Parallel complexity

Jean-Louis Roch, Grenoble Univ.

Books / Readings

• Parallel algorithms for shared memory machine, RM Karp, V Ramachandran, Chap 17, HTCS, volA “Algorithms and Complexity” pp 871—932

• Limits to parallel computation - P-Completeness Theory
 Ray Greenlaw, Jim Hoover, and Larry Ruzzo

• An introduction to Parallel Algorithms, J. Jaja

• Slides from Ray Greenlaw: An Introduction to Parallel Computation and P-Completeness Theory,

Outline

• Introduction
• Parallel Models of Computation
• Basic Complexity – NC and Reductions
• P-Complete Problems
• Open Problems
• Parallel evaluation of arithmetic circuits
Introduction

• Sequential computation: \(\text{Feasible} \sim n^{O(1)} \text{ time} \) (polynomial time).

• Parallel computation: \(\text{Feasible} \sim n^{O(1)} \) operations (or processors) (polynomial work).

• Goal of parallel computation: to develop fast algorithms:
 \(\text{feasible highly parallel} \)
 Both \(\text{polylog time} \sim \log^{O(1)} n \) and \(\text{polynomial work} \sim n^{O(1)} \) (procs).

• A problem is \textit{inherently sequential} if it is feasible but has no feasible highly parallel algorithm for its solution.

Outline

• Introduction
• \textbf{Parallel Models of Computation}
• Basic Complexity – NC and Reductions
• \(P\)-Complete Problems
• Open Problems
• Parallel evaluation of arithmetic circuits
Parallel Models of Computation

- Parallel Random Access Machine Model
- Boolean Circuit Model
- Circuits and PRAMs

Parallel Random Access Machine = PRAM

RAM Processors

\[P_0 \quad P_1 \quad P_2 \quad \cdots \]

Global Memory Cells

\[C_0 \quad C_1 \quad C_2 \quad \cdots \]

Memory Access: EREW / CREW / CRCW [common/arbitrary/priority]

Theorem: A priority-CRCW PRAM that runs in time \(t(n) = O(\log^k n) \) using \(p(n) \in n^{O(1)} \) processors can be simulated by an EREW PRAM in time \(t(n) = O(\log^{k+1} n) \) using \(n^{O(1)} \) processors.
Boolean Circuit Model

Circuits and PRAMS

Theorem:

A function f from $\{0,1\}^*$ to $\{0,1\}^*$ can be computed by a logarithmic space uniform Boolean circuit family $\{\alpha_n\}$ with $\text{depth}(\alpha_n) \in (\log n)^{O(1)}$ and $\text{size}(\alpha_n) \in n^{O(1)}$

if and only if

f can be computed by a CREW-PRAM M on inputs of length n in time $t(n) \in (\log n)^{O(1)}$ using $p(n) \in n^{O(1)}$.
Outline

• Introduction
• Parallel Models of Computation
• **Basic Complexity – NC and Reductions**
• \(P\)-Complete Problems
• Open Problems
• Parallel evaluation of arithmetic circuits

Basic Complexity

• Decision, Function, and Search Problems
• Complexity Classes
• Reducibility
• Completeness
Decision, Function, and Search Problems

Spanning Tree-D

Given: An undirected graph \(G = (V,E) \) with weights from \(N \) labeling edges in \(E \) and a natural number \(k \).

Problem: Is there a spanning tree of \(G \) with cost less than or equal to \(k \)?

Spanning Tree-F

Given: Same (no \(k \)).

Problem: Compute the weight of a minimum cost spanning tree.

Spanning Tree-S

Given: Same.

Problem: Find a minimum cost spanning tree.

Complexity Classes

Definitions:

- \(\mathbf{P} \) is the set of all languages \(L \) that are decidable in sequential time \(n^{O(1)} \).

- \(\mathbf{NC} \) is the set of all languages \(L \) that are decidable in parallel time \((\log n)^{O(1)} \) and processors \(n^{O(1)} \).

- \(\mathbf{FP} \) is the set of all functions from \(\{0,1\}^* \) to \(\{0,1\}^* \) that are computable in sequential time \(n^{O(1)} \).

- \(\mathbf{FNC} \) is the set of all functions from \(\{0,1\}^* \) to \(\{0,1\}^* \) that are computable in parallel time \((\log n)^{O(1)} \) and processors \(n^{O(1)} \).

- \(\mathbf{NC}^k \), \(k \geq 1 \), is the set of all languages \(L \) such that \(L \) is recognized by a uniform Boolean circuit family \(\{\alpha_n\} \) with \(\text{size}(\alpha_n) = n^{O(1)} \) and \(\text{depth}(\alpha_n) = O((\log n)^k) \).
NC - Reducibility

Definitions:

A language L is *reducible* to a language L', written $L \leq L'$, if there is a function f such that: $x \in L$ if and only if $f(x) \in L'$.

L is *P reducible* to L', written $L \leq^P L'$, if the function f is in FP.

For $k \geq 1$, L is *NCk reducible* to L', written $L \leq^{NC^k} L'$, if the function f is in FNCk.

L is *NC many-one reducible* to L', written $L \leq^{NC} L'$, if the function f is in FNC.

Turing-Reducibility: A function f is NC1-Turing-reducible to a function g, $f \preceq^{NC1}_T g$, iff there exists a uniform circuit family $\{\alpha_n\}$ which gates are boolean or oracles for g, with $\text{size}(\alpha_n) = n^\Omega(1)$ and $\text{depth}(\alpha_n) = O((\log n))$.

NB An oracle gate for g with m inputs has depth $\log m$.

Properties: \leq^P, \leq^{NC^k} (for $k > 1$), \preceq^{NC1} and \preceq^{NC} are transitive.

Thus: If $L \leq^{NC^k} L'$ and $L' \in NC^k$ (for $k > 1$) then $L \in NC^k$.

Outline

- Introduction
- Parallel Models of Computation
- Basic Complexity
- **Example of reduction**
- P-Complete Problems
- Open Problems
Outline

• Introduction
• Parallel Models of Computation
• Basic Complexity – NC and Reductions
 – Example of reduction
• P-Complete Problems
• Open Problems
• Parallel evaluation of arithmetic circuits

Linear Algebra – DET class

• Triangular Matrix Inversion \leq_T^{NC1} Matrix Power

• Matrix Power \leq_T^{NC1} Triangular Matrix Inversion

• Sequential: $\text{MatrixInversion} = \Theta(\text{MatrixMultiplication})$
• Parallel: $\text{Matrix Multiplication} \ll$
 $\text{MatrixInversion} = T^{NC1}$ MatrixPower
Outline

• Introduction
• Parallel Models of Computation
• Basic Complexity – NC and Reductions
• **P-Complete Problems**
• Open Problems
• Parallel evaluation of arithmetic circuits

Completeness

Definitions:

A language L is **P-hard under NC reducibility** if $L' \preceq_{NC}^{P} L$ for every $L' \in P$.

A language L is **P-complete under NC reducibility** if $L \in P$ and L is P-hard.

Theorem:

If any P-complete problem is in NC then NC equals P.

Remark:

It is conjectured that NC \neq P (proved with real numbers, R-arithmetic).
\(P\)-Complete Problems

There are approximately 175 \(P\)-complete problems (500 with variations).

Categories:
- Circuit complexity
- Graph theory
- Searching graphs
- Combinatorial optimization and flow
- Local optimality
- Logic
- Formal languages
- Algebra
- Geometry
- Real analysis
- Games
- Miscellaneous

\textbf{Eg:} Gaussian elimination with pivot: \(P\)-complete, but MatrixInversion is in \(NC^2\)

Circuit Value Problem

\textbf{Given:}
An encoding \(\alpha\) of a Boolean circuit \(\alpha\), inputs \(x_1, \ldots, x_n\), and a designated output \(y\).

\textbf{Problem:}
Is output \(y\) of \(\alpha\) TRUE on input \(x_1, \ldots, x_n\)?

\textbf{Theorem: [Ladner 75]}
The Circuit Value Problem is \(P\)-complete under \(\leq_m NC^1\) reductions.
P-Complete Variations of CVP

– Topologically Ordered [Folklore]
– Monotone [Goldschlager 77]
– Alternating Monotone Fanin 2, Fanout 2 [Folklore]
– NAND [Folklore]
– Topologicaally Ordered NOR [Folklore]
– Synchronous Alternating Monotone Fanout 2 CVP [Greenlaw, Hoover, and Ruzzo 87]
– Planar [Goldschlager 77]

NAND Circuit Value Problem

Given:
An encoding α of a Boolean circuit α that consists solely of NAND gates, inputs x_1, \ldots, x_n, and a designated output y.

Problem:
Is output y of α TRUE on input x_1, \ldots, x_n?

Theorem:
The NAND Circuit Value Problem is P-complete.
NAND Circuit Value Problem

Proof:
Reduce AM2CVP to NAND CVP. Complement all inputs. Relabel all gates as NAND.

Graph Theory

– Lexicographically First Maximal Independent Set [Cook 85]
– Lexicographically First (Δ + 1)-Vertex Coloring [Luby 84]
– High Degree Subgraph [Anderson and Mayr 84]
– Nearest Neighbor Traveling Salesman Heuristic [Kindervater, Lenstra, and Shmoys 89]
Lexicographically First Maximal Independent Set

Theorem: [Cook 85]
LFMIS is P-complete.

Proof:
Reduce TopNOR CVP to LFMIS. Add new vertex 0. Connect to all false inputs.

Searching Graphs

- Lexicographically First Depth-First Search Ordering [Reif 85]
- Stack Breadth-First Search [Greenlaw 92]
- Breadth-Depth Search [Greenlaw 93]
Context-Free Grammar Empty

Given: A context-free grammar $G=(N,T,P)$.
Problem: Is $L(G)$ empty?

Theorem: [Jones and Laaser 76], [Goldschlager 81], [Tompa 91]
CFGEmpty is P-complete.

Proof: Reduce Monotone CVP to CFGEmpty. Given α construct $G=(N,T,P,S)$ with N, T, S, and P as follows:

\[N = \{ i \mid v_i \text{ is a vertex in } \alpha \} \]
\[T = \{ a \} \]
\[S = n, \text{ where } v_n \text{ is the output of } \alpha. \]

P as follows:

1. For input v_i, $i \rightarrow a$ if value of v_i is 1,
2. $i \rightarrow jk$ if $v_i \leftarrow v_j \land v_k$, and
3. $i \rightarrow j \mid k$ if $v_i \leftarrow v_j \lor v_k$.

Then the value of v_j is 1 if and only if $i \Rightarrow \gamma$, where $\gamma \in \{ a \}^*$.

CFG empty Example

\[x_1 = 0, \; x_2 = 0, \; x_3 = 1, \; \text{and} \; x_4 = 1. \]

\[G = (N, T, \Sigma, \delta), \text{where} \]
\[N = \{1, \; 2, \; 3, \; 4, \; 5, \; 6, \; 7\} \]
\[T = \{a\} \]
\[\Sigma = \{\} \]
\[\delta = \{3 \rightarrow a, \; 4 \rightarrow a, \; 5 \rightarrow 1 | 2, \; 6 \rightarrow 34, \; 7 \rightarrow 56\} \]

Outline

- Introduction
- Parallel Models of Computation
- Basic Complexity – NC and Reductions
- P-Complete Problems
- Parallel evaluation of arithmetic circuits
- Open Problems
Circuits and parallelism

- General CVP is P-complete.
 - What subset instances are in P?

- Arithmetic Expression evaluation

- Arithmetic Circuit evaluation

Tree contraction

- Tree-contraction is used in parallel expression evaluation
- Since the structure of a expression is a tree there are different tree-contraction techniques
 - Basic operations are:
 - redirecting edges of the tree
 - removing nodes marking (pebbling) nodes
 - creating additional edges
- the final aim is to guarantee that logarithmic number of contractions is sufficient
Basic Tree contraction operations

Case 1: u, w have exactly one son each replace e by e’

Case 2: u has one or more sons, w has no sons delete edge e

tree-contraction related to SimSub

repeat
 for each edge e do in parallel
 perform local action on e
 until there are no edges

Parallel pebble game on binary tree

• Within the game each node v of the tree has associated with it similar node denoted by cond(v).
• At the outset of the game cond(v)=v, for all v
• During the game the pairs (v,cond(v)) can be thought of as additional edges
• Node v is “active” if and only if cond(v)≠v
Operations: active, square and pebble

Activate
for all non-leaf nodes v in parallel do
 if v is not active and precisely one of its sons is pebbled then
 cond(v) becomes the other son
 if v is not active and both sons are pebbled then
 cond(v) becomes one of the sons arbitrarily

Square
for all nodes v in parallel do cond(v) ← cond(cond(v))

Pebble
for all nodes v in parallel do
 if cond(v) is pebbled then pebble v

One step: Activate; square; square; pebbling
Application of the pebbling game

- Consider the arithmetic expression \(((3+(2*2))*3+5)\)
- We assign a processor to each non-leaf node of the tree.
Expression evaluation

- **Algorithm:**
 while not(all nodes are evaluated) do
 { activate; square; square; pebble; }

- **Theorem**
 Let T be a binary tree with n leaves. After $log_2 n$ steps of the pebbling game, T is evaluated.

 => Arithmetic expressions can be evaluated on a PRAM in $O(\log n)$ time using $O(n)$ processors.

Circuit evaluation

- **Straight line arithmetic program**
 - $(+, *)$ in a semi-ring (extension to boolean or to a field)
 - Circuit with arithmetic gates: n-ary + and binary * (and dummy+ to avoid non consecutive *)

- **Algorithm: Loop while not (all nodes evaluated) {**
 - 1. MM (gather +nodes)
 - 2. Rake (eval nodes with leaves)
 - 3. Shunt (bypass * nodes with only one son not evaluated)
 }
Circuit evaluation [Miller Ramachandran Kaltofen]

• Consider a straight line arithmetic program
 – (+, *) in a semi-ring
 – Each output can be seen as a polynomial in the input
• Let n = # gates; let d= max. degree of an output gate w.r.t. input gates

• Theorem: MRK straight line evaluation evaluates the circuit in
 \[\text{Depth} = (\log n)(\log d + \log n) \quad \text{and} \quad \text{Work} = O(M(n))=O(n^3) \]

• Application: triangular linear system inversion: \(k=\dim(\text{system}) \)
 – Sequential: \(n = k^2 \quad \text{degree}= k \)
 – \(\Rightarrow \) circuit with depth = \(O(\log^2 k) \) and work \(O(k^6) \)

Outline

• Introduction
• Parallel Models of Computation
• Basic Complexity – NC and Reductions
• \(P \)-Complete Problems
• Parallel evaluation of arithmetic circuits
• Open Problems
Open Problems

Find an NC algorithm or classify as P-complete:

– Edge Ranking
– Edge-Weighted Matching
– Integer Greatest Common Divisor
 • Polynomial GCD is in DET, so in NC2.
– Modular Powering