
Securing Critical Infrastructures, Grenoble, October 2004

SECURE ARCHITECTURES FOR CLUSTERS AND GRIDS

Sébastien Varrette (?), Jean-Louis Roch(??), Yves Denneulin (??), Franck Lepŕevost (?)
(?) Universit́e du Luxembourg, Faculté de Droit, Economie et Finance, Luxembourg

(??) Projet APACHE (CNRS/INPG/INRIA/UJF), Laboratoire ID-IMAG, Grenoble, France

I. I NTRODUCTION

For applications like multi-physics simulations or complex
data analysis, todays needs in computations require to gather
thousands of computers geographically scattered and intercon-
nected throw the Internet. Also the use of large scale global
computing platforms – from a grid that couples several clusters
of computers to peer-to-peer systems – has been experimented
for some compute intensive high-end applications, such as the
popular Seti@home [3] or BlueGene [1].

However, extending such global computing platforms to a
wide class of applications and resources faces several critical se-
curity issues concerning the software architecture that manages
the grid: [9]:
• users and machines have to be authenticated;
• as regards communications, privacy, integrity and non-
repudiation are still basic requirements;
• component failures and disconnections are frequent events:
the system has to ensure fault-tolerance for the application;
• the results computed on remote resources, that may be victims
of Trojan horses, have to be certified.

In this paper, we firstly compare and classify (§II) the various
security policies that have been developed for clusters andgrids,
from point-to-point security to private key (Kerberos, Kryp-
toknight) and public key (PKI) infrastructures. Coupling sev-
eral clusters requires compliance with the local security policies
on each local cluster, either by deploying a virtual privatenet-
work (VPN) or based on a PKI infrastructure (Globus [8], Data-
Grid [4]). In order to resist to attacks by Trojan horses, output
results are checked on the replication of computations, either
total replication [19] or, more recently, partial replication [13].

Yet, tackling both security issues in a global architecturere-
mains an open problem. In section IV, we propose a security
infrastructure that address both problems. Smart cards (§III) are
used in order to address authentication issues while using the
system from a non trusted machine.

II. CLASSIFICATION OF SECURITY TECHNOLOGIES ON THE

GRID

A. Secure architecture for a local cluster

A.1 Point-to-point channel solutions

SSH is often seen as a way to improve security in networks.
But how can it be used in a cluster environment?

The idea is there to have either a serversshd and a client
ssh on each nodes of the cluster. To provide Single Sign On1

the filesauthorized_keys must include the public keys for
each users/machines and must be placed on each nodes of the
cluster. Then, thanks to SSH agent, secure authentication of the

1users will authenticate - i.e enter their password - only once a day typically

users and the machines, privacy and integrity of the communica-
tions and Single Sign On can be automatically provided on the
cluster.

This method has been practically experienced as it is currently
one of the possible alternative in the settlement of a Taktuknet-
work which is used in Inuktitut [14].

Yet, this first approach has many drawbacks:
• initialization and modifications in the users accounts mustbe
done on each node;
• administration work to maintain a running system (for in-
stance to add new users etc...) is time expensive.

A.2 Kerberos

Kerberos [18] is an authentication system developed by the
MIT that used a centralized universally trusted authority called
the KDC2. It is based on private key cryptography3. Kerberos
shares with each entitiesu in the network a secret keyKu and
the knowledge of this key is assumed as a proof of identity.

Notations used in Kerberos are summarized in table.I.

a Alice
b Bob
idu public information that identifyu

(ex : name, @IP)
t Time of request
tend expiration time of the ticket
Ku secret key ofu
Ku,v session key betweenu andv

K{x} encryption of textx using keyK
Tu,v Encrypted ticket foru to usev
Au,v Encrypted Authentificator of u for v

TABLE I

Notations used in Kerberos

In Kerberos, a clientc (generally either a user or a service)
may obtain aticket for a given services from the KDC.

A ticket Tc,s is a temporary credential that allowss to safely
check the identity of the ownerc of the ticket to which it has
been delivered. In practice,Tc,s = s,Ks{idc, t, tend,Kc,s}. It
contains the name of the service (s) that c wants to use and a
set of informations encrypted with the service’s private key Ks,
particularly the identity ofc and a session keyKc,s. Since only
s and the KDC share the private keyKs, the ticket is known
to be authentic.Kc,s is securely shared betweenc ands (c re-
ceived it encrypted with its own private keyKc so that only him

2Key Distribution Center
3but there are possible extensions based on certificate and therefore on public

key cryptography. See [20]

KB

K
tgs

ALICE

K
A

Ka,tgs Ta,tgs

Ta,tgsA a,tgs ,b,

Ta,ba,bKKa,tgs

a,bA Ta,b

a,bK

AS : Authentification Server

KDC : Key Distribution Center

TGS : Ticket−Granting Service

BOB

(1) : a,tgs

(2) :

(3) :

aK { },

{ },

(5) :

(4) :

,

(6) : {t+1}

(1) KRB_AS_REQ : ask a ticket for TGS

(2) KRB_AS_REP : ticket for TGS

(3) KRB_TGS_REQ : ask a ticket for Bob

(4) KRB_TGS_REP : ticket for Bob

(5) KRB_AP_REQ : ask for a service

(6) KRB_AP_REP : answer from Bob

clients and their keys
Data−Base of the

Fig. 1. Authentication protocol in Kerberos

can decrypt it). The session key will be used to encrypt further
communications and forauthenticators.

An authenticatorAc,s is another type of credential used
in Kerberos. It is delivered byc with Tc,s and Ac,s =
EKc,s

(idc, t). Thus,Ac,s serves two purposes :

• it proves thatc knows the shared session keyKc,s;
• c can then surely provide his identity tos, ands can safely
check it thank to the ticketTc,s.

A brief overview of the Kerberos protocol is exhibited in fig.1.
More details can be found in [18]. An architecture based on
Kerberos in a cluster has many advantages:

• Kerberos negotiates secure authentication and optionallyen-
crypted communications between two nodes;
• no password are transmitted over the network;
• Kerberos provides Single Sign On;
• authentication is centrally managed;
• this is an IETF standard supported by numerous OS.

Yet, there are also various drawbacks [5]:

• Each credential encloses a time-stamp. Consequently, every
nodes in the cluster have to be synchronized (for instance with
NTP4 or SNTP5). Yet these protocols are often not secure.
• The system is centralized. The KDC is then a privileged point
for attacks like Denial of Service. It is also a limiting factor
for performances as every node has to access it. Yet, there are
possibilities to duplicate the KDC.

As regards typical attacks on network architectures, Kerberos is
still vulnerable to ”guessing password” attacks. Replay attacks
are limited thanks to the use of time-stamps. Trojan horses on
nodes are still not avoided.

Yet, despite those drawbacks, a Kerberos architecture is a
good way to secure a given cluster. But it should not be ex-
tended for the case of grids.

4Network Time Protocol
5Simple Network Time Protocol

A.3 KryptoKnight

KryptoKnight [17] is a Kerberos-like architecture developed
by IBM. It is an authentication and key-distribution system
based on MAC -Message Authentication Code. It provides four
security services:
1. Single Sign On;
2. user and mutual authentication;
3. key distribution;
4. authentication of origin and content of data.
This last service is a first difference with Kerberos. In addition:
1. KryptoKnight uses a hash function for authentication anden-
crypting tickets.
2. It does not rely on synchronized clocks; it uses nonces for
challenges.
KryptoKnight has tickets and authenticators, just like Kerberos.
Considerable effort has been spent to minimize the number of
messages, lengths of messages, and amount of encryption.

The details of the KryptoKnight protocol won’t be discuss
here (see [17] for further information). Indeed, the Kryp-
toKnight protocol has many advantages over Kerberos for se-
curing a cluster. The main one is that latency on the cluster
network is minimized as the size and the number of tickets are
limited. In addition, MAC provides a strong way to check the
integrity of the messages exchanged. The initial size of thefin-
gerprint (64 bits) used in the design of KryptoKnight is probably
too short for todays use and should be reconsidered to a larger
size (for instance, 160 bits as in SHA-1). With this modification,
KryptoKnight should be considered as an optimized Kerberos,
suitable for our objective in clusters security.

A.4 Standard PKI approach

Except for the SSH approach, architectures like Kerberos or
KryptoKnight are based on private key cryptography. Yet, a
public key approach can still be considered at the cluster level
through Public Key Infrastructure (see [15], chap. 13). Gen-
eral principle of PKI won’t be discussed here. There are in fact

Point-to-point Channel Secure architecture for a cluster Cluster’s Grid
RSH SSH Kerberos KryptoKnight PKI VPN Globus

Scalability +++ - - ++ ++ + - - +
Ressources authentication - + + + + + +

Communications
Treatment +++ - + ++ - - ++ -
Integrity - + + ++ ++ - ++

Non-repudiation - - - + + + +
Privacy - + + + + + +

TABLE II

ADVANTAGES AND DRAWBACKS OF SECURITY SOLUTIONS FOR CLUSTERSANS GRIDS.

various standards for PKI, most of them still in evolution. Ex-
amples of PKI that are currently normalized by IETF are PKIX6

(Public Key Infrastructure X.509), SPKI7 (Simple Public Key
Infrastructure) and DNSSEC (Domain Name System Security).

Yet, we do not think that PKI approach is suitable at the clus-
ter level because it negatively impacts performances. The dis-
tribution inherent to PKI infrastructure is not needed for cen-
tralized architecture like clusters and leads to lots of unneces-
sary communications and overheads. Conversely, this approach
is rather interesting at the grid level where it’s contribution in
terms of scalability is essential.

B. Secure architecture for grids

The previous section expounds different way to secure a clus-
ter. We now consider a set of clusters we wanted to bind to-
gether. The main difference between a cluster and a grid con-
cerns resilience and scalability. In addition, the grid security
policy must be compatible with local policies.

B.1 VPN approach

A first naive idea is to bind the different clusters us-
ing the Virtual Private Network technology. In such ar-
chitecture, a VPN server has to be set at the front-end
of each cluster. In practice, this architecture is currently
experienced through the French GRID5000 project. Tun-
nel are there created through the open source project VTun
(http://vtun.sourceforge.net/) which allows to
create tunnels optionally encrypted between the gateway ofeach
clusters. Then each site is an aggregation point for all commu-
nication flows; this prohibits the use of simultaneous channels,
routes, to be used in parallel. It also implies an explicit con-
nection between every site of the grid which clearly impactsthe
scale the grid can grow to.

B.2 Globus

Globus [9] is the reference model in secure grid design. It
was built from scratch using public cryptography protocols, it
assumes the availability of a PKI, and with major goals single
sign on and control of access to all grid resources based on ca-
pabilities. Additionally to standard security functions includ-

6http://www.ietf.org/html.charters/pkix-charter.html
7http://www.ietf.org/html.charters/spki-charter.html

ing authentication, access control, integrity and non-repudiation,
Globus supplies the following functionalities:

• Single Sign On,
• Compliance with local security solutions,
• Protection of credentials,
• Uniform credential/certification infrastructure. The standard
used is here X500v3[].

Every resources and clients, be they users or other resources
trying to access specific resources, has a certificate that must be
signed by a CA in a classical PKI infrastructure way. Single
sign on is done using delegated certificates generated on thefly
from the users’, or resources’, certificates. The Globus team is
working on standardizing the use of such delegated certificates.
In the Euopean DataGrid project [4] modifications were made
to the Globus runtime in order to better control the permissions
given to a grid user on a local system. This was done using a dif-
ferent mapping than Globus based on ACL (Access Capability
List) with a policy defined by each site.

The protocols implemented in Globus and DataGrid won’t be
further explained here. We will indeed detail in the following
paragraph a grid security policy.

B.3 Grid Security Policy

Following [9], the following security policy is proposed:

1. A cluster is a trust domain; the grid is then composed of mul-
tiple trust domains.
2. Operations that are confined to a single trust domain are only
subject to local security policy.
3. Both global8 and local9 entities exist. For each trust domain,
there exists a coarse grain mapping from global to local entity.
4. Operations between entities located in different clusters re-
quire mutual authentication.
5. Communications between different clusters can be kept pri-
vate.
6. An authenticated global entity is assumed to be equivalent to
being locally authenticated as that local entity.
7. All access control decisions are made locally on the basisof
the local entity rights.
8. Programs or processes are allowed to act on behalf of a user
and benefit from the user’s rights.

8at the grid level
9at the cluster level

Storage grid

Computation grid

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

Public key

Java Card

Private key

(2)

USER

Authenticate user+

control computation

(1)

(3)

(0) Request for a computation

(1) Authenticate request for a computation

(2) Grid mecanism to check user rights computation is done

−> computation is done if access granted

(4)

(3) results of computation are signed and optionnaly encrypted with user public key and stocked

(4) results are retrieved, eventually decrypted and signature is checked

(5) results are given to the user

(0)

(5)

Fig. 2. Computation Protocol using smart cards

9. Processes that act on behalf of a user within the same cluster
may share a single set of credentials.

C. Supposed architecture for the grid

Table II exhibits the advantages and drawbacks of each stud-
ied solutions. We can now assume the following architecturefor
the grid:
• At the grid level (inter-cluster relations): Globus, as it is the
reference model [10] and the base of the European project Data-
Grid.
• At the cluster level (intra-cluster relation): an effective and
adapted architecture, depending on the type of applicationthat is
launched on the cluster. For instance, for fine grain application,
communications are essential and an architecture that concili-
ates security and limited latency - such as KryptoKnight - must
be privileged. Yet, an experimental evaluation is necessary.

III. I NTRODUCTION OF SMART CARDS IN DISTRIBUTED

ARCHITECTURES

We now consider a scenario in which a user has access to a
computer connected to the Internet. This machine could have
been compromised by virus, Trajan horses etc... In addition,
the environment set on this computer can be different from the
one required for the user computation. We strongly believe that
smart cards -and more particularly Java cards- can help to im-
prove security, and more importantly facility on the grid where
the computations are done. Firstly because basic properties of
smart cards ensure security:
• at the physical levelby sophisticated impression techniques
• at the hardware levelby:
– a unique serial number;
– the use of PROM memories;
– a physical armour plat;
– abnormal condition sensor (temperature ...);
– the jamming of the information contained in the smart card;
– cryptographic co-processors

• at the software levelthanks to access control to data, preser-
vation of data integrity and secure I/O.
Secondly, smart card are easy to use and users have a good per-
ception of smart cards as a private thing such as a key or a pass-
word.

The Java Card technology defines a secure platform for smart
cards, portable and multi-application that incorporate many of
the advantages of the Java language. Security is reinforced
thanks to various access control on methods and variables
(public, protected andprivate), a strongly-typed lan-
guage, the impossibility to construct pointers and a firewall.
Only a subset of the Java language is managed. Memory con-
straints10 must be taken into account.

We plan to use Java Cards to stock the private and the public
keys associated to the owner of the card together with an inter-
face which can launch signed requests on the grid. Therefore,
the requests will be authenticated. The computation can be done
with respect to the user rights, which are managed on the gridfor
performance constraints. Results of the computation can then be
stocked, signed (and eventually encrypted) with the user public
key on a storage grid. The interface on the Smart Card can then
be used to retrieve the results, and eventually decrypt them. Fig-
ure 2 illustrated this protocol.

Experiments on Java Cards are still in progress. Yet, even
if this is an early technology, the fact that it can make the life
of the grid user easier reinforce our belief in its acceptance as
a main functionality in future grid environments. We also plan
to include this technology in the architecture presented inthe
following section. That architecture extends the one expounded
in §II to deal with tasks forgeries.

IV. RESULT CHECKING IN PEER-TO-PEER COMPUTING

The architecture proposed in§II solved the following issues:
• Single Sign On.

101Ko RAM, 16 Ko EEPROM and 24 Ko ROM

• Authentication of users and nodes.
• Privacy, integrity and non-repudiation of the communications
Even on such a secured environment, the outputs of the program
that is executed on a remote resource can be modified with no
control of the client application. In all this paper, a task is said
forged (or faked) when its output results are different than the
results it would have delivered if executed on an equivalentre-
source but under the full control of the client. This may occur
when the remote resource is the victim of a Trojan horse or if
the client software is modified on the remote resource, as expe-
rienced with SETI@Home [16].

Result checking is then a way to detect and eventually cor-
rect faked tasks of the program that is executed on the cluster.
In literature, software certification of results is achieved in two
ways:
1. The ”simple checkers” approach [6] consists in verifying
computed results thanks to a post-condition easy to compute.
This approach is simple and elegant. Though, it is often impos-
sible to automatically extract such post-condition on any pro-
gram. Furthermore, if a computation is performed on numerous
peers, the detection of a faked final result does not supply any
information on the peer(s) responsible for the forgery.
2. To tackle this problem, the”duplication” approach [19] is
based on several executions of each task on various resources.
Duplicating all jobs would generate an important additional
cost. To limit it, C. Germain and N. Playez [12] propose a prob-
abilistic certification based on a sequential test of Wald [21],
only a few randomly chosen tasks are checked. This approach
is limited for the case of independent tasks.

A. Generic Partial Post-Condition

In [13], S. Jafar & al. extend this approach for the case of
tasks with dependencies, thanks to Data-Flow Analysis. In that
framework, the application is represented by a bipartite direct
acyclic graphG : the first class of vertices is associated to the
tasks whereas the second one represents the parameters of the
tasks (either inputs or outputs according to the direction of the
edge).

A leaf parameter inG is called aterminal output. Associ-
ated to a set of terminal outputsS, theterminal subgraphis the
subgraphGS restricted to the ancestors of the vertices inS. Fig-
ure 3 illustrates those notions. Note thatGS can be computed
from G in linear timeO(|G|). A complete execution of the pro-
gram supplies then a graphGS in which all the parameter values
are explicit, as in fig.3. This graph is called theexecution track
of the program.

Assuming the existence of at least one trusted machine (also
calledoracle), we compute on it a partial data flow graph where
all the parameters values are symbolic, except the input param-
eters of the program ({e1, ..., e4} in fig.3) This partial graph is a
summary of the execution track called thecertification track . It
only describes the tasks to be executed and their dependencies.
It has been generated on reliable resources (oracles) and verify
the following properties:

Proposition 1. • the certification track is a summary of the ex-
ecution track;
• a partial execution is sufficient to generate it;

f1

f5

task

associated to s3 and s4

f4

f3
f2

s1 s2

s4

e1 e2

1 1 14
8

27

0 1 72

311517

s3

e4
e3

terminal output

terminal subgraph

Fig. 3. Instance of a data-flow graph associated to the execution of five tasks
{f1, ..., f5}. The input parameters of the program are{e1, ..., e4} whereas
the outputs (i.e the results of the computation) are{s1, ..., s4}.

• any correct execution of the program (with the same inputs)
on a remote unsecured worker supplies an execution track which
summary has to correspond to the certification track.

Therefore, a partial post-condition that can be applied to any
program is defined. Even if it does not allow to certify the re-
liability of the computation, it makes it possible to control the
general structure of the executed DAG.

Besides, once this post-condition is verified, the execution
track can be used to certify the set of terminal outputsS to de-
tect (and eventually correct) attacks which do not change the
structure of the DAG. Many strategies are possible and are still
described in [13]. The following section proposed an architec-
ture that implements this partial post-condition and allows all
these strategies to be done.

B. Distributed software architecture for certification

In this section, the source code of a program to certify is con-
sidered. The previous notions are integrated in a software archi-
tecture to provide the certification of this program.

Figure 8 gives an overview of the proposed architecture. This
infrastructure can be divided in four modules which are associ-
ated to the four steps of the certification :
1. Compilation Module : this module receives the initial
source code of the program to certify (prog.c in figure 4) and
provides three codes that will be used by the other modules :

_VERIF_prog.c

bool Verif_f(...){
...

}

void f(...){...}

Verification Code
(checking functions etc...)

_CERT_prog.c

task f(...){...}
int main(){

}
ForkC<f>(...);

Certification Track Generation
Certification Code

_EXEC_prog.c

task f(...){...}
int main(){
Fork<f>(...);

}

Execution Code
Executon Track Generation

Compilation_Module

prog.c

void f(...){...}
int main(){

f(...)
}

Source Code

Trusted third Party

(for signature purpose)
CA

Fig. 4. TheCompilation Module generates three codes that are used by
the other modules

• Certification Code: the execution of this code provides a
partial data-flow graph - i.e. the certification track of the initial
programme. This graph requires only a partial execution of the
source code to be generated.
• Execution Code: similarly, the execution of this code pro-

vides the execution track of the program which is a representa-
tion of the data-flow graph related to the execution of the source
code.
• Verification Code: this code contains all the checking func-

tions. These functions achieve the atomic re-execution of a
given task and a comparison of the results of this re-execution
to the one extracted from the execution track.
The generation of those codes can be automated thanks to
Macro-Data-Flow API such as Athapascan [11] which we use
in our current implementation.
This module corresponds to an initialization step and has tobe
executed in a secure environment. The different codes it pro-
vides have to be signed by a trusted third party for further au-
thentication.

2. PCG Module for ”Program Certificate Generation Mod-
ule” : this module can be optionally executed to provide a cer-
tificate of the program to certify. This certificate can then be
exported for the case of a remote certification of the programon
a remote secure oracle.

prog.c

...

Certificate

Certificate generation
PCG_Module

_CERT_prog.c

task f(...){...}
int main(){

}
ForkC<f>(...);

Certification Code

_VERIF_prog.c

bool Verif_f(...){
...

}

void f(...){...}

Verification Code

Trusted third Party

(for signature purpose)
CA

Fig. 5. ThePCG Module (Program Certificate Generation Module) creates a
certificate for the program to certify for the case of a remote certification

As mentioned in figure 5, this certificate is constituted by a rep-
resentation of the certification track and the verification code.
This certificate is also signed by a trusted third party for authen-
tication purpose. This step can be skipped if the certification
module described later uses the same trusted resources thanthe
compilation module. Otherwise, the certificate can be exported.
3. Execution Module : this module submits the Execution
Code to the clusters grid it is linked to. The way the tasks are
scheduled is not detailed here. Examples of batch schedulercan
be found in [7].
As described in figure 6, the computation provides the execution
track that will be submitted to the Certification Module.
4. Certification Module : this module is responsible for
the certification itself. Its behavior is detailed in figure 7.
The main inputs for this module are :
• the certification track and the Verification Code (eventually

extracted from the program certificate);
• the execution track provided by the execution module which

represents the program to certify;
• the certification algorithm to use after the checking of the

Execution_Module

_EXEC_prog.c

task f(...){...}

int main(){
Fork<f>(...);

}

Execution Code

data−flow graph

(summary + transition values)

Execution Track

Batch Scheduler

Computation grid

Fig. 6. TheExecution Module manages the execution on a computational
grid and provides the execution track to certify.

Track
Certification

Partial Post−Condition
Comparison with

Execution track aspect

prog.c

...

Program Certificate

Elementary
Oracles

void f(...){...}

void Verif_f()}

Verification Code

execution refused execution accepted

Certification Algorithm
− error detection only
− extention with error

correction

oracle grid
Safe

data−flow graph

Execution Track

Extraction

Signature Checking/

Certification_Module

Certification

Oracle

certification result :

Fig. 7. TheCertification Module certifies the execution track provided
by the Execution Module. It decides whether the computation is accepted or
rejected due to forgery detection.

partial post-condition defined in§IV-A. This algorithm is used
to check the set of terminal outputs of the program to certify.
Possible algorithms are described in [13].
This module is connected with a safe grid where oracles compu-
tations can take place. It decides whether the terminal outputs to
certify are correct or not. The partial post-condition checks the
aspect of the tracks whereas the certification algorithm checks a
set of terminal outputs to certify. Both are independent andcan
be done in parallel.

Figure 8 proposed a global view which exhibits the relations
between the modules. In the next section we analyze robustness
of this certification with respect to attacks.

Trusted third Party

(for signature purpose)
CA

prog.c

Program Certificate

prog.c

� � � �� � �

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

Certification Track Generation

Certification Code Verification Code
(checking functions etc...)

Execution Code

Executon Track Generation

Execution Track

Source Code

data−flow graph

certification result

Certificate generation

trusted environment

untrusted environment

Execution_ModulePCG_Module

Certification_Module

Compilation_Module

Fig. 8. Global view of the proposed architecture

C. Robustness to attacks and resilience

Historically, the first infrastructure which highlighted the
certification issue was the SETI@Home project [3] in 1999.
Whereas the project succeeded beyond the wildest dreams of its
creators, people who believed the SETI@Home client software
too slow decided to provide a patch to makes the client faster
[16]. The previous architecture would have managed to detect
the patched clients thanks to the partial post-condition checking.

By using a trusted third party which signs the certificates and
the codes generated by the Compilation Module, this architec-
ture provides solutions for authentication and integrity checking.
Confidentiality can also be set thanks to SSL protocols for ex-
ample. By the way, usurpation threats and snooping attacks can
be avoided.

Yet, DoS attacks are still dangerous on this architecture (like
many others), more particularly if the safe grid used for theora-
cles can be targeted.

It introduces the issue of the resilience in the nodes availabil-
ity. Classic solutions implements periodic challenges (orwith
an adaptive step). Typically, an authentication challengewith
public key as the one used in SSL is considered. Such challenge
allows to guarantee not only the presence of a resource but also
its authentication.

Nevertheless, an alternative could be to assimilate the chal-
lenge to a particular computation which is not different than a
real computation for the worker point of view. Such tasks won’t
be duplicated during the certification. Under these assumptions,
challenges checking allows to estimate the confidence to place
in the distant resource.

V. CONCLUSION

In this paper we have over-viewed security infrastructures
proposed for clusters and grids. Focusing on their potential use
in the case of a large scale global computing platform, we pro-
vide a classification according to the following criteria: scalabil-
ity which is the critical point to address; level of authentication;
treatment, integrity, non-repudiation and privacy.

We have exhibited three critical security points to addressfor
a global computing platform that consists in a dynamic grid of
clusters:
• the security of the whole global platform has to be consis-
tently built upon the various local policies on each individual
platform;
• authentication of a user should be possible from any machine,
even a corrupted one;
• the results delivered by any user application have to be certi-
fied, even if some resources or some application processes may
be corrupted.
Based on previous results on result checking and on the avail-
ability of smart cards to enable authentication from any peer, we
have proposed a global security infrastructure that tackles those
problems. This architecture assumes the use of identified trusted
machines (called oracles) dedicated authentication and certifica-
tion of results.

Certification of the execution is based on the representation
of the application execution by a data-flow graph that describes
both computations to perform and their dependencies. Such a
representation is inspired from fault-tolerance systems on het-
erogeneous architectures [13]. We detail the use of this rep-
resentation as a certification track; then it can be seen as the
hashing of the execution. Also, this track provides a generic
postcondition that can be checked based on partial replication
of computation tasks.

In the framework of a cooperation between Université du
Luxembourg and Institut National Polytechnique de Grenoble,
a prototype of this global security infrastructure is currently im-
plemented on a grid built form clusters in France (Grid’5000
national project) and Luxembourg. Target application involves
medical computations (based on medical images comparison)
studied within the Ŕegion Rĥone-Alpes RAGTIME project [2];
this application asks also legislation issues not addressed in this
paper.

REFERENCES

[1] “BlueGene,” http://www.llnl.gov/asci/platforms/bluegenel/.
[2] “The RAGTIME Project,” http://dionysos.univ-lyon2.fr/ miguet/ragtime/.
[3] “The SETI@Home project,” 1999, http://setiathome.ssl.berkeley.edu/.
[4] “The European DataGrid project,” 2000, http://web.datagrid.cnr.it/.
[5] S. M. Bellovin and M. Merritt, “Limitations of the kerberos authentication

system,”SIGCOMM Comput. Commun. Rev., vol. 20, no. 5, pp. 119–132,
1990.

[6] M. Blum and H. Wasserman, “Software Reliability via Run-Time Result-
Checking,”Journal of the ACM, vol. 44, no. 6, pp. 826–849, Novembre
1997.

[7] N. Capit, G. H. Georges Da Costa, C. Martin, G. Mounié, P. Neyron, and
O. Richard, “Exṕerience autour d’une nouvelle approche de conception
d’un gestionnaire de travaux pour grappe,” inCFSE’3, La Colle sur Loup,
France, Oct. 2003, pp. 602–613.

[8] I. Foster, C. Kesselman, J. Nick, and S. Tuecke, “Grid services
for distributed system integration,”Computer, vol. 35, no. 6, 2002,
http://www.globus.org.

[9] I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke, “A Security Archi-
tecture for Computational Grids,” inFifth ACM Conference on Computer

and Communications Security Conference, San Francisco, California, 3–5
Novembre 1998, pp. 83–92.

[10] ——, “Security for grid services,” inTwelfth International Symposium on
High Performance Distributed Computing (HPDC-12), I. Press, Ed., Seat-
tle, Washington, 22–24 Juin 2003.

[11] F. Galilée, J.-L. Roch, G. Cavalheiro, and M. Doreille, “Athapascan-1:
On-line Building Data Flow Graph in a Parallel Language,” inInterna-
tional Conference on Parallel Architectures and Compilation Techniques,
PACT’98, IEEE, Ed., Paris, France, Octobre 1998, pp. 88–95.

[12] C. Germain and N. Playez, “Result checking in global computing sys-
tems,” inProceedings of the 17th Annual ACM International Conference
on Supercomputing (ICS 03), ACM, Ed., San Francisco, California, 23–26
Juin 2003.

[13] S. Jafar, S. Varrette, and J.-L. Roch, “Using data-flow analysis for resi-
lence and result checking in peer to peer computations,” inProceedings of
the 15th International Workshop on Database and Expert Systems Appli-
cations (DEXA 2004) (To appears), Zaragoza, Spain, september 2004.

[14] C. Martin and O. Richard, “Parallel launcher for cluster of pc,” in
ParCo’2001. Napoli, Italy, 2001, pp. 473–480.

[15] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone,Handbook of Ap-
plied Cryptography, C. Press, Ed. CRC Press, Inc, 1997.

[16] D. Molnar, “The SETI@Home Problem,” November 2000.
[17] R. Molva, G. Tsudik, E. Van Herreweghen, and S. Zatti, “Kryptoknight

authentication and key distribution system,” inProceedings of European
Symposium on Research in Computer Security (ESORICS), Toulouse,
France, november 1992, pp. 155–174.

[18] C. Neuman, T. Yu, S. Hartman, and K. Raeburn, “The kerberosnet-
work authentication service (v5) ietf,” USC-ISI/MIT, Tech. Rep., February
2004.

[19] L. F. G. Sarmenta, “ Sabotage-Tolerance Mechanisms for Volunteer Com-
puting Systems,” inACM/IEEE International Symposium on Cluster Com-
puting and the Grid (CCGrid’01), Brisbane, Australia, Mai 2001.

[20] M. Sirbu and J.-I. Chuang, “Distributed authentication in kerberos using
public key cryptography,” inSymposium on Network and Distributed Sys-
tem Security, San Diego, California, 1997, pp. 134–143.

[21] A. Wald,Sequential Analysis. Wiley Pub. in Math. Stat., 1966.

