Chapter
Secure Random Number Generator

Jean-Louis Roch, Grenoble University, M2-SCCI/SECR

Anyone who considers arithmetical
methods of producing random digits is,
of course, in a state of sin.

-- John Von Neumann, 1951

References:

— NIST Special Publication 800-90:
« Recommendation for Random Number Generation
Using Deterministic Random Bit Generators (Revised) »,
Elaine Barker, John Kelsey. March 2007

— Handbook of Applied Cryptography.
Alfred J. Menezes, Paul C. van Oorschot and Scott A. Vanstone. August 2001

— + web refs.

Cryptographic Secure Pseudo-
Random Number Generator

* RNG, PRNG and CSPRNG
— Pseudorandom bit generation
— Statistical tests
» De-skewing techniques PRNG

— Example Deterministic Parallel Random-Number
Generation for Dynamic-Multithreading Platforms

» Cryptographically secure pseudorandom bit
generation
— Security proof

Random Bit/Number Generator

+ RBG: a device or algorithm which outputs a sequence of statistically
independent and unbiased binary digits.
* Hardware-based
— elapsed time between emission of particle during radioactive decay
— thermal noise from a semiconductor diode or resistor;
— the frequency instability of a free running oscillator;
— air turbulence within disk drive which causes random fluctuations
— drive sector read latency times
— sound from a microphone or video input from a camera.
+ Software-based
— the system clock
— elapsed time between keystrokes or mouse movement
— content of input/output buffers
— user input
— operating system values such as system load and network statistics

* No physical RNG normalized in 2011 (but patents)

Pseudo Random Bit/Number
Generator

+ PRBG
— Input: a seed i.e. a truly random input sequence of length k (the seed)
» Use a physical RNG to initialize the ssinon 0 pts eed (human, date, pid, ...)
— Output: a deterministic sequence of length | >> k that “seems random”

* An adversary cannot efficiently distinguish between sequences of PRBG and truly
RBG of length I.

Seed

*—© *—0—0—0—©
— Tail > Cycle Length —

Period

PRNG
Iteration and random sequence

« S =finite set of states; r = #bits generated at each step.
* ITERATION (secret) RANDOM SEQUENCE (output)
f:S$->8 Bit extraction function g: S -> {0,1}"
— Seed s,

initial state = [user+ reseed]

- s4:=1(sg) ry:=g(sy)
- sp:=1(sq) rp :=g(s,)
- s = 1(s) M1 7= 9(Sq41)

Element rank k in the sequence : 1, := g (& (s,))

Example [BBS]: S ={0, ..., n-1}
— f(x) =x2mod n - g(x) = LSB(x) (i.e. x mod 2)

Pseudo Random Bit/Number
Generator

PRBG

— Input: a seed i.e. a truly random input sequence of length k (the seed)
* Use a physical RNG to initialize the seed (human, date, pid, ...)

— Output: a deterministic sequence of length | >> k that “seems random”

* An adversary cannot efficiently distinguish between sequences of PRBG and truly
RBG of length I.

PRBG can be used to generate random numbers (ie PRNG)
— Ex. :RNG of random integers in the interval [0; n] can be built from a RBG
+ Use RBG to generate |Ig n] + 1 bits and convert to integer (discard if >n)

Example: Linear Congruential Generator LCG

— Parameters: mand a, b, x, in {0, m-1}
Xneq = aX, +bmodm (x,is the seed)

— Eg: Unix PRNG: rand() with seed initialized by srand() ; rand48(), ...)

Example: mid-square method

« proposed by von Neumann in the 1940’s.
— starts with a seed,

— the seed is squared and the middle digits become the
random number.

 Example:

— X, = 5497

— X2 = (5497)2 = 30,217,009 = X, = 2170
- R,=0.2170

— X,2=(2170)2 = 04,708,900 = X, = 7089
« R,=0.7089

* Problems: difficult to assure that the sequence will not
degenerate over a long period of time

— zeros once they appear are carried in subsequent numbers
(try 5197 as a seed[})

* Definitions :

— a (P)RBG passes all polynomial-time statistical tests if no poly algorithm
can distinguish between output sequence and truly random sequence of
the same length with probability significantly greater that 2

— a PRBG is a CSPRBP iff it passes the next-bit test, i.e.
Given first k bits in input, no polynomial-time algorithm can predict
the (k + 1)st bit with probability significantly greater than %
+ Also called right-unpredictable or forward unpredictable

« Similarly previous-bit test, or left-unpredictable or backward-unpredictable

Statistical tests [FIPS 140-1]

« Why: impossible to give a mathematical proof that a generator
is indeed a random bit generator;
-> the tests help detect certain kinds of weaknesses the
generator may have.

* How: by taking a sample output sequence of the generator and
subjecting it to various statistical tests.
— No risk “0”: “accepted’ should be replaced by “not rejected”
— Significance Level: a=type 1 error; = type 2 error (eg = 0.001)

* Five Basic Test (Using Chi-square analysis)
— Frequency Test: # of 0 and 1
— Serial Test: # of 00, 01, 10, 11
— Poker-k Test: # of each k-bit string
— Run Test: comparing with expected run length
— Autocorrelation test: correlations between s and shifted version

Common classical quantitative tests
See: Exploratory Data Analysis, NIST/SEMATECH e-Handbook of
Statistical Methods, http://www.itl.nist.gov/div898/handbook/

[http://www.itl.nist.gov/div898/handbook/eda/section3/eda35.htm]

* Location
— Measures of Location)
— Confidence Limits for the Mean and One Sample t-Test:,
— Two Sample t-Test for Equal Means
— One Factor Analysis of Variance ‘
— Multi-Factor Analysis of Variance i 3 et oo

+ Scale (or variability or spread) | .. ~"™" L
— Measures of Scale .]
— Bartlett's Test RN VI T TR T

&8 §
&
m
El

: 2
2
B
£
H

_ Chi-Square TeSt EE c.ucm...pf,uuuusens %g;‘ruxﬂuuumu:izmmmluua
— F-Test - + I
— Levene Test Tt bt
« Skewness and Kurtosis N (Yi—Y)>

— Measures of Skewness and Kurtosis skewness = v — 1)

Randomness
— Autocorrelation
— Runs Test

Distributional Measures

— Anderson-Darling Test

— Chi-Square Goodness-of-Fit Test
— Kolmogorov-Smirnov Test

Outliers

— Detection of Outliers

— Grubbs Test

— Tietjen-Moore Test

— Generalized Extreme Deviate Test

2-Level Factorial Designs
— Yates Analysis

Some random number test suites

NIST test suite of random number generators:
[hitp://csrc.nist.gov/groups/ST/toolkit/rng/batteries_stats_test.html]

Diehard tests [G. Marsaglia]

[http://www.stat.fsu.edu/pub/diehard/]

Dieharder [R. Brown, D. Eddelbuettel, D. Bauer,
[http://www.phy.duke.edu/~rgb/General/dieharder.php]

TestUO1[P. L’ Evuyer, R. Simard] 2009
[http://www.iro.umontreal.ca/~simardr/testu01/tu01.html]

— TestUO1: A C Library for Empirical Testing of Random Number Generators,

P. L'Ecuyer and R. Simard,

ACM Transactions on Mathematical Software, Vol. 33, 4, article 22, 2007.

Cryptographic Secure Pseudo-
Random Number Generator

RNG, PRNG and CSPRNG

— Pseudorandom bit generation

— Statistical tests

De-skewing techniques PRNG

— Example Deterministic Parallel Random-Number
Generation for Dynamic-Multithreading Platforms

Cryptographically secure pseudorandom bit
generation

— Security proof

De-skewing techniques

« A PRNG may be defective:

output bits may be biased or correlated

De-skewing techniques: to generate “truly” random bit
sequences from the output bits of a defective
generator

— To suppress the biais (von Neumann technique)

— To decrease correlation (combination of 2
sequences) (eg Vitany (d,e)-decorrelation)

In practice: to pass sequence whose bits are biased
or correlated through

— a hash function (eg SHA-1/2)
— or a block cipher

Deterministic Parallel Random-Number Generation
for Dynamic-Multithreading Platforms

Charles E. Leiserson, Tao B. Schardl, and Jim Sukha

MIT Computer Science and Artificial Intelligence Laboratory

PPoPP 2012

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 1/32

Pedigrees

A pedigree is a unique, processor-oblivious identifier for a strand.

Simple Idea: We can uniquely identify strands by their location in the
invocation tree.

Example: fib(4) @ The invocation tree of a
deterministic,
processor-oblivious program
is deterministic and
processor-oblivious.

@ The pedigree J(s) of a strand
S can be viewed as the path
in the invocation tree from
the root to s.

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 19/32

Pedigrees

A pedigree is a unique, processor-oblivious identifier for a strand.

Simple Idea: We can uniquely identify strands by their location in the
invocation tree.

Example: fib(4) @ The invocation tree of a
deterministic,
processor-oblivious program
is deterministic and
processor-oblivious.

@ The pedigree J(s) of a strand
s can be viewed as the path
in the invocation tree from
the root to s.

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 19/32

Pedigrees

Pedigrees

A pedigree is a unique, processor-oblivious identifier for a strand.

Simple Idea: We can uniquely identify strands by their location in the
invocation tree.

Example: fib(4) @ The invocation tree of a
deterministic,
processor-oblivious program
is deterministic and
processor-oblivious.

@ The pedigree J(s) of a strand
S can be viewed as the path
in the invocation tree from

J=(0,0,1,0) the root to s.

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 19/32

Pedigrees

A pedigree is a unique, processor-oblivious identifier for a strand.

Simple Idea: We can uniquely identify strands by their location in the
invocation tree.

Example: fib(4) @ The invocation tree of a
deterministic,
processor-oblivious program
is deterministic and
processor-oblivious.

@ The pedigree J(s) of a strand
s can be viewed as the path
in the invocation tree from
the root to s.

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 19/32

Pedigrees

Pedigrees

A pedigree is a unique, processor-oblivious identifier for a strand.

Simple Idea: We can uniquely identify strands by their location in the
invocation tree.

Example: fib(4) @ The invocation tree of a
deterministic,
processor-oblivious program
is deterministic and
processor-oblivious.

@ The pedigree J(s) of a strand
S can be viewed as the path
in the invocation tree from

J=1(0,2) the root to s.

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 19/32

Outline

© The DoTMIXx DPRNG

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 23/832

The DoTMIx DPRNG

DOTMix hashes a pedigree in two stages.

@ Compression: Convert the pedigree into a single word while
preserving uniqueness.

@ Mixing: Remove correlation between the compressed pedigrees.

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 24 /32

DOTMIX compression

Dot-product compression: Compute the dot product of the pedigree
with a vector of random odd 64-bit integers.

Theorem: For any randomly chosen vector I of odd integers and any
two distinct pedigrees J and J', the probability that ' - J =T - J' is at
most 1,263,

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 25/32

Efficacy of DOTMIX

1
0.999999

0.999 -

Collision probability

0.01

0.001

0.000001 |- | | ‘ | | 1
0 | . | I | I | I |

1 100 10000 1e+06 1e+08 1e+10 1e+12

Number of random numbers

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 26 /32

DOTMIX mixing

DoTMix(r) “randomly” permutes the result of the compression function
using r iterations of the following “mixing” routine.

RC6 mixing: Let X; designate the result of the ith round of mixing,
where Xj is the result of the compression function.

1 for(inti=0;i<r;++i){

2 Y = X; - (2X; + 1) mod 264,

3 Xir1 = swap left and right halves of Y;
4}

One can show that this function is bijective [CRRY98], so mixing does
not generate further collisions.

Thanks to Ron Rivest for suggesting this mixing function.

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 27 /32

Dieharder statistical tests

I Failed
100 -~ 1 =1 Poor
1 Weak
I Passed
80 - -
[%)]
@
s
5 60 - -
9]
Q0
E 40 .
=2
20 - -
0

0) 0) 0) 0) 0) 0)
[®) [®) [®) [®) [®) [®)

b A A e 4, A
% B T R R T

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 28/32

Examples of normalized PRNG

* ANSI X9.17 generator

— Input: m, a random seed s, Triple-DES encryption key k.

— Output: m pseudorandom 64-bit strings x4, X, ... , X,
« Let| = E,(D) with D=64-bit date/time (finest available resolution)
 Fori=l. m{x,<E(1®s), s<E((x;®I);};
* Return(xy, Xy, ... , Xp)

+ FIPS 186 for DSA

— Input an integer m and a 160 prime number q
— Output: m pseudorandom numbers k,... , k., in {0, .., g-1}
— Parameters: (b,G) = (160, DES) or (b,G) =(160..512, SHA1)
* Let s be a secret random seed with b bits
* Let t= 160 bits constant t= efcdab89 98badcfe 10325476 c3d2e1f0 67452301
* Fori=1..m{k <G(t,s)modq;s < (1+s+k)mod2°;};
* Return(ky, ..., k)

Cryptographic Secure Pseudo-
Random Number Generator

* RNG, PRNG and CSPRNG
— Pseudorandom bit generation
— Statistical tests
» De-skewing techniques PRNG

— Example Deterministic Parallel Random-Number
Generation for Dynamic-Multithreading Platforms

» Cryptographically secure pseudorandom bit
generation
— Security proof

Some Provable CSPRNG

[Ben Lynn, http://crypto.stanford.edu/pbc/notes/crypto/prng.xhtmil]

* RSA Generator :
— Primesp,q; n=p.gand®=(p-1)(g-1);e(3or...)
- X X4® mod n ; output: b,=x, mod 2 [ie LSB(x,)]

* Blum-Micali Generator :
— Prime p, g generator of Z/pZ*;
— X = g% mod p ; output: b= 1if x, = (p-1)/2; else 0 [ie HSB(x,)]

* Blum-Blum-Shub (BBS) Generator:
— Primes p, q of the form 4m+3 ; n=p.q
— X= X42 mod n; output: LSB(x,)

Blum-Blum-Shub (BBS) CSPRNG

* Primes p, q of the form 4m+3; n=p.q
« seed s prime to n (why?); x,= s? mod n;
* X.= X412 mod n; output: LSB(x,) = x, mod 2

Table 5.2 Example Operation of BBS Generator

s Xi Bi s Xi B;i
0 20749 11 137922 0
1 143135 1 12 123175 1
2 177671 1 13 8630 0
3 97048 0 14 114386 0
4 89992 0 15 14863 1
5 174051 1 16 133015 1
6 80649 1 17 106065 1
7 45663 1 18 45870 0
8 69442 0 19 137171 1
9 186894 0 20 48060 0
10 177046 0

Security proof: example

* Theorem:
If it is impossible to compute [... one way function ...],
then the PRNG is computationally secure
— Proof of left-unpredicatbility (previous bit)
— Proof of right-unpredicatbility (next bit)

— By polynomial time reduction from computation of s
» To inverse a one-way function by using an Oracle RightPrediction

» General scheme of a polynomial-time reduction

» AlgoReductionF (y) // outputs x such that y=F(x), where
/l F is conjectured one-way
{

Let G=PRNG built fromy ;
for (by,=0..1) // Speculation loop with fixed b,: polynomial time log®")|x|

/I Use oracle to predict log®™"|x| bits

... b; = OracleRightPrediction(by, ..., bi4) ;
X= ... ; /l compute x

z=F(x) ;

if (z==y) return x;

}

» May be extended to O(loglog |x|) bits extracted :
— #speculation loop=20(oglog IX) = O(log®")]x|): yet polynomial time
Ex: BBS, RSA provable secure with O(loglog n) bits at each iteration

— Constant of O() : matters a lot in practice!!
=>Fine analysis of complexity required!

Example: Blum-Micali is CSPRNG

Blum-Micali: in F,, with g primitive element mod p
f(x) = g* mod p ; hardcore bit: b = HSB(x)
BM generator: X0 = seed (or reseed)
Xk= ng-1 mod P ;
b.=1if x4, 2 (p-1)/2; else O [ie HSB(x)]
Theorem: if there exists A, 1 <A<p, such that

it is impossible to compute o such that g* = A mod p
then BM generator is resistant to right and left prediction.

Proof: by reduction:
DiscreteLog <, PreviousBitBM <, NextBitBM

Assumption (f one-way permutation distinguishable in polynomial time):
it exists N = log®™" p such that for all s=(b,, ..., by) in {0,1}N,
there exists an unique seed x that generates s.

Prop. 1: PreviousBit_BM 2 DiscretelLog

OraclePreviousBitBM (b;, b,,4, ..., b,) returns b, ,.
— From state=x, PLOG_HSB (x) returns 1 iff (DiscreteLogg x 2 (p-1)/2).

— PLOG_HSB(x) <, PreviousBitBM

» AlgoReductionPLOG_HSB(x)
{ for (yo = x, i=1;i<=log p; ++i) {y; =g b= (y12(p-1)2)?1:0;}
return b,= OraclePrevioustBitBM (by, b,, ..., b)) ; }
* Lower Bound: PreviousBitBM = BitPredictionBM(x) — O(log3 p)

An Oracle for BitPredictionBM enables to compute o such that
A = g® mod p in polynomial time [thus breaks discrete log] :

— AlgoReductionDiscreteLog(A)
{ for(k=log, p,i=0;i<=k;i+=1)
{ bi = OraclePLOG_HSB(A2} mod p); res = res + bi * (p-1)/2™*"; }
return . =res ; }
- Lower Bound: PLOG_HSB = (log, p)'.DiscreteLog — O (log? p)

Thus: DiscreteLog <, PLOG_HSB <, PreviousBitBM
Can be extended to randomized attack.

Prop. 2: NextBit BM =, DiscretelLog

» Sketch of the Proof: if Eve can predict the next bit,
then she can compute the previous bit !

* PreviousBitBM =, NextBitBM
Note that OracleNextBitBM (b;, b4, ... , b,) returns by, .
Proof by reduction:

AlgoReductionPreviousBitBM(b;, b;,4, ... , b,)
{ /I Returns b, ; which is either 0 or 1: just speculate to find the good value !

for (j=1; true ; j+=1)

{ by, =OracleNextBitBM(b;,, by, ... , by;q) ; // the correct value of by,
hypO = OracleNextBitBM (0, b;, bi,;, ..., by.;4); // value if previous bit = 0
hyp1 = OracleNextBitBM (1, b;, b4, ..., by..4); // value if previous bit = 1
if (hypO # hyp1) // Then we know the value of the previous bit b, ;!

{ if (by;=hypO)return O; else return 1 ;

} b}
* Finally:
DiscreteLog <, PLOG_HSB <, PreviousBitBM <, NextBitBM

Remark: extracting, at each step, loglog p bits instead of 1 is
provably SecCure. [since loglog p bits can be speculated in polynomial time]

Security of RSA Generator

+ RSA - PRNG:
— Primesp,q; n=p.gand®=(p-1)(q-1);e(3or...)
— X, = initial seed (prime to n)
— X=X mod n; output: b, 4=X,,, mod 2 [ie LSB(x,)]

« RSA Hypothesis. Let M proportional to N%e,
For x in {1,...,M}, the distribution induced by x® mod n cannot be
distinguished in polynomial time from the uniform distribution on

{1, ..., n}.

» Under RSA hypothesis,
RSA-PRNG is cryptographically secure.

Example of PRNG based on
block cipher

Counter with
Period N

» Block cipher : c
— secret key and counter mode
— The counter mode can be replaced [IZH—
by a RNG.

Master Key

»| Encryption
Km Algorithm

l

X;=EKm [C+1]

* Provable secure PRNG under the black box model

ANSI X9.17 CSPRNG

[Cadence / Document Number:I-IPA01-0087-USR, 2008]

K, and K, are two keys for 3DES e
¥
DT; EDE
DT, is a 64 bit representation N 2 ¥
of current system date and time l/ N EDE >Vii
4
¥
Vi =C> » EDE
+V,; =initialization value
(initially, V, =seed) |
R;

*R; is the Random Number generated

V.., is the initialization value for the next iteration

Intel Random Number Generator

« cf Intel Random Number Generator (B. Jun, P. Kocher, 1999)
— Intel 80802 Firmware Hub chip included a hardware RNG

+ optional on 840 chipset, not included in current PCs

— Uses two oscillators (hardware)
» one fast, one slow, the slow is modulated by a thermal noise from two diodes)

— Output debiaised using Von Neumann decorrelation step

. . . Starting state (64-bytes = 16 words)
— Finally, mix process using SHA1:

» 32 bits from the RNG are input to a L "))
SHA1 mixer, that provides the

final 32 bits output. Hash / Inputto) Copy DisZard
(SHA-1) '@x procesy‘

1 I 1
.

HEREEEEE []

New state
v
(7 RNG
‘_ output _/‘

Some readings

« RFC1750.ixt Randomness Recommendations for Security
(D. Eastlake, S. Crocker, J. Schiller, 1994)

Is there any hope for strong portable randomness in the future?
There might be. All that's needed is a physical source of
unpredictable numbers. A thermal noise or radioactive decay
source and a fast, free-running oscillator would do the trick
directly. This is a trivial amount of hardware, and could easily
be included as a standard part of a computer system's
architecture... All that's needed is the common perception
among computer vendors that this small additional hardware
and the software to access it is necessary and useful.
— Eastlake, Crocker, and Schiller , “RFC 1750: Randomness
Recommendations for Security.” IETF Nemwork Working
Group, December 1994,

Back slides

Consider this simple idea for constructing a PRNG: seed the state with some key and pick some encryption algorithm such as DES. Then
each iteration, encrypt the current state and output a few bits of it. Intuitively, this seems like it should produce random-looking bits.

The Blum-Micali scheme mimics this process, but on a firm theoretical foundation, by using hardcore bits.

Let f:{0,1}" — {0,1)" be a permutation and B:{0,1}" — {0,1} be a (t, €)-hardcore bit of f. Define Gy, : {0,1}" — {0,1}™ as follows:

Pick random seed S € {0,1)". Fori =1 to m 1. Output h; = B(S) 2. § — f(5)

Theorem [Blum-Micali '81]: If B is (t, €)-hardcore then Gy is & (t - mTIME(f), e m)-PRNG.

Proof: First we devise notation to record the reverse of a bit string. Define GI‘;M[S) = [Gpu(S))%, that is, if Gyy(S) = by.br, then G;M[S) = bpmobs.
Then note that if G;“ is a (t, €)-PRNG, then Gy is also a (t, €)-PRNG.

Now suppose G:v is not a (t - mTIME(f), m€)-PRNG. Then there exists a (t - mTIME(f)) algorithm 4, and 0 < i <m such that

PrAGE () 11.:) =G5 () 1]21/2+€
We shall build an algorithm A" that predicts B(x) given f(x).
Let S € {0,1}" and define y = f™'(5). Then

Gh) = [BUTS) BUT) - BU™)

[BUF). - BU)

Algorithm A’ acts as follows. Given z= f(y),
1. Compute T(2) = [B(f*(2)), .. B(2)]
2. Output A(T(z2)).
Note that TIME(A") = t. Then we wish to show that
PriA'(f(yN) =B(y) | y = {01}"]21/2+€
This follows since f is @ permutation and hence the distribution (T, | y — {0,1})", z = f(y)} is identical to the distribution (G:M[S) |1 1S ={01}").

This is a contradiction because B is (t, €)-hardcore for f.

Examples of BM generators

= Dlog generator: p = 1024-bit prime, g € Z; a generator. Let f: {1,..,p-1} — {1, ., p- 1}, f(x) = g*mod p. We know MSB(x) = {0ifx < p /2, 1ifx
>p/2is a (t, €)-hardcore bit of f if no tn* s e-time discrete log algorithm exists. Thus we have a PRNG assuming Dlog is hard.
= Blum-Blum-Shub (BBS): N = pq 1024-bit, p = g = 3med4. Let QRy = {x € Z | xis QR}. Then f(x) = x*mod N is a permutation of QRy.
LSB(x) is (t, €)-hardcore for f assuming no (tn? /€) factoring algorithm exists.
1. §— QRy
2. Output LSB(S)
3, § — S*(mod N)
4. Goto step 1
[BBS not (t, €)-hardcore implies LSB is not (t, € / m)-hardcore (where m is the number of output bits), which implies there exists a t(n™ /

€)-time factoring algorithm (where n =igN).]
Example: suppose no 2'%°-time factoring algorithm exists for 1024-bit numbers, and that m = 22°, Then we get that BBS is secure for ¢
Jepsilon? = 2%, e.g. BBS is a (22, 27°)-PRNG, which is not secure.

Speeding up BM
We can output one bit per application of f. Can we output more?
For Dlog it turns out that for i = 1, ., n/2 the msb_i(x) is a hardcore bit. But this is not enough. We need a notion of simultaneous security.

Definition: Let f:{0,1}" — {0,1}. Then bits B,, .., B, : {0,1}" — (0,1} are (¢, €)-simultaneously secure if {f(x), B;(x), ... By(x) | x € {0,1}} iS (¢, €)
-indistinguishable from {f(x), ry, .. 1y, | ry.ry — (0,135
The Blum-Micali Theorem remains true for simultaneously secure bits.

Best result for Dlog [Shamir-Schrift]: N = pq, f(x) = g" mod N. Then the bits in the most significant half of x are (t, €)-simultaneously secure for
f assuming no 0(t(n /€)*)-time factoring algorithms exist.

