Parallel complexity

Jean-Louis Roch, Grenoble Univ.

Books / Readings

* Parallel algorithms for shared memory machine, RM Karp, V Ramachandran,
Chap 17, HTCS, volA “Algorithms and Complexity” pp 871—932

* Limits to parallel computation - P-Completeness Theory
Ray Greenlaw, Jim Hoover, and Larry Ruzzo

* Anintroduction to Parallel Algorithms, J. Jaja

* Slides from Ray Greenlaw: An Introduction to Parallel Computation and P-
Completeness Theory,

Outline

Introduction

Parallel Models of Computation

Basic Complexity — NC and Reductions

P-Complete Problems

Open Problems

Parallel evaluation of arithmetic circuits

Introduction

Sequential computation: Feasible ~ n 91 time
(polynomial time).

Parallel computation: Feasible ~ n) operations (or processors)
(polynomial work).

Goal of parallel computation: to develop fast algorithms:
feasible highly parallel
Both polylog time ~log°® n and polynomial work ~n 9@ (procs).

A problem is inherently sequential if it is feasible but has no
feasible highly parallel algorithm for its solution.

Outline

Introduction

Parallel Models of Computation

Basic Complexity — NC and Reductions

P-Complete Problems

Open Problems

Parallel evaluation of arithmetic circuits

Parallel Models of Computation

* Parallel Random Access Machine Model
 Boolean Circuit Model
e Circuits and PRAMs

Parallel Random Access Machine = PRAM
RAM Processors

P| | P | |P,| @@@

G| ¢l |c| ooe

Global Memory Cells

Memory ACCESS: EREW /CREW / CRCW [common/arbitrary/priority]

Theorem: A priority-CRCW PRAM that runs in time t(n)= O(logkn)
using p(n) € n®) processors can be simulated by an EREW

PRAM in time t(n)= O(Iogk+1n)6using n°1) processors.

Boolean Circuit Model

10 11

| | | °

AND OR

\O/

R NOT
AND || ||

Circuits and PRAMS

Theorem:

A function f from {0,1}* to {0,1}* can be computed
by a logarithmic space uniform Boolean circuit family {¢, }
with depth (a,) € (logn)°M) and size(ct,) € n©)

if and only if

f can be computed by a CREW-PRAM M on inputs of length
n in time t(n) € (logn)°® using p(n) € n°),

Outline

Introduction

Parallel Models of Computation

Basic Complexity — NC and Reductions
P-Complete Problems

Open Problems

Parallel evaluation of arithmetic circuits

Basic Complexity

Decision, Function, and Search Problems
Complexity Classes

Reducibility

Completeness

Decision, Function, and Search Problems

4 4
Spanning Tree-D
Given: An undirected graph G = (V,E) with weights from N labeling edges in £ and a natural
number k.
Problem: Is there a spanning tree of G with cost less than or equal to k ?

Spanning Tree-F
Given: Same (no k).
Problem: Compute the weight of a minimum cost spanning tree.

Spanning Tree-S
Given: Same.
Problem: Find a minimum cost spanning tree.

11

Complexity Classes

Definitions:

P is the set of all languages L that are decidable in sequential
time n ©(1),

NC is the set of all languages L that are decidable in parallel time (logn)°®)
and processors n °),

FP is the set of all functions from {0,1}* to {0,1}* that are computable in
sequential time n (1),

FNC is the set of all functions from {0,1}* to {0,1}* that are computable in
parallel time (logn)®Y) and processors n (1),

NCk, k =1, is the set of all languages L such that L is recognized by a
uniform Boolean circuit family {«, } with size(c,) = n°Y) and
depth () = O((logn)*).

12

NC - Reducibility

Definitions:

A language L is reducible to a language L, written L <L if there is
a function f such that: xelLifandonlyif f(x)el’

Lis P reducible to L’, written L <Pr , if the function f is in FP.
. . . ck,
For k =1, L is NC* reducible to L, written L V€, if the function f is in FNC*.

L is NC many-one reducible to L’, written L <NC L', if the function f is in FNC.

Turing-Reducibility: A function fis NC1-Turing-reducible to a function g, f=<,V¢! g, iff
there exists a uniform circuit family {«, }
which gates are boolean or oracles for g,
with size(a,) = n®Y) and depth () = O((logn)).

NB An oracle gate for g with m inputs has depth log m

Progerties: <P <Nk sy, N and = N1, < NC are transitive.
Thus: If L<M I’ and L' eNCK (fork>1) then LeNCk

Outline

Introduction

Parallel Models of Computation

Basic Complexity

Example of reduction

P-Complete Problems

Open Problems

Outline

Introduction

Parallel Models of Computation

Basic Complexity — NC and Reductions

— Example of reduction

P-Complete Problems

Open Problems

Parallel evaluation of arithmetic circuits

Linear Algebra — DET class

* Triangular Matrix Inversion </Y¢1 Matrix Power

* Matrix Power <;N¢ Triangular Matrix Inversion

- Sequential: MatrixInversion=0(MatrixMultiplication)

« Parallel: Matrix Multiplication <<
MatrixInversion=;V¢1 MatrixPower

Outline

Introduction

Parallel Models of Computation

Basic Complexity — NC and Reductions
P-Complete Problems

Open Problems

Parallel evaluation of arithmetic circuits

Completeness

Definitions:
A language L is P-hard under NC reducibility if L’ <;N¢ L for every L’ € P.
A language L is P-complete under NC reducibility if L € P and L is P-hard.

Theorem:
If any P-complete problem is in NC then NC equals P.

Remark:
It is conjectured that NC # P (proved with real numbers, R-arithmetic).

P-Complete Problems

There are approximately 175 P-complete problems (500
with variations).

Categories:

Circuit complexity
Graph theory
Searching graphs

Combinatorial
optimization and flow

Local optimality
Logic

Formal languages
Algebra
Geometry

Real analysis
Games
Miscellaneous

Eg: Gaussian elimination with pivot: P-complete, but

MatrixInversion is in NC2

Circuit Value Problem

Given:

An encoding a of @ Boolean circuit o, inputs x;,...,.x,, and a
designated output y.

Problem:

Is output y of a TRUE on input xj,...,x,,?

Theorem: [Ladner 75]

1
The Circuit Value Problem is P-complete under <_N¢" reductions.

P-Complete Variations of CVP

— Topologically Ordered [Folklore]

— Monotone [Goldschlager 77]

— Alternating Monotone Fanin 2, Fanout 2 [Folklore]
— NAND [Folklore]

— Topologically Ordered NOR [Folklore]

— Synchronous Alternating Monotone Fanout 2 CVP
[Greenlaw, Hoover, and Ruzzo 87]

— Planar [Goldschlager 77]

NAND Circuit Value Problem

Given:
An encoding o of a Boolean circuit o that consists solely of NAND gates,

inputs x,,...,x,, and a designated output y.

Problem:
Is output y of o TRUE on input xg,...,x,?

Theorem:
The NAND Circuit Value Problem is P-complete.

NAND Circuit Value Problem

Proof:
Reduce AM2CVP to NAND CVP. Complement all inputs. Relabel all gates as NAND.

1 0 0 1 0 0 1 1 0 1
OR OR NAND NAND
N~ T N
AND - NAND
™~ N\
OR NAND
1] 1]
23
Graph Theory

— Lexicographically First Maximal Independent Set
[Cook 85]

— Lexicographically First (A + 1)-Vertex Coloring
[Luby 84]

— High Degree Subgraph
[Anderson and Mayr 84]

— Nearest Neighbor Traveling Salesman Heuristic
[Kindervater, Lenstra, and Shmoys 89]

24

Lexicographically First Maximal Independent Set

Theorem: [Cook 85]
LFMIS is P-complete.

Proof:
Reduce TopNOR CVP to LFMIS. Add new vertex 0. Connect to all false inputs.

1 1 0 0 0
1 2 3 4 5
NOR NOR
6 7
5
NOR ! ’
8
O\
NOR
9

o

25

Searching Graphs

— Lexicographically First Depth-First Search Ordering [Reif
85]

— Stack Breadth-First Search
[Greenlaw 92]

— Breadth-Depth Search
[Greenlaw 93]

26

Context-Free Grammar Empty

Given: A context-free grammar G=(N,T,RS).
Problem: Is L(G) empty?

Theorem: [Jones and Laaser 76], [Goldschlager 81], [Tompa
91]
CFGempty is P-complete.

Proof: Reduce Monotone CVP to CFGempty. Given o
construct G=(N,T,P,S) with N, T, S, and P as follows:

Context-Free Grammar Empty

N={i| v;is a vertexin o}

T={a}

S = n, where v, is the output of a.
P as follows:

1. For input v, i — a if value of v;is 1,
2.i—jk ifv,<=v;Av, and

3.i=j | kifv,<=v,Vy,.

Then the value of v;is 1 if and only if i =, where ve{a}t.

CFGempty Example

x;=0,x,=0,x;3=1,and x, = 1.

11X 21 x, X3 |3 Xy | 4

5| OR AND | 6

\ /
2| AND

G=(N, TS, P), where
N={1,2,3,4,5,6, 7}
T={a}
S=7
P={3—a,4—a,5—1|2,6—=34,7— 56}

29

Outline

Introduction

Parallel Models of Computation

Basic Complexity — NC and Reductions
P-Complete Problems

Parallel evaluation of arithmetic circuits
Open Problems

30

Circuits and parallelism

e General CVP is P-complete.
— What subset instances are in P ?

* Arithmetic Expression evaluation

e Arithmetic Circuit evaluation

Tree contraction

» Tree-contraction is used in parallel
expression evaluation

» Since the structure of a expression is a tree
there are different tree-contraction techniques

» Basic operations are:
- redirecting edges of the tree
- removing nodes marking (pebbling) nodes
- creating additional edges

« the final aim is to guarantee that logarithmic
number of contractions is sufficient

Basic Tree contraction operations

Case 2: u has one or more sons, w has no sons
delete edge e

Case 1: u, w have exactly one son each

replace e by ¢’

tree-contraction related to SimSub

repeat
for each edge e do in parallel

perform local action on e
until there are no edges

Parallel pebble game on binary tree

Within the game each node v of the tree has
associated with it similar node denoted by
cond(v).

At the outset of the game cond(v)=v, for all v

During the game the pairs (v,cond(v)) can be
thought of as additional edges

Node v is "active” if and only if cond(v)=v

Operations: active, square and pebble

Activate
for all non-leaf nodes v in parallel do

if vis not active and precisely one of its sons is pebbled then
cond(v) becomes the other son
if vis not active and both sons are pebbled then

cond(v) becomes one of the sons arbitrarily
Square

for all nodes v in parallel do cond(v)<— cond(cond(v))

Pebble
for all nodes v in parallel do

if cond(v) is pebbled then pebble v

One Step: Activate;square;square; pebbling

N N

e S0 NN {

square

Application of the pebbling game

@ Consider the arithmetic expression
((3+(2*2))*3+5)

@ We assign a processor to each non-leaf
node of the tree.

3(2x)+9 ///‘lll’\\\‘lll’

2x+3

Expression evaluation

e Algorithm:
while not(all nodes are evaluated) do
{ activate; square; square; pebble; }

* Theorem

Let T be a binary tree with n leaves. After log,n
stepsof the pebbling game, T is evaluated.

=> Arithmetic expressions can be evaluated on a
PRAM in O(log n) time using O(n) processors.

Circuit evaluation

* Straight line arithmetic program
— (4, *) in a semi-ring (extensiong to boolean or to a a field)

— Circuit with arithmetic gates: n-ary +
and binary * (and dummy+ to avoid non consecutive *)

* Algorithm: Loop while not (all nodes evaluated) {

|+ \ :\J’
/‘7(\:les
— 1. MM (gather +nodes) ~ N e
A /"-L«)\‘ — i.io) ’/L\)\'.-
. v.\‘.-“.//v.‘ w}h« Wy
— 2. Rake (eval nodes with leaves) () Dz
— 3. Shunt (bypass * nodes with 2L 2 e
only one son not evaluated) N) lv'
el S OO
} T T R

Cl rCU |t eva | UatIOn [Miller Ramachandran Kaltofen]

e Consider a straight line arithmetic program
— (+, *) in a semi-ring
— Each output can be seen as a polynomial in the input

* Let n=#gates; let d=max. degree of an output
gate w.r.t. input gates

Theorem: MRK straight line evaluation evaluates the circuit in
Depth = (log n)(log d + log n) and Work = O(M(n))=0(n3)

Application: triangular linear system inversion: k=dim(system)
— Sequential: n =k?* degree=k
— => circuit with depth = O(log? k) and work O(k®)

Outline

Introduction

Parallel Models of Computation

Basic Complexity — NC and Reductions

P-Complete Problems

Parallel evaluation of arithmetic circuits

Open Problems

Open Problems

Find an NC algorithm or classify as P-complete:

— Edge Ranking

— Edge-Weighted Matching

— Integer Greatest Common Divisor
* Polynomial GCD is in DET, so in NC2.

— Modular Powering

