
used to provide result certification for medical appli-
cations based on remote computations involving dis-
tributed databases. The perspectives concern the ex-
periment on this class of applications on a grid where
the nodes are not equivalent. A particular point is the
estimation of the forgery rate of a task, which is in
fact unknown and related to the execution architec-
ture. This evaluation is important for the estimation
of the number of tests required for the partial certifica-
tion at a customizable error rate proposed in this pa-
per (see [14]).

References

[1] The SETI@Home project, 1999.
http://setiathome.ssl.berkeley.edu/

[2] M. Blum and H. Wasserman. Software Reliability
via Run-Time Result-Checking. Journal of the ACM,
44(6):826–849, Novembre 1997.

[3] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Intro-
duction to Algorithms, Second Edition. McGraw-Hill,
2001.

[4] I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke. A Se-
curity Architecture for Computational Grids. In Fifth
ACM Conference on Computer and Communications
Security Conference, pages 83–92, San Francisco, Cal-
ifornia, 3–5 Novembre 1998.

[5] I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke. Se-
curity for Grid Services. In I. Press, editor, Twelfth
International Symposium on High Performance Dis-
tributed Computing (HPDC-12), Seattle, Washington,
22–24 Juin 2003.

[6] F. Galilée, J.-L. Roch, G. Cavalheiro, and M. Doreille.
Athapascan-1: On-line Building Data Flow Graph in a
Parallel Language. In IEEE, editor, International Con-
ference on Parallel Architectures and Compilation Tech-
niques, PACT’98, pages 88–95, Paris, France, Octobre
1998.

[7] C. Germain and N. Playez. Result checking in global
computing systems. In ACM, editor, Proceedings of the
17th Annual ACM International Conference on Super-
computing (ICS 03), San Francisco, California, 23–26
Juin 2003.

[8] R. Keryell. Cryptopage-1 : vers la fin du piratage in-
formatique? In 6e symposium sur les architectures nou-
velles de machine (SympA’6), Besançon, France, 19–22
Juin 2000.

[9] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone.
Handbook of Applied Cryptography. CRC Press, Inc,
1997.

[10] D.Molnar. The SETI@HomeProblem. November 2000.

[11] M. Rinard. The design, implementation and evaluation
of Jade : aportable, implicitlyparallel programming lan-
guage. ACM Transactions on Programming Languages
and Systems, 20(3):483–545, Mai 1998.

[12] L. F. G. Sarmenta. Sabotage-Tolerance Mechanisms
for Volunteer Computing Systems. In ACM/IEEE In-
ternational Symposium on Cluster Computing and the
Grid (CCGrid’01), Brisbane, Australia, Mai 2001.

[13] E. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. De-
vadas. Aegis: Architecture for tamper-evident and
tamper-resistant processing. In Proceedings of the 17th
International Conference on Supercomputing, SanFran-
cisco, California, 23–26 Juin 2003.

[14] S. Varrette and J.-L. Roch. Certification logicielle de
calcul global avec dépendances sur grille. In 15èmes
rencontres francophones du parallélisme (RenPar’15),
pages 169–176, La-Colle-Sur-Loup, France, 15–17 Oc-
tobre 2003.

[15] A.Wald. SequentialAnalysis. WileyPub. inMath.Stat.,
1966.

8

