Parallel complexity

Jean-Louis Roch, Grenoble Univ.

Books / Readings

- Parallel algorithms for shared memory machine, RM Karp, V Ramachandran, Chap 17, HTCS, volA "Algorithms and Complexity" pp 871—932
- Limits to parallel computation P-Completeness Theory Ray Greenlaw, Jim Hoover, and Larry Ruzzo
- An introduction to Parallel Algorithms, J. Jaja
- Slides from Ray Greenlaw: An Introduction to Parallel Computation and P-Completeness Theory,

- Introduction
- Parallel Models of Computation
- Basic Complexity NC and Reductions
- P-Complete Problems
- Open Problems
- Parallel evaluation of arithmetic circuits

Introduction

- Sequential computation: Feasible $\sim n^{O(1)}$ time (polynomial time).
- Parallel computation: Feasible $\sim n^{O(1)}$ operations (or processors) (polynomial work).
- Goal of parallel computation: to develop fast algorithms: feasible highly parallel Both polylog time $\sim \log^{O(1)}$ n and polynomial work $\sim n^{O(1)}$ (procs).
- A problem is *inherently sequential* if it is feasible but has no feasible highly parallel algorithm for its solution.

3

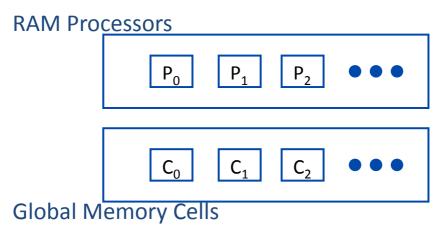
- Introduction
- Parallel Models of Computation
- Basic Complexity NC and Reductions
- P-Complete Problems
- Open Problems
- Parallel evaluation of arithmetic circuits

Parallel Models of Computation

- Parallel Random Access Machine Model
- Boolean Circuit Model
- Circuits and PRAMs

5

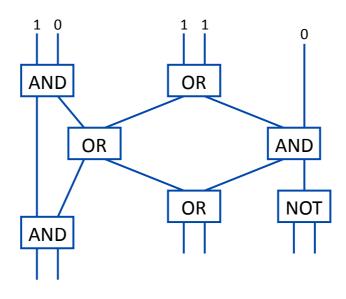
Parallel Random Access Machine = PRAM



Memory Access: EREW / CREW / CRCW [common/arbitrary/priority]

Theorem: A priority-CRCW PRAM that runs in time $t(n) = O(\log^k n)$ using $p(n) \in n^{O(1)}$ processors can be simulated by an EREW PRAM in time $t(n) = O(\log^{k+1} n)$ using $n^{O(1)}$ processors.

Boolean Circuit Model



Circuits and PRAMS

Theorem:

A function f from $\{0,1\}^*$ to $\{0,1\}^*$ can be computed by a logarithmic space uniform Boolean circuit family $\{\alpha_n\}$ with $depth(\alpha_n) \in (\log n)^{O(1)}$ and $size(\alpha_n) \in n^{O(1)}$

if and only if

f can be computed by a CREW-PRAM M on inputs of length n in time $t(n) \in (\log n)^{O(1)}$ using $p(n) \in n^{O(1)}$.

Outline

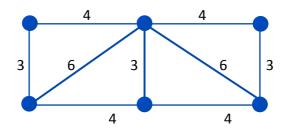
- Introduction
- Parallel Models of Computation
- Basic Complexity NC and Reductions
- P-Complete Problems
- Open Problems
- Parallel evaluation of arithmetic circuits

9

Basic Complexity

- Decision, Function, and Search Problems
- Complexity Classes
- Reducibility
- Completeness

Decision, Function, and Search Problems



Spanning Tree-D

<u>Given</u>: An undirected graph G = (V,E) with weights from N labeling edges in E and a natural number k.

<u>Problem</u>: Is there a spanning tree of G with cost less than or equal to k?

Spanning Tree-F

Given: Same (no k).

Problem: Compute the weight of a minimum cost spanning tree.

Spanning Tree-S Given: Same.

Problem: Find a minimum cost spanning tree.

11

Complexity Classes

<u>Definitions</u>:

P is the set of all languages L that are decidable in sequential time $n^{O(1)}$.

NC is the set of all languages L that are decidable in parallel time $(\log n)^{O(1)}$ and processors $n^{O(1)}$.

FP is the set of all functions from $\{0,1\}^*$ to $\{0,1\}^*$ that are computable in sequential time $n^{O(1)}$.

FNC is the set of all functions from $\{0,1\}^*$ to $\{0,1\}^*$ that are computable in parallel time $(\log n)^{O(1)}$ and processors $n^{O(1)}$.

NC^k, $k \ge 1$, is the set of all languages L such that L is recognized by a uniform Boolean circuit family $\{\alpha_n\}$ with $size(\alpha_n) = n^{O(1)}$ and $depth(\alpha_n) = O((\log n)^k)$.

NC - Reducibility

Definitions:

A language L is *reducible* to a language L', written $L \le L'$, if there is a function f such that: $x \in L$ if and only if $f(x) \in L'$.

L is P reducible to L', written $L \leq P L'$, if the function f is in FP.

For $k \ge 1$, L is NC^k reducible to L', written $L \le NC^k$ L', if the function f is in FNC^k .

L is *NC many-one reducible* to *L'*, written $L \leq {}^{NC}L'$, if the function *f* is in *FNC*.

<u>Turing-Reducibility</u>: A function f is NC1-Turing-reducible to a function g, $f \le_T^{NC1} g$, iff there exists a uniform circuit family $\{\alpha_n\}$ which gates are boolean or oracles for g, with $size(\alpha_n) = n^{O(1)}$ and $depth(\alpha_n) = O((\log n))$.

NB An oracle gate for g with m inputs has $depth(\log m)$

- Introduction
- Parallel Models of Computation
- Basic Complexity
- Example of reduction
- P-Complete Problems
- Open Problems

Outline

- Introduction
- Parallel Models of Computation
- Basic Complexity NC and Reductions
 - Example of reduction
- P-Complete Problems
- Open Problems
- Parallel evaluation of arithmetic circuits

15

Linear Algebra – DET class

- Triangular Matrix Inversion \leq_T^{NC1} Matrix Power
- Matrix Power \leq_T^{NC1} Triangular Matrix Inversion
- Sequential: MatrixInversion=Θ(MatrixMultiplication)
- Parallel: Matrix Multiplication << MatrixInversion= $_{\tau}^{NC1}$ MatrixPower

Outline

- Introduction
- Parallel Models of Computation
- Basic Complexity NC and Reductions
- P-Complete Problems
- Open Problems
- Parallel evaluation of arithmetic circuits

17

Completeness

Definitions:

A language L is P-hard under NC reducibility if $L' \leq_T^{NC} L$ for every $L' \in P$.

A language L is P-complete under NC reducibility if $L \in P$ and L is P-hard.

Theorem:

If any P-complete problem is in NC then NC equals P.

Remark:

It is conjectured that $NC \neq P$ (proved with real numbers, R-arithmetic).

P-Complete Problems

There are approximately 175 *P*-complete problems (500 with variations).

Categories:

- Circuit complexity
- Graph theory
- Searching graphs
- Combinatorial optimization and flow
- Local optimality
- Logic

- Formal languages
- Algebra
- Geometry
- Real analysis
- Games
- Miscellaneous

Eg: Gaussian elimination with pivot: P-complete, but MatrixInversion is in NC²

19

Circuit Value Problem

<u>Given:</u>

An encoding α of a Boolean circuit α , inputs $x_1,...,x_n$, and a designated output y.

Problem:

Is output y of α TRUE on input $x_1,...,x_n$?

Theorem: [Ladner 75]

The Circuit Value Problem is *P*-complete under $\leq_m NC^1$ reductions.

P-Complete Variations of CVP

- Topologically Ordered [Folklore]
- Monotone [Goldschlager 77]
- Alternating Monotone Fanin 2, Fanout 2 [Folklore]
- NAND [Folklore]
- Topologically Ordered NOR [Folklore]
- Synchronous Alternating Monotone Fanout 2 CVP [Greenlaw, Hoover, and Ruzzo 87]
- Planar [Goldschlager 77]

21

NAND Circuit Value Problem

<u>Given:</u>

An encoding α of a Boolean circuit α that consists solely of NAND gates, inputs $x_1,...,x_n$, and a designated output y.

Problem:

Is output y of α TRUE on input $x_1,...,x_n$?

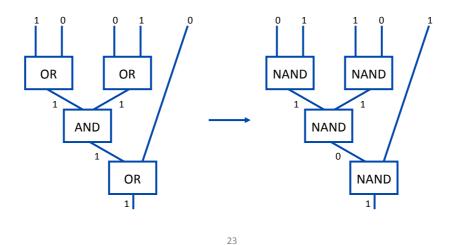
Theorem:

The NAND Circuit Value Problem is *P*-complete.

NAND Circuit Value Problem

Proof:

Reduce AM2CVP to NAND CVP. Complement all inputs. Relabel all gates as NAND.



Graph Theory

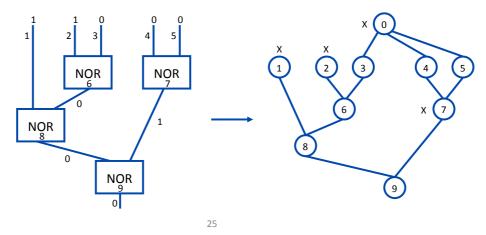
- Lexicographically First Maximal Independent Set [Cook 85]
- Lexicographically First (Δ + 1)-Vertex Coloring [Luby 84]
- High Degree Subgraph[Anderson and Mayr 84]
- Nearest Neighbor Traveling Salesman Heuristic [Kindervater, Lenstra, and Shmoys 89]

Lexicographically First Maximal Independent Set

<u>Theorem</u>: [Cook 85] LFMIS is *P*-complete.

Proof:

Reduce TopNOR CVP to LFMIS. Add new vertex 0. Connect to all false inputs.



Searching Graphs

- Lexicographically First Depth-First Search Ordering [Reif 85]
- Stack Breadth-First Search[Greenlaw 92]
- Breadth-Depth Search[Greenlaw 93]

Context-Free Grammar Empty

Given: A context-free grammar *G*=(*N*,*T*,*P*,*S*).

Problem: Is L(G) empty?

<u>Theorem</u>: [Jones and Laaser 76], [Goldschlager 81], [Tompa 91]

CFGempty is P-complete.

Proof: Reduce Monotone CVP to CFGempty. Given α construct G=(N,T,P,S) with N,T,S, and P as follows:

27

Context-Free Grammar Empty

```
N = \{i \mid v_i \text{ is a vertex in } \alpha\}

T = \{a\}

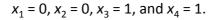
S = n, where v_n is the output of \alpha.

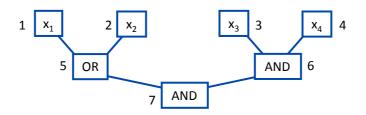
P as follows:
```

- 1. For input v_i , $i \rightarrow a$ if value of v_i is 1,
- 2. $i \rightarrow jk$ if $v_i \leftarrow v_j \wedge v_k$, and
- 3. $i \rightarrow j \mid k \text{ if } v_i \leftarrow v_j \vee v_k$.

Then the value of v_i is 1 if and only if $i \Rightarrow \gamma$, where $\gamma \in \{a\}^+$.

CFGempty Example





```
G = (N, T, S, P), where

N = \{1, 2, 3, 4, 5, 6, 7\}

T = \{a\}

S = 7

P = \{3 \rightarrow a, 4 \rightarrow a, 5 \rightarrow 1 \mid 2, 6 \rightarrow 34, 7 \rightarrow 56\}
```

29

- Introduction
- Parallel Models of Computation
- Basic Complexity NC and Reductions
- P-Complete Problems
- Parallel evaluation of arithmetic circuits
- Open Problems

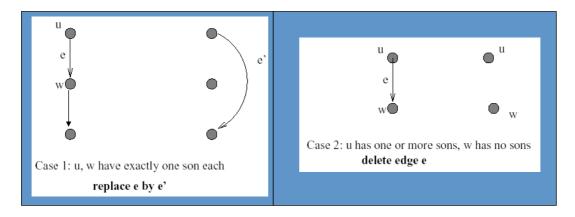
Circuits and parallelism

- General CVP is P-complete.
 - What subset instances are in P?
- Arithmetic Expression evaluation
- Arithmetic Circuit evaluation

Tree contraction

- Tree-contraction is used in parallel expression evaluation
- Since the structure of a expression is a tree there are different tree-contraction techniques
- Basic operations are:
 - redirecting edges of the tree
 - removing nodes marking (pebbling) nodes
 - creating additional edges
- the final aim is to guarantee that logarithmic number of contractions is sufficient

Basic Tree contraction operations



tree-contraction related to SimSub

repeat for each edge e do in parallel perform local action on e until there are no edges

Parallel pebble game on binary tree

- Within the game each node v of the tree has associated with it similar node denoted by cond(v).
- At the outset of the game cond(v)=v, for all v
- During the game the pairs (v,cond(v)) can be thought of as additional edges
- Node v is "active" if and only if cond(v)≠v

Operations: active, square and pebble

Activate

for all non-leaf nodes v in parallel do

if v is not active and precisely one of its sons is pebbled then
 cond(v) becomes the other son

if v is not active and both sons are pebbled then
 cond(v) becomes one of the sons arbitrarily

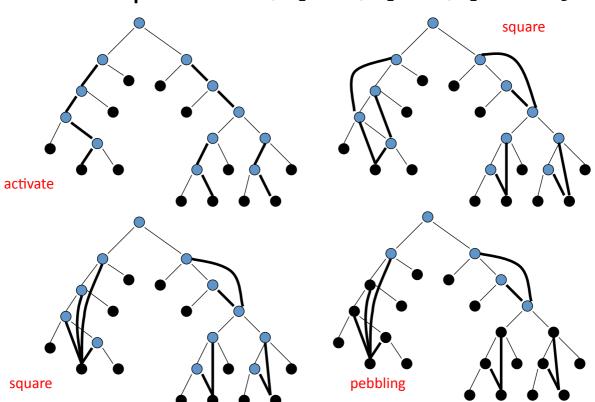
Square

for all nodes v in parallel do $cond(v) \leftarrow cond(cond(v))$

Pebble

for all nodes v in parallel do
 if cond(v) is pebbled then pebble v

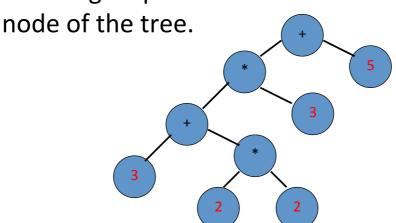
One step: Activate; square; pebbling

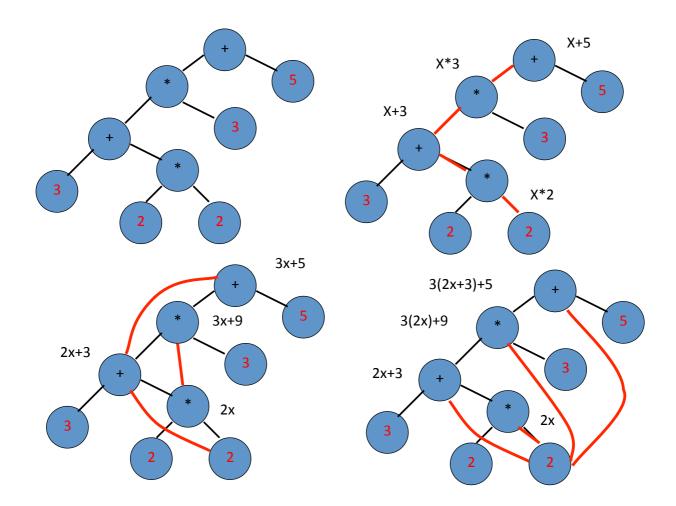


Application of the pebbling game

Consider the arithmetic expression ((3+(2*2))*3+5)

• We assign a processor to each non-leaf





Expression evaluation

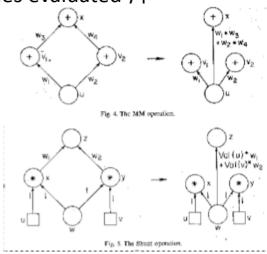
- Algorithm:
 while not(all nodes are evaluated) do
 { activate; square; pebble; }
- Theorem

Let T be a binary tree with n leaves. After $log_2 n$ stepsof the pebbling game, T is evaluated.

=> Arithmetic expressions can be evaluated on a PRAM in O(log n) time using O(n) processors.

Circuit evaluation

- Straight line arithmetic program
 - (+, *) in a semi-ring (extension to boolean or to a a field)
 - Circuit with arithmetic gates: n-ary + and binary * (and dummy+ to avoid non consecutive *)
- Algorithm: Loop while not (all nodes evaluated) {
 - 1. MM (gather +nodes)
 - 2. Rake (eval nodes with leaves)
 - 3. Shunt (bypass * nodes with only one son not evaluated)



Circuit evaluation [Miller Ramachandran Kaltofen]

- Consider a straight line arithmetic program
 - (+, *) in a semi-ring
 - Each output can be seen as a polynomial in the input
- Let n = # gates; let d= max. degree of an output gate w.r.t. input gates
- Theorem: MRK straight line evaluation evaluates the circuit in Depth = (log n)(log d + log n) and Work = O(M(n))=O(n³)
- **Application**: triangular linear system inversion: k=dim(system)
 - Sequential: n = k² degree= k
 - $=> circuit with depth = O(log^2 k)$ and work $O(k^6)$

- Introduction
- Parallel Models of Computation
- Basic Complexity NC and Reductions
- P-Complete Problems
- Parallel evaluation of arithmetic circuits
- Open Problems

Open Problems

Find an NC algorithm or classify as P-complete:

- Edge Ranking
- Edge-Weighted Matching
- Integer Greatest Common Divisor
 - Polynomial GCD is in DET, so in NC2.
- Modular Powering