Chapter Secure Random Number Generator

Jean-Louis Roch, Grenoble University, M2-SCCI/SECR

> Anyone who considers arithmetical methods of producing random digits is, of course, in a state of sin.
> -- John Von Neumann, 1951

References:

- NIST Special Publication 800-90:
«Recommendation for Random Number Generation Using Deterministic Random Bit Generators (Revised) »,
Elaine Barker, John Kelsey. March 2007
- Handbook of Applied Cryptography.

Alfred J. Menezes, Paul C. van Oorschot and Scott A. Vanstone. August 2001

- + web refs.

Cryptographic Secure PseudoRandom Number Generator

- RNG, PRNG and CSPRNG
- Pseudorandom bit generation
- Statistical tests
- De-skewing techniques PRNG
- Example Deterministic Parallel Random-Number Generation for Dynamic-Multithreading Platforms
- Cryptographically secure pseudorandom bit generation
- Security proof

Random Bit/Number Generator

- RBG: a device or algorithm which outputs a sequence of statistically independent and unbiased binary digits.
- Hardware-based
- elapsed time between emission of particle during radioactive decay
- thermal noise from a semiconductor diode or resistor;
- the frequency instability of a free running oscillator;
- air turbulence within disk drive which causes random fluctuations
- drive sector read latency times
- sound from a microphone or video input from a camera.
- Software-based
- the system clock
- elapsed time between keystrokes or mouse movement
- content of input/output buffers
- user input
- operating system values such as system load and network statistics
- No physical RNG normalized in 2011 (but patents)

Pseudo Random Bit/Number Generator

- PRBG
- Input: a seed i.e. a truly random input sequence of length k (the seed)
- Use a physical RNG to initialize the ssinon 0 pts eed (human, date, pid, ...)
- Output: a deterministic sequence of length I >> k that "seems random"
- An adversary cannot efficiently distinguish between sequences of PRBG and truly RBG of length I.

Seed

PRNG

Iteration and random sequence

- $S=$ finite set of states;
- ITERATION (secret)

$$
f: S \text {-> }
$$

- Seed s_{0} initial state = [user+ reseed]
$-s_{1}:=f\left(s_{0}\right)$
$-s_{2}:=f\left(s_{1}\right)$
- ...
- $\mathrm{s}_{\mathrm{i}+1}:=\mathrm{f}\left(\mathrm{s}_{\mathrm{i}}\right)$
- ...
$r=$ \#bits generated at each step.

RANDOM SEQUENCE (output) Bit extraction function g : $S->\{0,1\}^{r}$
$r_{1}:=g\left(s_{1}\right)$
$r_{2}:=g\left(s_{2}\right)$
$r_{i+1}:=g\left(s_{1+1}\right)$

- Element rank k in the sequence : $\mathbf{r}_{\mathbf{k}}:=\mathbf{g}\left(\mathbf{f}^{\mathbf{k}}\left(\mathbf{s}_{\mathbf{0}}\right)\right)$
- Example [BBS]: $\mathbf{S}=\{0, \ldots, \mathrm{n}-1\}$
$-f(x)=x^{2} \bmod n$
$-\mathbf{g}(\mathrm{x})=\operatorname{LSB}(\mathrm{x}) \quad$ (i.e. $\mathrm{x} \bmod 2)$

Pseudo Random Bit/Number Generator

- PRBG
- Input: a seed i.e. a truly random input sequence of length k (the seed)
- Use a physical RNG to initialize the seed (human, date, pid, ...)
- Output: a deterministic sequence of length l >> k that "seems random"
- An adversary cannot efficiently distinguish between sequences of PRBG and truly RBG of length I.
- PRBG can be used to generate random numbers (ie PRNG)
- Ex. :RNG of random integers in the interval [0; n] can be built from a RBG
- Use RBG to generate $\lfloor\lg \mathrm{n}\rfloor+1$ bits and convert to integer (discard if $>\mathrm{n}$)
- Example: Linear Congruential Generator LCG
- Parameters: m and a, b, x_{0} in $\{0, m-1\}$
$x_{n+1}=a \cdot x_{n}+b \bmod m \quad\left(x_{0}\right.$ is the seed)
- Eg: Unix PRNG: rand() with seed initialized by srand() ; rand48(), ...)

Example: mid-square method

- proposed by von Neumann in the 1940's.
- starts with a seed,
- the seed is squared and the middle digits become the random number.
- Example:
$-X_{0}=5497$
$-X_{0}^{2}=(5497)^{2}=30,217,009 \Rightarrow X_{1}=2170$
- $R_{1}=0.2170$
$-X_{1}^{2}=(2170)^{2}=04,708,900 \Rightarrow X_{2}=7089$
- $R_{2}=0.7089$
- Problems: difficult to assure that the sequence will not degenerate over a long period of time
- zeros once they appear are carried in subsequent numbers (try 5197 as a seed).
- Definitions :
- a (P)RBG passes all polynomial-time statistical tests if no poly algorithm can distinguish between output sequence and truly random sequence of the same length with probability significantly greater that $1 / 2$
- a PRBG is a CSPRBP iff it passes the next-bit test, i.e.

Given first k bits in input, no polynomial-time algorithm can predict the $(k+1)^{\text {st }}$ bit with probability significantly greater than $1 / 2$

- Also called right-unpredictable or forward unpredictable
- Similarly previous-bit test, or left-unpredictable or backward-unpredictable

Statistical tests [FIPS 140-1]

- Why: impossible to give a mathematical proof that a generator is indeed a random bit generator; -> the tests help detect certain kinds of weaknesses the generator may have.
- How: by taking a sample output sequence of the generator and subjecting it to various statistical tests.
- No risk "0": "accepted" should be replaced by "not rejected"
- Significance Level: $\alpha=$ type 1 error; $\beta=$ type 2 error (eg = 0.001)
- Five Basic Test (Using Chi-square analysis)
- Frequency Test: \# of 0 and 1
- Serial Test: \# of 00, 01, 10, 11
- Poker-k Test: \# of each k-bit string
- Run Test: comparing with expected run length
- Autocorrelation test: correlations between s and shifted version

Common classical quantitative tests

See: Exploratory Data Analysis, NIST/SEMATECH e-Handbook of
Statistical Methods, http://www.itl.nist.gov/div898/handbook/ [http://www.itl.nist.gov/div898/handbook/eda/section3/eda35.htm]

- Location

- Measures of Location
- Confidence Limits for the Mean and One Sample t-Test

- Two Sample t-Test for Equal Means
- One Factor Analysis of Variance
- Multi-Factor Analysis of Variance
- Scale (or variability or spread)
- Measures of Scale
- Bartlett's Test
- Chi-Square Test
- F-Test
- Levene Test

- Skewness and Kurtosis
- Measures of Skewness and Kurtosis

$$
\text { skewness }=\frac{\sum_{i=1}^{N}\left(Y_{i}-\bar{Y}\right)^{3}}{(N-1) s^{3}}
$$

- Randomness

- Autocorrelation
- Runs Test
- Distributional Measures
- Anderson-Darling Test
- Chi-Square Goodness-of-Fit Test
- Kolmogorov-Smirnov Test
- Outliers
- Detection of Outliers
- Grubbs Test
- Tietjen-Moore Test
- Generalized Extreme Deviate Test

- 2-Level Factorial Designs

- Yates Analysis

Some random number test suites

- NIST test suite of random number generators:
[http://csrc.nist.gov/groups/ST/toolkit/rng/batteries_stats_test.html]
- Diehard tests [G. Marsaglia] [http://www.stat.fsu.edu/pub/diehard/]
- Dieharder [R. Brown, D. Eddelbuettel, D. Bauer, [http://www.phy.duke.edu/~rgb/General/dieharder.php]
- TestU01[P. L’Evuyer, R. Simard] 2009 [http://www.iro.umontreal.ca/~simardr/testu01/tu01.html]
- TestU01: A C Library for Empirical Testing of Random Number Generators, P. L'Ecuyer and R. Simard,

ACM Transactions on Mathematical Software, Vol. 33, 4, article 22, 2007.

Cryptographic Secure PseudoRandom Number Generator

- RNG, PRNG and CSPRNG
- Pseudorandom bit generation
- Statistical tests
- De-skewing techniques PRNG
- Example Deterministic Parallel Random-Number Generation for Dynamic-Multithreading Platforms
- Cryptographically secure pseudorandom bit generation
- Security proof

De-skewing techniques

- A PRNG may be defective:
output bits may be biased or correlated
- De-skewing techniques: to generate "truly" random bit sequences from the output bits of a defective generator
- To suppress the biais (von Neumann technique)
- To decrease correlation (combination of 2 sequences) (eg Vitany ($(, \varepsilon$)-decorrelation)
- In practice: to pass sequence whose bits are biased or correlated through
- a hash function (eg SHA-1/2)
- or a block cipher

Deterministic Parallel Random-Number Generation for Dynamic-Multithreading Platforms

Charles E. Leiserson, Tao B. SchardI, and Jim Sukha MIT Computer Science and Artificial Intelligence Laboratory

PPoPP 2012

Pedigrees

Pedigrees

A pedigree is a unique, processor-oblivious identifier for a strand.
Simple Idea: We can uniquely identify strands by their location in the invocation tree.

Example: fib(4)

- The invocation tree of a deterministic, processor-oblivious program is deterministic and processor-oblivious.
- The pedigree $J(s)$ of a strand s can be viewed as the path in the invocation tree from the root to s.

Pedigrees

A pedigree is a unique, processor-oblivious identifier for a strand.
Simple Idea: We can uniquely identify strands by their location in the invocation tree.

Example: fib(4)

- The invocation tree of a deterministic, processor-oblivious program is deterministic and processor-oblivious.
- The pedigree $J(s)$ of a strand s can be viewed as the path in the invocation tree from the root to s.

Pedigrees

Pedigrees

A pedigree is a unique, processor-oblivious identifier for a strand.
Simple Idea: We can uniquely identify strands by their location in the invocation tree.

Example: fib(4)

$$
J=\langle 0,0,1,0\rangle
$$

- The invocation tree of a deterministic, processor-oblivious program is deterministic and processor-oblivious.
- The pedigree $J(s)$ of a strand s can be viewed as the path in the invocation tree from the root to s.

Pedigrees

A pedigree is a unique, processor-oblivious identifier for a strand.
Simple Idea: We can uniquely identify strands by their location in the invocation tree.

Example: fib(4)

$$
J=\langle 1,1,0\rangle
$$

- The invocation tree of a deterministic, processor-oblivious program is deterministic and processor-oblivious.
- The pedigree $J(s)$ of a strand s can be viewed as the path in the invocation tree from the root to s.

Pedigrees

Pedigrees

A pedigree is a unique, processor-oblivious identifier for a strand.
Simple Idea: We can uniquely identify strands by their location in the invocation tree.

Example: fib(4)

$$
J=\langle 0,2\rangle
$$

- The invocation tree of a deterministic, processor-oblivious program is deterministic and processor-oblivious.
- The pedigree $J(s)$ of a strand s can be viewed as the path in the invocation tree from the root to s.

Outline

(1) The DPRNG Problem

(3) The DotMix DPRNG

4 Concluding Remarks

The DotMix DPRNG

DotMix hashes a pedigree in two stages.
(1) Compression: Convert the pedigree into a single word while preserving uniqueness.
(2) Mixing: Remove correlation between the compressed pedigrees.

DotMix compression

Dot-product compression: Compute the dot product of the pedigree with a vector of random odd 64-bit integers.

Theorem: For any randomly chosen vector Γ of odd integers and any two distinct pedigrees J and J^{\prime}, the probability that $\Gamma \cdot J=\Gamma \cdot J^{\prime}$ is at most $1 / 2^{63}$.

Efficacy of DotMix

DotMIx mixing

DotMix (r) "randomly" permutes the result of the compression function using r iterations of the following "mixing" routine.

RC6 mixing: Let X_{i} designate the result of the i th round of mixing, where X_{0} is the result of the compression function.

```
for (int i=0; i<r;++i){
    Y= Xi}\cdot(2\mp@subsup{X}{i}{}+1)\operatorname{mod}\mp@subsup{2}{}{64}
    Xi+1}=\mathrm{ swap left and right halves of Y;
}
```

One can show that this function is bijective [CRRY98], so mixing does not generate further collisions.

Thanks to Ron Rivest for suggesting this mixing function.

Dieharder statistical tests

Examples of normalized PRNG

- ANSI X9.17 generator
- Input: m, a random seed s, Triple-DES encryption key k.
- Output: m pseudorandom 64-bit strings $x_{1}, x_{2}, \ldots, x_{m}$
- Let I $=\mathrm{E}_{\mathrm{k}}(\mathrm{D})$ with $\mathrm{D}=64$-bit date/time (finest available resolution)
- For $\mathrm{i}=1$.. $\mathrm{m}\left\{\mathrm{x}_{\mathrm{i}} \leftarrow \mathrm{E}_{\mathrm{k}}(\mathrm{I} \oplus \mathrm{s})\right.$; $\mathrm{s} \leftarrow \mathrm{E}_{\mathrm{k}}\left(\mathrm{x}_{\mathrm{i}} \oplus \mathrm{I}\right)$; \};
- Return $\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{m}}\right)$
- FIPS 186 for DSA
- Input an integer m and a 160 prime number q
- Output: m pseudorandom numbers $\mathrm{k}_{1}, \ldots, \mathrm{k}_{\mathrm{m}}$ in $\{0, . ., \mathrm{q}-1\}$
- Parameters: $(b, G)=(160, D E S)$ or $(b, G)=(160 . .512, S H A 1)$
- Let s be a secret random seed with b bits
- Let $t=160$ bits constant $t=$ efcdab89 98badcfe 10325476 c3d2e1f0 67452301
- For $\mathrm{i}=1 . . \mathrm{m}\left\{\mathrm{k}_{\mathrm{i}} \leftarrow \mathrm{G}(\mathrm{t}, \mathrm{s}) \bmod \mathrm{q} ; \mathrm{s} \leftarrow\left(1+\mathrm{s}+\mathrm{k}_{\mathrm{i}}\right) \bmod 2^{\mathrm{b}}\right.$; \};
- Return $\left(\mathrm{k}_{1}, \ldots, \mathrm{k}_{\mathrm{m}}\right)$

Cryptographic Secure PseudoRandom Number Generator

- RNG, PRNG and CSPRNG
- Pseudorandom bit generation
- Statistical tests
- De-skewing techniques PRNG
- Example Deterministic Parallel Random-Number Generation for Dynamic-Multithreading Platforms
- Cryptographically secure pseudorandom bit generation
- Security proof

Some Provable CSPRNG

[Ben Lynn, http://crypto.stanford.edu/pbc/notes/crypto/prng.xhtml]

- RSA Generator :
- Primes $p, q ; n=p . q$ and $\Phi=(p-1)(q-1) ; e(3$ or $\ldots)$
$-x_{k}=x_{k-1}{ }^{e} \bmod n$; output: $b_{k}=x_{k} \bmod 2\left[i e \operatorname{LSB}\left(x_{k}\right)\right]$
- Blum-Micali Generator :
- Prime p, g generator of $Z / p Z^{*}$;
$-x_{k}=g^{x-1} \bmod p$; output: $b_{k}=1$ if $x_{k} \geq(p-1) / 2$; else 0 [ie $\operatorname{HSB}\left(x_{n}\right)$]
- Blum-Blum-Shub (BBS) Generator:
- Primes p, q of the form $4 m+3 ; n=p . q$
$-x_{k}=x_{k-1}^{2} \bmod n$; output: $\operatorname{LSB}\left(x_{k}\right)$

Blum-Blum-Shub (BBS) CSPRNG

- Primes p, q of the form $4 m+3$; $n=p . q$
- seed sprime to $n(w h y ?) ; x_{0}=s^{2} \bmod n$;
- $x_{k}=x_{k-1}{ }^{2} \bmod n$; output: $\operatorname{LSB}\left(x_{k}\right)=x_{k} \bmod 2$

Table 5.2 Example Operation of BBS Generator

s	X_{i}	$\mathrm{~B}_{i}$
0	20749	
1	143135	1
2	177671	1
3	97048	0
4	89992	0
5	174051	1
6	80649	1
7	45663	1
8	69442	0
9	186894	0
10	177046	0

s	X_{i}	$\mathrm{~B}_{i}$
11	137922	0
12	123175	1
13	8630	0
14	114386	0
15	14863	1
16	133015	1
17	106065	1
18	45870	0
19	137171	1
20	48060	0

Security proof: example

- Theorem:

If it is impossible to compute [... one way function ...], then the PRNG is computationally secure

- Proof of left-unpredicatbility (previous bit)
- Proof of right-unpredicatbility (next bit)
- By polynomial time reduction from computation of s
- To inverse a one-way function by using an Oracle RightPrediction
- General scheme of a polynomial-time reduction
- AlgoReduction F (y) // outputs x such that $\mathrm{y}=\mathrm{F}(\mathrm{x}$), where // $\quad \mathrm{F}$ is conjectured one-way \{

Let $\mathrm{G}=\mathrm{PRNG}$ built from y ;
for $\left(b_{0}=0 . .1\right) / /$ Speculation loop with fixed b_{0} : polynomial time $\log { }^{\mathrm{O}(1)}|\mathrm{x}|$
\{ ...;
// Use oracle to predict $\log ^{\mathrm{O}(1)}|\mathrm{x}|$ bits
$\ldots b_{i}=$ OracleRightPrediction $\left(b_{0}, \ldots, b_{i-1}\right)$;
$x=\ldots$; // compute x
$z=F(x)$;
if $(z==y)$ return x;
\}
\}

- May be extended to $\mathrm{O}(\log \log |\mathrm{x}|)$ bits extracted :
- \#speculation loop=2 ${ }^{\mathrm{O}(\log \log |\mathrm{x}|)}=\mathrm{O}\left(\log ^{\mathrm{O}(1)}|\mathrm{x}|\right)$: yet polynomial time Ex: BBS, RSA provable secure with O(loglog n) bits at each iteration
- Constant of O() : matters a lot in practice!! =>Fine analysis of complexity required!

Example: Blum-Micali is CSPRNG

- Blum-Micali: in F_{p}, with g primitive element $\bmod p$ $\mathrm{f}(\mathrm{x})=\mathrm{g}^{\mathrm{x}} \bmod \mathrm{p}$; hardcore bit: $\mathrm{b}=\mathrm{HSB}(\mathrm{x})$
$B M$ generator: $\quad x 0=$ seed (or reseed)
$x_{k}=g^{x_{k-1}} \operatorname{modp}$;
$\mathrm{b}_{\mathrm{k}}=1$ if $\mathrm{x}_{\mathrm{k}-1} \geq(\mathrm{p}-1) / 2$; else 0 [ie $\left.\mathrm{HSB}\left(\mathrm{x}_{\mathrm{k}}+1\right)\right]$
- Theorem: if there exists $A, 1<A<p$, such that
it is impossible to compute α such that $\mathrm{g}^{\alpha}=\mathrm{A} \bmod \mathrm{p}$ then BM generator is resistant to right and left prediction.
- Proof: by reduction:

DiscreteLog \leq_{p} PreviousBitBM \leq_{p} NextBitBM

- Assumption (f one-way permutation distinguishable in polynomial time): it exists $N=\log \circ(1)$ p such that for all $s=\left(b_{1}, \ldots, b_{N}\right)$ in $\{0,1\}^{N}$, there exists an unique seed x that generates s .

Prop. 1: PreviousBit_BM \geq_{p} DiscreteLog

- OraclePreviousBitBM $\left(b_{i}, b_{i+1}, \ldots, b_{k}\right)$ returns b_{i-1}.
- From state=x, PLOG_HSB (x) returns 1 iff (DiscreteLog $\left.{ }_{9} x \geq(p-1) / 2\right)$.
- PLOG_HSB(x) \leq_{p} PreviousBitBM
- AlgoReductionPLOG_HSB(x)
$\left\{\quad\right.$ for $\left(y_{0}=x, i=\overline{1} ; i<=\log p ;++i\right) \quad\left\{y_{i}=g^{y} _\{i-1\} ; b_{i}=\left(y_{i-1} \geq(p-1) / 2\right) ? 1: 0 ;\right\}$ return $b_{0}=$ OraclePrevioustBitBM $\left.\left(b_{1}, b_{2}, \ldots, b_{\log p}\right) ;\right\}$
- Lower Bound: PreviousBitBM \geq BitPredictionBM(x) - O(log3 p)
- An Oracle for BitPredictionBM enables to compute α such that $\mathrm{A}=\mathrm{g}^{\alpha} \bmod \mathrm{p}$ in polynomial time [thus breaks discrete log] :
- AlgoReductionDiscreteLog(A)
\{ for ($k=\log _{2} p, i=0 ; i<=k ; i+=1$)
$\left\{\right.$ bi = OraclePLOG_HSB($\left.A^{\wedge}\{2 i\} \bmod p\right)$; res $\left.=r e s+b i{ }^{*}(p-1) / 2^{i+1} ;\right\}$
return $\alpha=$ res ; $\}$
- Lower Bound: PLOG_HSB $\geq\left(\log _{2} p\right)^{-1}$.DiscreteLog - $\mathrm{O}\left(\log ^{2} \mathrm{p}\right)$
- Thus: DiscreteLog \leq_{P} PLOG_HSB \leq_{P} PreviousBitBM Can be extended to randomized attack.

Prop. 2: NextBit_BM $\geq_{\text {p }}$ DiscreteLog

- Sketch of the Proof: if Eve can predict the next bit, then she can compute the previous bit !
- PreviousBitBM \leq_{p} NextBitBM

Note that OracleNextBitBM $\left(b_{i}, b_{i+1}, \ldots, b_{k}\right)$ returns b_{k+1}.
Proof by reduction:
AlgoReductionPreviousBitBM $\left(b_{i}, b_{i+1}, \ldots, b_{k}\right)$
\{ // Returns b_{i-1} which is either 0 or 1 : just speculate to find the good value ! for ($\mathrm{j}=1$; true ; $\mathrm{j}+=1$)
\{ $\quad b_{k+j}=$ OracleNextBitBM $\left(b_{i+j-1}, b_{i+j}, \ldots, b_{k+j-1}\right)$; // the correct value of b_{k+j} hyp0 $=$ OracleNextBitBM $\left(0, b_{i}, b_{i+1}, \ldots, b_{k+j-1}\right) ; / /$ value if previous bit $=0$ hyp1 $=$ OracleNextBitBM $\left(1, b_{i}, b_{i+1}, \ldots, b_{k+j-1}\right) ; / /$ value if previous bit $=1$ if (hyp0 $=$ hyp1) // Then we know the value of the previous bit b_{i-1} ! \{ if ($b_{k+j}=$ hyp0) return 0 ; else return 1 ;
\} \} \}

- Finally:

DiscreteLog \leq_{P} PLOG_HSB \leq_{P} PreviousBitBM \leq_{P} NextBitBM
Remark: extracting, at each step, loglog p bits instead of 1 is provably secure. [since loglog p bits can be speculated in polynomial time]

Security of RSA Generator

- RSA - PRNG:
- Primes $\mathrm{p}, \mathrm{q} ; \mathrm{n}=\mathrm{p} . \mathrm{q}$ and $\Phi=(\mathrm{p}-1)(\mathrm{q}-1)$; e (3 or \ldots)
$-x_{0}=$ initial seed (prime to n)
- $x_{k+1}=x_{k}{ }^{e} \bmod n$; output: $b_{k+1}=x_{k+1} \bmod 2\left[i e \operatorname{LSB}\left(x_{k}\right)\right]$
- RSA Hypothesis. Let M proportional to $\mathrm{N}^{2 / e}$.

For x in $\{1, \ldots, \mathrm{M}\}$, the distribution induced by x^{e} mod n cannot be distinguished in polynomial time from the uniform distribution on $\{1, \ldots, n\}$.

- Under RSA hypothesis, RSA-PRNG is cryptographically secure.

Example of PRNG based on block cipher

- Block cipher :
- secret key and counter mode
- The counter mode can be replaced by a RNG.

$\mathbf{X}_{i}=\mathbf{E}_{\mathbf{K m}}[\mathbf{C}+1]$
- Provable secure PRNG under the black box model

ANSI X9.17 CSPRNG

[Cadence / Document Number:IIPA01-0087-USR, 2008]

$\cdot \mathrm{R}_{i}$ is the Random Number generated
$\cdot \mathrm{V}_{i+1}$ is the initialization value for the next iteration

Intel Random Number Generator

- cf Intel Random Number Generator (B. Jun, P. Kocher, 1999)
- Intel 80802 Firmware Hub chip included a hardware RNG
- optional on 840 chipset, not included in current PCs
- Uses two oscillators (hardware)
- one fast, one slow, the slow is modulated by a thermal noise from two diodes)
- Output debiaised using Von Neumann decorrelation step
- Finally, mix process using SHA1:
- 32 bits from the RNG are input to a SHA1 mixer, that provides the final 32 bits output.

Some readings

- RFC1750.txt Randomness Recommendations for Security (D. Eastlake, S. Crocker, J. Schiller, 1994)

> Is there any hope for strong portable randomness in the future? There might be. All that's needed is a physical source of unpredictable numbers. A thermal noise or radioactive decay source and a fast, free-running oscillator would do the trick directly. This is a trivial amount of hardware, and could easily be included as a standard part of a computer system's architecture... All that's needed is the common perception among computer vendors that this small additional hardware and the software to access it is necessary and useful.
> - Eastlake, Crocker, and Schiller, "RFC 1750: Randomness Recommendations for Security," IETF Network Working Group, December 1994 .

Back slides

Consider this simple idea for constructing a PRNG: seed the state with some key and pick some encryption algorithm such as DES. Then each iteration, encrypt the current state and output a few bits of it. Intuitively, this seems like it should produce random-looking bits.

The Blum-Micali scheme mimics this process, but on a firm theoretical foundation, by using hardcore bits.
Let $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ be a permutation and $B:\{0,1\}^{n} \rightarrow\{0,1\}$ be a (t, ϵ)-hardcore bit of f. Define $G_{\mathrm{BM}}:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$ as follows:
Pick random seed $S \in\{0,1\}^{n}$. For $i=1$ to $m 1$. Output $h_{i}=B(S) 2 . S \leftarrow f(S)$
Theorem [Blum-Micali '81]: If B is (t, ϵ)-hardcore then G_{BM} is a ($\left.t-m \operatorname{TIME}(f), \epsilon m\right)$-PRNG.
Proof: First we devise notation to record the reverse of a bit string. Define $G_{\mathrm{BM}}^{R}(S)=\left[G_{\mathrm{BM}}(S)\right]^{R}$, that is, if $G_{\mathrm{BM}}(S)=b_{1} \ldots b_{m}$, then $G_{\mathrm{BM}}^{R}(S)=b_{m} \ldots b_{1}$. Then note that if G_{BM}^{R} is a (t, ϵ)-PRNG, then G_{BM} is also a (t, ϵ)-PRNG.

Now suppose G_{BM}^{R} is not a $(t-m \operatorname{TIME}(f), m \epsilon)$-PRNG. Then there exists a $(t-m \operatorname{TIME}(f))$ algorithm A, and $0 \leq i<m$ such that

$$
\operatorname{Pr}\left[A\left(\left.G_{\mathrm{BM}}^{R}(S)\right|_{1 \ldots i}\right)=\left.G_{\mathrm{BM}}^{R}(S)\right|_{i+1}\right] \geq 1 / 2+\epsilon
$$

We shall build an algorithm A^{\prime} that predicts $B(x)$ given $f(x)$.
Let $S \in\{0,1\}^{n}$ and define $y=f^{m-i}(S)$. Then

$$
\begin{aligned}
\left.G_{\mathrm{BM}}^{R}(S)\right|_{1 \ldots i} & =\left[B\left(f^{m}(S)\right), B\left(f^{m-1}(S)\right), \ldots, B\left(f^{m-i+1}(S)\right)\right] \\
& =\left[B\left(f^{i}(y)\right), \ldots, B(f(y))\right]
\end{aligned}
$$

Algorithm A^{\prime} acts as follows. Given $z=f(y)$,

1. Compute $T(z)=\left[B\left(f^{i-1}(z)\right), \ldots, B(z)\right]$
2. Output $A(T(z))$

Note that $\operatorname{TIME}\left(A^{\prime}\right)=t$. Then we wish to show that

$$
\operatorname{Pr}\left[A^{\prime}(f(y))=B(y) \mid y \leftarrow\{0,1\}^{n}\right] \geq 1 / 2+\epsilon
$$

This follows since f is a permutation and hence the distribution $\left\{T_{z} \mid y-\{0,1\}^{n}, z=f(y)\right\}$ is identical to the distribution $\left\{\left.G_{\mathrm{BM}}^{R}(S)\right|_{1 . . i} \mid S-\{0,1\}^{n}\right\}$.
This is a contradiction because B is (t, ϵ)-hardcore for f

Examples of BM generators

- Dlog generator: $p=1024$-bit prime, $g \in \mathbb{Z}_{p}^{*}$ a generator. Let $f:\{1, \ldots, p-1\} \rightarrow\{1, \ldots, p-1\}, f(x)=g^{x} \bmod p$. We know MSB $(x)=\{0$ ifx $<p / 2,1$ ifx $>p / 2$ is a (t, ϵ)-hardcore bit of f if no $\mathrm{tn}^{3} / \epsilon$-time discrete \log algorithm exists. Thus we have a PRNG assuming Dlog is hard.
- Blum-Blum-Shub (BBS): $N=\mathrm{pq} 1024$-bit, $p=q=3 \bmod 4$. Let $\mathrm{QR}_{N}=\left\{x \in \mathbb{Z}_{N}^{*} \mid x\right.$ is QR$\}$. Then $f(x)=x^{2}$ mod N is a permutation of QR_{N}.
$\mathrm{LSB}(\mathrm{x})$ is $\left(t, \epsilon\right.$)-hardcore for f assuming no $\left(\mathrm{tm}^{2} / \epsilon\right.$) factoring algorithm exists.

1. $S \leftarrow \mathrm{QR}_{N}$
2. Output $\operatorname{LSB}(S)$
3. $S \leftarrow S^{2}(\bmod N)$
. Goto step 1
[BBS not (t, ϵ)-hardcore implies LSB is not $(t, \epsilon / m)$-hardcore (where m is the number of output bits), which implies there exists a $t\left(n^{m} /\right.$ $\epsilon)^{2}$-time factoring algorithm (where $n=\lg N$).]
Example: suppose no 2^{100}-time factoring algorithm exists for 1024 -bit numbers, and that $m=2^{20}$. Then we get that BBS is secure for t /epsilon ${ }^{2}=2^{40}$, e.g. BBS is a $\left(2^{20}, 2^{-10}\right)$-PRNG, which is not secure.

Speeding up BM

We can output one bit per application of f. Can we output more?
For Dlog it turns out that for $i=1, \ldots, n / 2$ the $\mathrm{msb}_{\mathrm{i}} \mathrm{i}(\mathrm{x})$ is a hardcore bit. But this is not enough. We need a notion of simultaneous security.
Definition: Let $f:\{0,1\}^{n} \rightarrow\{0,1\}$. Then bits $B_{1}, \ldots, B_{k}:\{0,1\}^{n} \rightarrow\{0,1\}$ are (t, ϵ)-simultaneously secure if $\left\{f(x), B_{1}(x), \ldots, B_{k}(x) \mid x \in\{0,1\}\right\}$ is (t, ϵ) -indistinguishable from $\left\{f(x), r_{1}, \ldots, r_{k} \mid r_{1} \ldots r_{k} \leftarrow\{0,1\}^{k}\right.$.

The Blum-Micali Theorem remains true for simultaneously secure bits.
Best result for Dlog [Shamir-Schrift]: $N=\mathrm{pq}, f(x)=g^{x} \bmod N$. Then the bits in the most significant half of x are (t, ϵ)-simultaneously secure for f assuming no $O\left(t(n / \epsilon)^{3}\right)$-time factoring algorithms exist.

