Interactive proof and zero knowledge protocols

- Zero-knowledge: definition
- Probabilistic complexity classes and Interactive proofs
- Graph isomorphism and PCP
- Some zero knowledge protocols:
- Feige-Fiat-Shamir authentication protocol
- Extension to signature
- Guillou-Quisquater authentication and signature
- Computational Complexity: A Modern Approach. Sanjeev Arora and Boaz Barak
http://www.cs.princeton.edu/theory/complexity/
- Handbook of Applied Cryptography [Menzenes, van Oorschot, Vanstone]
- Applied Cryptography [Schneier]
- Contemporary cryptography [Opplinger]

Example [wikipedia]

Peggy randomly takes either path A or B, while Victor waits outside

Victor chooses an exit path

Peggy reliably appears at the exit Victor names

Proof and Interactive proof

- Importance of « proof » in crypto: eg. identity proof=authentication
- Two parts in a proof:
- Prover: knows the proof (-> the secret) [or is intended to know]
- Verifier: verifies the proof is correct (-> authentication)
- Correctness of a proof system/verifier:
- Soundness: every invalid proof is rejected by the verifier
- Completeness: every valid proof is accepted by the verifier
- Interactive proof system
- Protocol (questions/answers) between the verifier and the prover
- Verifier: probabilistic algorithm, polynomially bounded
- Soundness: every invalid proof is rejected with probability (> 1/2)
- Competeness: every valid proof is accepted with probability (>1/2)

Interactive protocol :Example

- Example: interactive authentication based on quadratic residue
- See exercise (question 3.b)
- Completeness : Alice, who gets the secret (square root) is accepted
- But not Soundness : Eve, who doesn't know the secret may cheat
- Fiat-Shamir's protocol (question 3.c)
- Soundness : Eve, who doesn't know the secret, is rejected.(if we assume n factorization unknown)

Does x belongs to L ?

- Verifier
- An element x
- Ask questions to prover
- Gets anwer:
- Completeness: Is convinced that x in L, if so
- Soundess: reject «x in L » if not so
- Zero-knowledge:
- Intuitively: at the end, verifier is convinced that x in L (if so), but learns nothing else.

Example of interactive computation

- Graph isomorphism:
- Input: $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ and $\mathrm{G}^{\prime}=\left(\mathrm{V}^{\prime}, \mathrm{E}^{\prime}\right)$
- Output: YES iff $G==G^{\prime}$ (i.e. a permutation of $V->V^{\prime}$ makes $E=E^{\prime}$)
- NP-complete, not known to be in co-NP
- Assume an NP Oracle for Graph isomorphism => then a probabilistic verifier can compute Graph isomorphism in polynomial time.
- Protocol and error probability analysis.
- Theorem [Goldreich\&al] :
- NP included in IP.
- any language in NP possesses a zero-knowledge protocol.

Interactive Algorithm Graph Isomorhism

```
AlgoGraphlso \(\left(\mathrm{G}_{1}=\left(\mathrm{V}_{1}, \mathrm{E}_{1}\right), \mathrm{G}_{2}=\left(\mathrm{V}_{2}, \mathrm{E}_{2}\right)\right)\) \{
    If \(\left(\# \mathrm{~V}_{1}\right.\) ! \(\left.=\# \mathrm{~V}_{2}\right)\) or \(\left(\# \mathrm{E}_{1}\right.\) != \(\left.\# \mathrm{E}_{2}\right)\)
            return "NO : \(\mathrm{G}_{1}\) not isomorphic to \(\mathbf{G 2}\) ";
    \(\mathrm{n}:=\# \mathrm{~V}_{1}\);
    For ( \(\mathrm{i}=1\).. k ) \{
        \(\mathrm{P}:=\) randompermutation([1, ..., n]) ;
        b := random(\{1,2\});
        \(\mathrm{G}^{\prime}:=\mathrm{P}\left(\mathrm{G}_{\mathrm{b}}\right)\);
        ( \(\mathrm{i}, \mathrm{P}_{\mathrm{i}}\) ) := Call OracleWhichlslso( \(\mathrm{G}_{1}, \mathrm{G}_{2}, \mathrm{G}^{\prime}\) );
        If ( \(\mathrm{G}_{\mathrm{i}} \neq \mathrm{P}_{\mathrm{i}}\left(\mathrm{G}^{\prime}\right)\) ) FAILURE("Oracle is not reliable");
        If ( \(\mathrm{b} \neq \mathrm{i}\) ) return "YES : \(\mathrm{G}_{1}\) is isomorphic to \(\mathrm{G}_{2}\) ";
    \}
    return "NO : \(\mathrm{G}_{1}\) not isomorphic to \(\mathrm{G}_{2}\) ";
\}
```

Theorem: Assuming OracleWhichlsiso of polynomial time,
AlgoGraphlso $\left(\mathrm{G}_{1}, \mathrm{G}_{2}\right)$ proves in polynomial time k. $\mathrm{n}^{\mathrm{O}(1)}$ that :

- either G_{1} is isomorphic to G_{2} (no error)
- or G_{1} is not isomorphic with error probability $\leq 2^{-k}$.

Thus, it is a MonteCarlo (randomized) algorithm for GRAPH ISOMORPHISM

Analysis of error probability

Prob(Output of Truth: AlgoGraphlso $\left(G_{1}, G_{2}\right)$) $\mathrm{G}_{1}=\mathrm{G}_{2} ? ?$	"YES : G_{1} is isomorphic to $G_{2}{ }^{\prime \prime}$	"NO: G ${ }_{1}$ not isomorphic to $G_{2}{ }^{\prime \prime}$
$\text { Case } \mathrm{G}_{1}=\mathrm{G}_{2}$ (completeness)	Prob $=1-2-\mathrm{k}$	Prob $=2^{-k}$
No: Case $\mathrm{G}_{1} \neq \mathrm{G}_{2}$ (soundness)	Impossible $(\text { Prob }=0)$	Always $(\text { Prob }=1)$

-When the algorithm output YES: G_{1} is isomorphic to G_{2} then $\mathrm{G}_{1}=\mathrm{G}_{2}$ => no error on this output.
-When the algorithm output "NO: G_{1} not isomorphic to G_{2} " then we may have an error (iff $G_{1}=G_{2}$), but with a probability $\leq 2^{-k}$

One-sided error => Monte Carlo algorithm for Graph-Isomorphism

Complexity classes

Decision problems (1 output bit: YES/ NO)
Deterministic polynomial time:

- P : both Yes/No sides
- NP : certification for the Yes side
- co-NP: certification for the No side

Randomized polynomial time:

- BPP: Atlantic City: prob(error) < 1/2
- RPP: Monte Carlo: prob(error YES side)=0; prob(error NO side)<1/2
- ZPP: Las Vegas: prob(failure) $<1 / 2$ but prob(error) $=0$

IP Interactive proof

- Verifier: randomized polynomial time
- Prover: interactive (dynamic), unbound power
- $F(x)=Y E S=>$ it exists a correct prover Π such that $\operatorname{Prob}[\operatorname{Verifier}(\Pi, x)$ accepts $]=1$;
- $F(x)=N O=>$ for all prover Π :
$\operatorname{Prob}[\operatorname{Verifier}(\Pi, x)$ accepts] < 1/2.
- Theorem: IP = PSPACE

PCP: Probabilistiic Checkable Proofs (static proof)

- PCP (r, q) : the verifier uses random bits and reads q bits of the proof only.
- Theorem: NP=PCP($\log n, O(1))$

Summary

- Interactive proof : generalization of a mathematical proof in which prover and polynomial-time probabilistic verifier interact:
- Completeness and soundness
- Input: x, proof of property $L(x)$

Correct proof: x is accepted iff $L(x)$ is true.

- Completeness : any x : $L(x)=$ true is accepted (with prob $\geq 2 / 3$).
- Soundess : any y: $L(y)=$ false is rejected (with prob $\geq 2 / 3$).
- Power of interactive proof w.r.t. « static » proof
- IP = PSACE

Zero knowledge

- How to prove zero knowledge: by proving the verifier could have produced the transcript of the protocol in (expected) polynomial time with no help of the prover.
- Def: a sound and correct interactive protocol is zero-knowledge if there exists a non-interactive randomized polynomial time algorithm (named «simulator») which, for any input x accepted by the verifier (using interaction with the prover) can produce transcripts indistinguishable from those resulting from interaction with the real prover.
- Consequence: releases no information to an observer.

Graph [non]-isomorphism and zero knowledge

- In a zero-knowledge protocol, the verifier learns that G_{1} is isomorphic to G_{2} but nothing else.
- Previous protocol (slide 7) not known to be zeroknowledge:
- Prover sends the permutation P_{i} such that $G_{1}=P_{i}\left(G_{2}\right)$: so the verifier learns not only G_{1} isomorphic to G_{2} but P_{i} too.
- We do not know, given two isomorphic graph, wether there exists a (randomized) polynomial time algorithm that returns a permutation that proves isomorphism.

A zero-knowledge interactive proof for Graph Isomorhism

Verifier
input: $\left(\mathrm{G}_{1}=\left(\mathrm{V}_{1}, \mathrm{E}_{1}\right), \mathrm{G}_{2}=\left(\mathrm{V}_{2}, \mathrm{E}_{2}\right)\right)$
Accepts prover if convinced that G 1 is
isomorphic to G 2
2. Receives H ;
Chooses $\mathrm{b}=$ random $(1,2)$ and sends
b to the prover
4. receives P " and checks $\mathrm{H}=\mathrm{P}$ "' $\left(\mathrm{G}_{\mathrm{b}}\right)$

Proover
gets G_{1}, G_{2}
private secret perm. $\mathrm{P}_{\mathrm{s}}: \mathrm{G}_{2}=\mathrm{P}_{\mathrm{s}}\left(\mathrm{G}_{1}\right)$;

1. Chooses a random perm. P^{\prime} and sends to verifier $H=P^{\prime}\left(G_{2}\right)$
2. Receives b;
if $b=1$ sends $P{ }^{\prime \prime}=P^{\prime} o P_{s}$ to the verifier else $b=2$: sends $P "=P$ ' to the verifier

Theorem: This is a zero-knowledge, sound and complete, polynomial time interactive proof that the two graphs G_{1} and G_{2} are isomorph.

Zero-knowledge interactive proof for Graph Isomorhism

- Completeness
- Soundness
- Zero-knowledge
- Polynomial time

Zero-knowledge interactive proof for Graph Isomorhism

- Completeness
- if $\mathrm{G}_{1}=\mathrm{G}_{2}$, verifier accepts with probability 1 .
- Soundness
- if $\mathrm{G}_{1} \neq \mathrm{G}_{2}$, verifier rejects with probability $\geq 1 / 2$
- Zero-knowledge
- Simulation algorithm:

1. Choose first $b=r a n d(1,2)$ and π random permutation (like P^{\prime});
2. Compute $\mathrm{H}=\pi\left(\mathrm{G}_{\mathrm{b}}\right)$;
3. Output transcript [H, b, m];

- The transcript $[H, b, \pi]$ is distributed uniformly, exactly as the transcript $\left[\mathrm{H}, \mathrm{b}, \mathrm{P}^{\prime}\right]$ in the interactive protocol.
- Polynomial time

Another simulation algorithm

- Without changing the verifier, by just modifying the prover:
Do \{

1. $b^{\prime}=$ random(1,2) and $\pi=$ random(permutation);

Compute $H=\pi\left(G_{b^{\prime}}\right)$ and send H to verifier;
3. receive b;
\} while ($b \neq b^{\prime}$) ;
Output transcript [H, b, m]

- Polynomial time:
- Expectation time $=\operatorname{Time}_{\text {Loop_body }} \cdot \Sigma_{k \geq 0} 2^{k} \leq 2$. Time $_{\text {Loop_body }}$

Exercise

- Provide an interactive polynomial time protocol to prove a verifier that has an integer N that you know the factorization $N=P . Q$ without revealing it.
- Application:
- a sensitive building, authorized people know 2 secret primes P and Q (and $\mathrm{N}=\mathrm{PQ}$)
- The guard knows only N

Quadratic residue authentication: is this version perfectly zero-knowledge?

- A trusted part T provides a Blum integer $n=p . q ; n$ is public.

■ Alice (Prover) builds her secret and public keys:

- For $i=1, \ldots, k$: chooses at random s_{i} coprime to n
- Compute $\mathrm{v}_{\mathrm{i}}:=\left(\mathrm{s}_{\mathrm{i}}{ }^{2}\right) \bmod \mathrm{n}$. [NB v_{i} ranges over all square coprime to n$]$ $v_{i}=$ quadratic residue that admits $\mathrm{s}_{\mathrm{i}}=$ modular square root
- Secret key: $\mathrm{s}_{1}, \ldots, \mathrm{~s}_{\mathrm{k}}$
- Public key: $\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{k}}$ and identity photo, \ldots registered by T

■ Bob (Verifier) authenticates Alice: Zero-knowledge protocol in 3 messages :

1. Alice chooses a random $r<n$; she sends $y=r^{2} \bmod n$ to Bob.
2. Bob sends k random bits: b_{1}, \ldots, b_{k}
3. Alice computes $z:=r s_{1}^{b_{1}} \ldots . s_{k}{ }^{b_{k}} \bmod n$ and sends z to Bob. Bob authenticates iff $z^{2}=y \cdot v_{1}{ }^{b_{1}} \ldots . . v_{k}{ }^{b_{k}} \bmod n$.

- Simulation algorithm : is the protocol perfectly zeo-knowledge?

1. Choose k random bits b_{1}, \ldots, b_{k} and a random $z<n$; compute $w=v_{1}{ }^{b_{1}} \ldots . . v_{k}{ }^{b_{k}} \bmod n$ and $y=z^{2} \cdot w^{-1} \bmod n$;
2. Transcript is $\left[y ; b_{1}, \ldots, b_{k} ; z\right]$

Feige-Fiat-Shamir zero-knowledge authentication protocol

- A trusted part T computes a Blum integer $n=$ p. $q ; n$ is public.

■ Alice (Prover) builds her secret and public keys:

- For $\mathrm{i}=1, \ldots, \mathrm{k}$: chooses at random s_{i} coprime to n
- Compute $\mathrm{v}_{\mathrm{i}}:=\left(\mathrm{s}_{\mathrm{i}}{ }^{2}\right) \bmod \mathrm{n}$. [NB v_{i} ranges over all square coprime to n] $v_{i}=$ quadratic residue that admits $\mathrm{s}_{\mathrm{i}}=$ modular square root
- Secret key: $\mathrm{s}_{1}, \ldots, \mathrm{~s}_{\mathrm{k}}$
- Public key: $\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{k}}$ and identity photo, ... registered by T
$■$ Bob (Verifier) authenticates Alice: Zero-knowledge protocol in 3 messages :

1. Alice chooses a random $r<n$ and a sign $u= \pm 1$; she sends $y=u \cdot r^{2} \bmod n$ to Bob.
2. Bob sends k random bits: b_{1}, \ldots, b_{k}
3. Alice computes $z:=r . s_{1}{ }^{b_{1}} \ldots . s_{k}{ }_{k}{ }^{k_{k}} \bmod n$ and sends z to Bob. Bob authenticates iff $z^{2}=+/-y . v_{1}{ }^{b_{1}} \ldots . v_{k}{ }^{b_{k}} \bmod n$.

- Remark: possible variant: Alice chooses its own modulus n

Feige-Fiat-Shamir

Truth: X=Alice or anyone else? (Output of authentication)	YES: "Authentication of Alice OK"	NO: "Authentication of Alice KO "
Case $X=$ Alice completeness)	Always	Impossible
Case $X \neq$ Alice (soundness)	Prob $=2^{-\mathrm{k}}$	Prob $=1-2^{-\mathrm{k}}$

- Completeness

- Alice is allways authenticated (error prob=0)
- Soundness
- Probability for Eve to impersonate Alice $=2^{-k}$. If t rounds are performed: $2^{-k t}$

- Zero-knowledge

- A simulation algorithm exists that provides a transcript which is indistinguishable with the trace of interaction with correct prover.

From zero-knowledge authentication to zero knowledge signature

- Only one communication: the message+signature
- The prover uses a CSPRNG (e.g. a secure hash function) to generate directly the random bits of the challenge
- The bits are transmitted to the verifier, who verifies the signature.
- Example: Fiat-Shamir signature
- Alice builds her secret key $\left(s_{1}, \ldots, s_{k}\right)$ and public key $\left(v_{1}, \ldots, v_{k}\right)$ as before.
- Let M be a message Alice wants to sign.
- Signature by Alice

1. For $i=1, \ldots$, t: chooses randomly r_{i} and computes w_{i} s.t. $w_{i}:=r_{i}^{2} \bmod n$.
2. Computes $h=H\left(M\left\|w_{1}\right\| \ldots \| w_{t}\right)$ this gives k.t bits $b_{i k}$, that appear as random (similarly to the ones generated by Bob in step 2 of Feige-Fiat-Shamir)
3. Alice computes $z_{i}:=r_{i} \cdot s_{1}{ }^{b_{n}} \ldots \ldots s_{k}^{b_{\mu}} \bmod n$ (for $i=1 . . t$);

She sends the message M and its signature: $\sigma=\left(z_{1} \ldots z_{t}, b_{11} . . b_{\text {tk }}\right)$ to Dan

- Verification of signature σ by Dan:

1. Dan computes $y_{i}:=z_{i}^{2} .\left(v_{1}{ }^{b_{n}} \ldots . . v_{k}^{b_{k}}\right)^{-1} \bmod n$ for $i=1 . . t$ A correct signature gives $y_{i}=w_{i}$
2. Computes $H\left(M,\left\|y_{1}\right\| \ldots \| y_{t}\right)$ and he verifies that he obtains the bits $b_{i k}$ in Alice's signature

Zero-knowledge vs other asymetric protocols

- No degradation with usage.
- No need of encryption algorithm.
- Efficiency: often higher communication/computation overheads in zero-knowledge protocols than public-key protocols.
- For both, provable security relies on conjectures (eg: intractability of quadratic residuosity)

Exercise

- Guillou-Quisquater zero-knowledge authentication and signature protocol.

Feige-Fiat-Shamir zero-knowledge authentication protocol

- A trusted part T (or Alice) computes a Blum integer $n=p . q ; n$ is public.
- Alice (Prover) builds her secret and public keys:
- For $\mathrm{i}=1, \ldots, \mathrm{k}$: chooses at random s_{i} coprime to n and n random bits d_{i}
- Compute $\mathrm{v}_{\mathrm{i}}:=\left(\mathrm{s}_{\mathrm{i}}^{2}\right) \bmod \mathrm{n}$. [$\mathrm{NB} \mathrm{v}_{\mathrm{i}}$ ranges over all square coprime to n$]$
$(-1)^{d} v_{\mathrm{i}}=$ quadratic residue that admits $\mathrm{s}_{\mathrm{i}}=$ modular square root
- Secret key: $\mathrm{s}_{1}, \ldots, \mathrm{~s}_{\mathrm{k}}$. (Note that $\mathrm{v}_{\mathrm{i}} \cdot \mathrm{si}_{\mathrm{i}}^{2}=(-1)^{\mathrm{d}}=1$ or $-1 \bmod \mathrm{n}$)
- Public key: $\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{k}}$ and identity photo, \ldots registered by T
- Bob (Verifier) authenticates Alice: Zero-knowledge protocol in 3 msgs :

1. Alice chooses a random value $r<n$. She sends $y:=r^{2} \bmod n$ to Bob.
2. Bob sends k random bits: b_{1}, \ldots, b_{k}
3. Alice computes $z:=r$. $s_{1}{ }^{b_{1}} \ldots . s_{k} b_{k} \bmod n$ and sends z to Bob.

Bob computes $w=z^{2} \cdot v_{1}{ }^{b_{1}} \ldots \ldots . v_{k}{ }^{b_{k}}$ and authenticates iff $y=w$ or $y=-w \bmod n$.

- Soundness and completeness, perfectly zero knowledge
- Probability for Eve to impersonate Alice $=2^{-k}$. If t rounds are performed: $2^{-\mathrm{kt}}$
- Alice always authenticated (error prob=0)
- Zero knowledge: transcript

IP and NP

Complexity classes

Decision problems (1 output bit: YES/ NO)

Deterministic polynomial time:

- P : both Yes/No sides
- NP : certification for the Yes side
- co-NP: certification for the No side

Randomized polynomial time:

- BPP: Atlantic City: prob(error) < 1/2
- RPP: Monte Carlo: prob(error YES side)=0; prob(error NO side)<1/2
- ZPP: Las Vegas: prob(failure)<1/2 but prob(error)=0

IP Interactive proof

- Verifier: randomized polynomial time
- Prover: interactive (dynamic), unbound power
- $F(x)=$ YES $=>$ it exists a correct prover Π such that $\operatorname{Prob}[\operatorname{Verifier~}(\Pi, x)$ accepts] $=1$;
- $F(x)=N O=>$ for all prover Π :
$\operatorname{Prob[}$ Verifier (Π, x) accepts] < 1/2.
- Theorem: IP = PSPACE (interaction with randomized algorithms helps!)

PCP: Probabilistiic Checkable Proofs (static proof)

- PCP(r, q) : the verifier uses random bits and reads q bits of the proof only.
- Theorem: NP=PCP($\log n, O(1))$

\#3-SAT in IP

- Arithmetization in F_{2} : each clause c has a poly. $Q(c)$
- $Q(\operatorname{not}(x))=1-x$
$Q(x$ and $y)=x . y$
- $Q(x$ or $\operatorname{not}(y)$ or $z)=Q(\operatorname{not}(\operatorname{not}(x)$ and y and $\operatorname{not}(z))=1-((1-x) \cdot y \cdot(1-z))$
- Let $\mathrm{F}=\mathrm{c}_{1}$ and \ldots and c_{m} a 3-SAT CNF formula, and $g\left(X_{1}, \ldots, X_{n}\right)=Q\left(c_{1}\right) \cdot Q\left(C_{2}\right) . \ldots . Q\left(c_{m}\right): \operatorname{deg}(g) \leq 3 m$
Then \#F $=\Sigma_{\mathrm{b}_{1}=0,1} \ldots \Sigma_{\mathrm{b}_{n}=0,1} \mathrm{~g}\left(\mathrm{~b}_{1}, \ldots, \mathrm{~b}_{\mathrm{n}}\right)$
- Since \#F $\leq 2^{n}$, for $p>2^{n}$, (\#F=K) is equivalent to (\#F=K mod p)
- To limit to a polynomial number of operations, computation is performed mod a prime p in $2^{n} . .2^{n+1}$ (provided by prover and checked by verifier)
- Let $h_{n}\left(X_{n}\right)=\Sigma_{b_{1}=0,1} \ldots \Sigma_{b_{n-1}=0,1} g\left(b_{1}, b_{2}, \ldots, b_{n-1}, X_{n}\right)$:
h_{n} is an univariate polynomial (in X_{n}) of degree $\leq m$

\#3-SAT: interactive polynomial proof

Verifier

input: $F\left(X_{1}, \ldots, X_{n}\right)=\left(c_{1}\right.$ and \ldots and $\left.c_{m}\right)$
K an integer; let $\mathrm{g}(\mathrm{x})=\Pi_{\mathrm{i}=1, \mathrm{n}} \operatorname{Pol}\left(\mathrm{c}_{\mathrm{i}}\right)$
Accepts iff convinced that \#F = K.
Preliminar receive p, check p is prime in $\left\{2^{n}, 2^{2 n}\right\}$
Compute $g\left(X_{1}, \ldots, X_{n}\right)=\Pi_{i=1, n} \operatorname{Pol}\left(c_{i}\right) \operatorname{deg}(g) \leq 3 m$
Check K= $\Sigma_{\mathrm{X} 1=0,1} \ldots \Sigma_{\mathrm{Xn}=0,1} \mathrm{~g}\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right)[\mathrm{p}]$:

1. If $n=1$, if $(g(0)+g(1)=K)$ accept ; else reject. If $n \geq 2$, ask $h_{n}(X)$ to P.
2. Receive $s(X)$ of degree $\leq m$.

Compute $v=s(0)+s(1)$; if $(v \neq K)$ reject. Else choose $r=r a n d o m(0, \ldots p-1)$; let $K_{n}=s(r)$ and use the same protocol to check

$$
K_{n}=\Sigma_{X 1=0,1} \ldots \Sigma_{X n-1=0,1} g\left(X_{1}, \ldots, X_{n-1}, r\right)[p]
$$

Prover

Preliminar: sends p prime in $\left\{2^{n}, 2^{2 n}\right\}$
2. Send $s(X)$; [note that if P is not cheating, $\left.s(X)=h_{n}(X)\right]$

Theorem: This is a sound and complete, polynomial time randomized interactive proof of \#3-SAT.
Moreover, prob(V rejects $\mid K \neq \# F) \geq(1-m / p)^{\wedge} n$, also prob(error) $\leq 1-(1-m / p)^{\wedge} n \leq m n 2^{-n}$.

The End.

What have we learned?

- Perfect secrecy: the ciphertext has always the same distribution, it provides no information on the plaintext.
- Eg: OTP
- Computational security :
- Based on the assumption that a one-way function exists.
- So that $P \neq N P$
- One way-function and crypto hash functions
- Compression + extension scheme (with padding)
- Sponge construction
- Encryption from one-way function with short keys (of length $\mathrm{n}^{-\mathrm{c}}$) to encrypt long messages (of length n)
- One-way from block cipher
- Secure pseudo-random generator
- Indistinguishability from true random (deskewing)
- Left and right unpredicability
- Interactive zero knowledge protocol
- Soundness + completness
- Zero-knowledge: simulation that provides a transcript indistinguighable from the correct interaction!

