
26

Parallel Algorithms

Design
and

Implementation

Lecture 2 – Processor oblivious algorithms

 Jean-Louis.Roch at imag.fr

MOAIS / Lab. Informatique Grenoble, INRIA, France

27

Lecture 2
!  Remind: Work W and depth D :!

! With work-stealing schedule: "
-  #steals = O(pD)"
-  Execution time on p procs = W/p + O(D) w.h.p."
-  Similar bound achieved with processors with changing

speed or multiprogrammed systems."

!  How to parallelize ? !!
!  1/ There exists a fine-grain parallel algorithm that

is optimal in sequential "
-  Work-stealing and Communications"

!  2/ Extra work induced by parallel can be amortized"
!  3/ Work and Depth are related"

-  Adaptive parallel algorithms"

First examples

!  Put overhead on the steals :!
!  Example Accumulate"

!  Follow an optimal sequential algorithm:!
!  Example: Find_if"

28

23/52

Adaptive coupling: Amortizing synchronizations
(parallel work extraction)

Example : STL transform STL : loop with n independent computations!

!log(n1)!

ni=l-fi!

!log(n2)!

f1! l!f2!

size!

Ti
m

e
[s

]!Machine :!
AMD Opteron Opteron 875!

2,2 Ghz,!
Compiler gcc, option –O2!

Amortizing Parallel Arithmetic overhead:
example: find_if

!  For some algorithms: !
!  Wseq unknown prior to execution "
!  Worst case work W is not precise enough: we may have W >> Wseq"

!  Example: find_if : returns the index of the first element that verifies a predicate.!

P0! P1! P2! P3!

Index of the matching element!

!  Parallel time= time of the last processor to complete: here, on 4 processors: T4 = 6 !

!  Sequential time is Tseq = 2 !

24/52

!  To adapt with provable performances (Wpar ~Wseq) : compute in parallel no more
work thant the work performed by the sequential algorithm "
(Macro-loop [Danjean, Gillard, Guelton, Roch, Roche, PASCO’07]),"

Amortized scheme similar to Floyd’s algorithm!

n_cur elts n_cur / log(n_cur)

25/52

!  Example : find_if!

B1! B2! B3!

P0, P1, P2! P0, P1, P2! P0, P1, P2!

Amortizing Parallel Arithmetic overhead:
example: find_if

!  Example : find_if STL!
!  Comparison with find_if parallel MPTL [Baertschiger 06]"

26/52

Machine :!
AMD Opteron (16 cœurs);!

Data: doubles;!
Array size: 106;!

Position element: 105; !

TimeSTL : 3,60 s;!
Predicate time # 36$!

Speed-down (speed-up < 1)!

Amortizing Parallel Arithmetic overhead:
example: find_if [Daouda Traore 2009]

!  Example : find_if STL!
!  Speed-up w.r.t. STL sequential tim and the position of the matching element. "

#processors!

Sp
ee

d-
up
!

27/52

Machine :!
AMD Opteron (16 cœurs);!

Data: doubles;!
Size Array: 106;!

Predicate time# 36$!

Amortizing Parallel Arithmetic overhead:
example: find_if [Daouda Traore 2009]

34

Overview

•  Introduction : interactive computation, parallelism and processor oblivious!
•  Overhead of parallelism : parallel prefix"

•  Machine model and work-stealing!

•  Scheme 1: !Extended work-stealing : concurently sequential and parallel!

35

3. Work-first principle and adaptability
•  Work-first principle: -implicit- dynamic choice between two executions :

•  a sequential “depth-first” execution of the parallel algorithm (local, default) ;
•  a parallel “breadth-first” one.

•  Choice is performed at runtime, depending on resource idleness:
 rare event if Depth is small to Work

•  WS adapts parallelism to processors with practical provable performances
•  Processors with changing speeds / load (data, user processes, system, users,
•  Addition of resources (fault-tolerance [Cilk/Porch, Kaapi, …])

•  The choice is justified only when the sequential execution of the parallel
algorithm is an efficient sequential algorithm:

•  Parallel Divide&Conquer computations
•  …

 -> But, this may not be general in practice

36

•  General approach: to mix both !
•  a sequential algorithm with optimal work W1 "
•  and a fine grain parallel algorithm with minimal depth D = critical time W!

•  Folk technique : parallel, than sequential !
•  Parallel algorithm until a certain « grain »; then use the sequential one"
•  Drawback : W! increases ;o) …and, also, the number of steals  

•  Work-preserving speed-up technique [Bini-Pan94] sequential, then parallel Cascading [Jaja92] :
Careful interplay of both algorithms to build one with both !

 ! ! ! ! ! !W! small and W1 = O(Wseq)  

•  Use the work-optimal sequential algorithm to reduce the size "
•  Then use the time-optimal parallel algorithm to decrease the time "
•  Drawback : sequential at coarse grain and parallel at fine grain ;o( 

How to get both optimal work W1 and D=W! small?

37

Extended work-stealing: concurrently sequential and parallel

SeqCompute

Extract_par LastPartComputation
SeqCompute

Based on the work-stealing and the Work-first principle : "
Instead of optimizing the sequential execution of the best parallel algorithm,  

let optimize the parallel execution of the best sequential algorithm  

Execute always a sequential algorithm to reduce parallelism overhead!
"  parallel algorithm is used only if a processor becomes idle (ie workstealing) [Roch&al2005,…]

to extract parallelism from the remaining work a sequential computation  

Assumption : two concurrent algorithms that are complementary: "
•  - one sequential : SeqCompute (always performed, the priority)

- the other parallel, fine grain : LastPartComputation (often not performed)"

38

Based on the work-stealing and the Work-first principle : "
Instead of optimizing the sequential execution of the best parallel algorithm,  

let optimize the parallel execution of the best sequential algorithm  

Execute always a sequential algorithm to reduce parallelism overhead!
"  parallel algorithm is used only if a processor becomes idle (ie workstealing) [Roch&al2005,…]

to extract parallelism from the remaining work a sequential computation  

Assumption : two concurrent algorithms that are complementary: "
•  - one sequential : SeqCompute (always performed, the priority)

- the other parallel, fine grain : LastPartComputation (often not performed)"

SeqCompute

SeqCompute

preempt
SeqCompute_main

SeqCompute

merge/jump

complete

Seq

Note:

•  merge and jump operations to ensure non-idleness of the victim

•  Once SeqCompute_main completes, it becomes a work-stealer

Extended work-stealing : concurrently sequential and parallel

39

Overview

•  Introduction : interactive computation, parallelism and processor oblivious!
•  Overhead of parallelism : parallel prefix"

•  Machine model and work-stealing!

•  Scheme 1: !Extended work-stealing : concurently sequential and parallel!

•  Scheme 2: !Amortizing the overhead of synchronization (Nano-loop)"

40

Extended work-stealing and granularity
!  Scheme of the sequential process : nanoloop

 While (not completed(Wrem)) and (next_operation hasn’t been stolen) !
{!
 atomic { extract_next k operations ; Wrem -= k ; }!
 process the k operations extracted ;!
}!

!  Processor-oblivious algorithm !
!  Whatever p is, it performs O(p.D) preemption operations (« continuation faults »)"

-> D should be as small as possible to maximize both speed-up and locality  

!  If no steal occurs during a (sequential) computation, then its arithmetic work is optimal
to the one Wopt of the sequential algorithm (no spawn/fork/copy) "

-> W should be as close as possible to Wopt "

!  Choosing k = Depth(Wrem) does not increase the depth of the parallel algorithm
while ensuring O(W / D) atomic operations : 
 "since D > log2 Wrem , then if p = 1: W ~ Wopt  

!  Implementation : atomicity in nano-loop based without lock
!  Efficient mutual exclusion between sequential process and parallel work-stealer"

!  Self-adaptive granularity!

41

Anytime Algorithm:!
•  Can be stopped at any time (with a result)"
•  Result quality improves as more time is allocated"

In Computer graphics, anytime algorithms are common: "
"Level of Detail algorithms (time budget, triangle budget, etc…)"
"Example: Progressive texture loading, triangle decimation (Google Earth)"

Anytime processor-oblivious algorithm: !
On p processors with average speed "ave, it outputs in a fixed time T "
 a result with the same quality than "
a sequential processor with speed "ave in time p."ave. "

Example: Parallel Octree computation for 3D Modeling !"

Interactive application with time constraint

42

3D Modeling : !
!build a 3D model of a scene from a set of calibrated images"

On-line 3D modeling for interactions: 3D modeling from
multiple video streams (30 fps) "

Parallel 3D Modeling

…

…

A classical recursive anytime 3D modeling algorithm."

Standard algorithms with time control:"

At termination: quick test to decide all grey cubes time control"

Octree Carving [L. Soares 06]

State of a cube:
- Grey: mixed => split
- Black: full : stop
- White: empty : stop

Depth first "
+ iterative deepening!

Width first !

44

Well suited to work-stealing "
- Small critical path, while huge amount of work (eg. D = 8, W = 164 000)"
-  non-predictable work, non predictable grain : "

For cache locality, each level is processed by a self-adaptive grain :
" "“sequential iterative” / ”parallel recursive split-half”"

Octree needs to be “balanced” when stopping:"
•  Serially computes each level (with small overlap)!
•  Time deadline (30 ms) managed by signal protocol"

Theorem: W.r.t the adaptive in time T on p procs., the sequential algorithm: ""
"- goes at most one level deeper : | ds - dp | ! 1 ;
 - computes at most : ns ! np + O(log ns) .!

Width first parallel octree carving

Unbalanced ! Balanced !

45
-  16 core Opteron machine, 64 images "
-  Sequential: 269 ms, 16 Cores: 24 ms"
-  8 cores: about 100 steals (167 000 grey cells)"

Results

8 cameras, levels 2 to 10! 64 cameras, levels 2 to 7!

result: CPUs+GPU
-  1 GPU + 16 CPUs "
-  GPU programmed in OpenGL"
- efficient coupling till 8 but  
 does not scale"

lo
g

(T
im

e
(m

s)
)!

[L. Soares 06]

46

Overview

•  Introduction : interactive computation, parallelism and processor oblivious!
•  Overhead of parallelism : parallel prefix"

•  Machine model and work-stealing!

•  Scheme 1: !Extended work-stealing : concurently sequential and parallel!

•  Scheme 2: !Amortizing the overhead of synchronization (Nano-loop)"

•  Scheme 3: !Amortizing the overhead of parallelism (Macro-loop)"

47

Adaptive scheme : extract_seq/nanoloop // extract_par!
•  ensures an optimal number of operation on 1 processor"
•  but no guarantee on the work performed on p processors!

Eg (C++ STL): find_if (first, last, predicate) !
locates the first element in [First, Last) verifying the predicate!

This may be a drawback (unneeded processor usage) :"
•  undesirable for a library code that may be used in a complex application, 
 with many components "
•  (or not fair with other users)"
•  increases the time of the application :"

• any parallelism that may increase the execution time should be avoided "

Motivates the building of work-optimal parallel adaptive algorithm
(processor oblivious)"

4. Amortizing the arithmetic overhead
of parallelism

48

Similar to nano-loop for the sequential process :!
•  that balances the -atomic- local work by the depth of the remaindering one"

Here, by amortizing the work induced by the extract_par operation, 
ensuring this work to be small enough :"
•  Either w.r.t the -useful- work already performed"
•  Or with respect to the - useful - work yet to performed (if known)"
•  or both."

Eg : find_if (first, last, predicate) :!
•  only the work already performed is known (on-line)!
•  then prevent to assign more than !(Wdone) operations to work-stealers"
•  Choices for !(n) :!

•  n/2 : similar to Floydʼs iteration (approximation ratio = 2)!
•  n/log* n : to ensure optimal usage of the work-stealers!

4. Amortizing the arithmetic overhead
of parallelism (cont’d)

49

Results on find_if [S. Guelton]!
N doubles : time predicate ~ 0.31 ms!

With no amortization macroloop!

With amortization macroloop!

50

Parallel algorithm based on : 

!- compute-seq / extract-par scheme!

!- nano-loop for compute-seq"

"- macro-loop for extract-par!

5. Putting things together
processor-oblivious prefix computation

51

•  Prefix problem :
•  input : a0, a1, …, an
•  output : #1, …, #n with

 Parallelism induces overhead :
 e.g. Parallel prefix on fixed architecture

•  Tight lower bound on p identical processors:
Optimal time Tp = 2n / (p+1)
but performs 2.n.p/(p+1) ops

[Nicolau&al. 1996]

Parallel
requires
twice more
operations
 than
sequential !!

 performs only n operations
•  Sequential algorithm :

•  for (#[0] = a[0], i = 1 ; i <= n; i++) #[i] = #[i – 1] * a [i] ;

Critical time = 2. log n
but performs 2.n ops

[Ladner-
Fisher-81]

•  Fine grain optimal parallel algorithm :

52

Lower bound(s) for the prefix

Prefix circuit of depth d !
 $ [Fitch80] !
 #operations > 2n - d!

53

Parallel

Sequential

P0

P1

P3

10

 #0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12

Work-
stealer 1

Main
Seq.

Work-
stealer 2

#1

time

P-Oblivious Prefix on 3 proc.

54

Parallel

Sequential

P0

P1

P3

10

 #0 a1 a2 a3 a4

Work-
stealer 1

Main
Seq.

Work-
stealer 2

#1

 a5 a6 a7 a8 a9 a10 a11 a12

2

 #2

!6

3

!7

 #3

!i=a5*…*ai

time

P-Oblivious Prefix on 3 proc.

55

Parallel

Sequential

P0

P1

P3

10

 #0 a1 a2 a3 a4

Work-
stealer 1

Main
Seq.

Work-
stealer 2

#1

 a5 a6 a7 a8

2

 #2

!6

3

!7

 #3

 %i=a9*…*ai

 a9 a10 a11 a12

!i=a5*…*ai

#4 Preempt !8

 !8 #4

!8

%10

4

time

P-Oblivious Prefix on 3 proc.

56

Parallel

Sequential

P0

P1

P3

10

 #0 a1 a2 a3 a4

Work-
stealer 1

Main
Seq.

Work-
stealer 2

#1

a5 a6 a7 a8

2

 #2

!6

3

 #3

 %i=a9*…*ai
a9 a10 a11 a12

!i=a5*…*ai

 #4

%10

4

!7 #5

 %11

5

 #8

#6

#8 Preempt

#9

%11

 #11

6

time

P-Oblivious Prefix on 3 proc.

57

Parallel

Sequential

P0

P1

P3

10

 #0 a1 a2 a3 a4

Work-
stealer 1

Main
Seq.

Work-
stealer 2

#1

a5 a6 a7

2

 #2

!6

3

 #3

 %i=a9*…*ai
a9 a10

!i=a5*…*ai

 #4

4

#5

5

 #8

#6

#9

 #11

6

#10

#7

 #12

7

time

P-Oblivious Prefix on 3 proc.

58

Parallel

Sequential

P0

P1

P3

10

 #0 a1 a2 a3 a4

Work-
stealer 1

Main
Seq.

Work-
stealer 2

#1

a5 a6 a7

2

 #2

!6

3

 #3

 %i=a9*…*ai
a9 a10

!i=a5*…*ai

 #4

4

#5

5

 #8

#6

#9

 #11

6

#10

#7

 #12

7

Implicit critical path on the sequential process Tp = 7 Tp
*
 = 6

time

P-Oblivious Prefix on 3 proc.

59

Analysis of the algorithm

!   

!  Sketch of the proof :!
Dynamic coupling of two algorithms that complete simultaneously:"

!  Sequential: (optimal) number of operations S on one processor"

!  Extract_par : work stealer perform X operations on other processors"
-  dynamic splitting always possible till finest grain BUT local sequential"

•  Critical path small (eg : log X with a W= n / log* n macroloop) "
•  Each non constant time task can potentially be splitted (variable speeds)"

!  Algorithmic scheme ensures Ts = Tp + O(log X) 

=> enables to bound the whole number X of operations performed  
and the overhead of parallelism = (s+X) - #ops_optimal  

Lower bound

Execution time"

60

 Results 1/2 [D Traore]

Single-usercontext : processor-oblivious prefix achieves near-optimal performance :
 - close to the lower bound both on 1 proc and on p processors

- Less sensitive to system overhead : even better than the theoretically “optimal” off-line parallel algorithm on p processors :

Optimal off-line on p procs

Oblivious

Prefix sum of 8.106 double on a SMP 8 procs (IA64 1.5GHz/ linux)

Ti
m

e
(s

)

#processors

Pure sequential

Single user context

61

Results 2/2

External charge
 (9-p external processes)

Off-line parallel algorithm for p processors

Oblivious

Prefix sum of 8.106 double on a SMP 8 procs (IA64 1.5GHz/ linux)

Ti
m

e
(s

)

#processors

Multi-user context :

Multi-user context :
Additional external charge: (9-p) additional external dummy processes are concurrently executed

Processor-oblivious prefix computation is always the fastest
 15% benefit over a parallel algorithm for p processors with off-line schedule,

[D Traore]

62

Conclusion
!  Fine grain parallelism enables efficient execution on a small number of

processors!
!  Interest : portability ; mutualization of code ; "
!  Drawback : needs work-first principle => algorithm design"

!  Efficiency of classical work stealing relies on work-first principle : !
!  Implicitly defenerates a parallel algorithm into a sequential efficient ones ; "
!  Assumes that parallel and sequential algorithms perform about the same amount of

operations"

!  Processor Oblivious algorithms based on work-first principle!
!  Based on anytime extraction of parallelism from any sequential algorithm (may

execute different amount of operations) ;"
!  Oblivious: near-optimal whatever the execution context is. "

!  Generic scheme for stream computations :!
" parallelism introduce a copy overhead from local buffers to the output"
" "gzip / compression, MPEG-4 / H264 ""

63

FlowVR (flowvr.sf.net)!
•  Dedicated to interactive applications"
•  Static Macro-dataflow "
•  Parallel Code coupling  

Kaapi!

 Thank you !

Kaapi (kaapi.gforge.inria.fr)"
•  Work stealing / work-first principle"
•  Dynamics Macro-dataflow : 

"partitioning (Metis, …)"
•  Fault Tolerance (add/del resources)"

[E Boyer, B Raffin 2006]!

64

Back slides

65

The Prefix race:
sequential/parallel fixed/ adaptive

Race between 9 algorithms (44 processes) on

an octo-SMPSMP

0 5 10 15 20 25

1

2

3

4

5

6

7

8

9

Execution time (seconds)

Série1

Adaptative 8 proc.
Parallel 8 proc.

Parallel 7 proc.
Parallel 6 proc.

Parallel 5 proc.
Parallel 4 proc.

Parallel 3 proc.
Parallel 2 proc.

Sequential

On each of the 10 executions, adaptive completes first

66 Adaptive prefix : some experiments

 Single user context
Adaptive is equivalent to:
 - sequential on 1 proc
 - optimal parallel-2 proc. on 2 processors
 - …
 - optimal parallel-8 proc. on 8 processors

External charge

Parallel

Adaptive

Parallel

Adaptive

Prefix of 10000 elements on a SMP 8 procs (IA64 / linux)

#processors

Ti
m

e
(s

)

Ti
m

e
(s

)

#processors

Multi-user context
Adaptive is the fastest

15% benefit over a static grain algorithm

67

With * = double sum (r[i]=r[i-1] + x[i])

Single user Processors with variable speeds

Remark for n=4.096.000 doubles :
 - “pure” sequential : 0,20 s
 - minimal ”grain” = 100 doubles : 0.26s on 1 proc
 and 0.175 on 2 procs (close to lower bound)

Finest “grain” limited to 1 page = 16384 octets = 2048 double

68

The Moais Group

Interactivity

Coupling

Scheduling

Adaptive
Algorithms

Execution
Control

69

Moais Platforms
!  Icluster 2 :"

-  110 dual Itanium bi-processors with Myrinet network"
!  GrImage (“Grappe” and Image): "

-  Camera Network "
-  54 processors (dual processor cluster)"
-  Dual gigabits network"
-  16 projectors display wall"

!  Grids: "
-  Regional: Ciment"
-  National: Grid5000 "

•  Dedicated to CS experiments"
!  SMPs: "

-  8-way Itanium (Bull novascale)"
-  8-way dual-core Opteron + 2 GPUs"

!  MPSoCs"
-  Collaborations with ST Microelectronics on STB7100 "

70

Parallel Interactive App.
!  Human in the loop"
!  Parallel machines (cluster) to enable large interactive applications"
!  Two main performance criteria:"

-  Frequency (refresh rate)"
•  Visualization: 30-60 Hz"
•  Haptic : 1000 Hz"

-  Latency (makespan for one iteration)"
•  Object handling: 75 ms"

!  A classical programming approach: data-flow model"
-  Application = static graph "

•  Edges: FIFO connections for data transfert"
•  Vertices: tasks consuming and producing data"
•  Source vertices: sample input signal (cameras)"
•  Sink vertices: output signal (projector)"

!  One challenge:"
Good mapping and scheduling of tasks on processors"

