
Chapter 
Secure Random Number Generator 

 Jean-Louis Roch, Grenoble University, M2-SCCI/SECR 

 
 

References: 
–  NIST Special Publication 800-90:  

« Recommendation for Random Number Generation 
Using Deterministic Random Bit Generators (Revised) »,  
Elaine Barker, John Kelsey. March 2007   

–  Handbook of Applied Cryptography.  
Alfred J. Menezes, Paul C. van Oorschot and Scott A. Vanstone. August 2001  

–  + web refs. 

Anyone who considers arithmetical 
methods of producing random digits is, 
of course, in a state of sin. 

-- John Von Neumann, 1951 

Cryptographic Secure Pseudo- 
Random Number Generator 

•  RNG, PRNG and CSPRNG 
– Pseudorandom bit generation 
– Statistical tests 

•  De-skewing techniques PRNG 
– Example Deterministic Parallel Random-Number 

Generation for Dynamic-Multithreading Platforms  
•  Cryptographically secure pseudorandom bit 

generation 
– Security proof 



Random Bit/Number Generator 
•  RBG: a device or algorithm which outputs a sequence of statistically 

independent and unbiased binary digits. 
•  Hardware-based 

–  elapsed time between emission of particle during radioactive decay 
–  thermal noise from a semiconductor diode or resistor; 
–  the frequency instability of a free running oscillator; 
–  air turbulence within disk drive which causes random fluctuations 
–  drive sector read latency times 
–  sound from a microphone or video input from a camera. 

•  Software-based 
–  the system clock 
–  elapsed time between keystrokes or mouse movement 
–  content of input/output buffers 
–  user input 
–  operating system values such as system load and network statistics 

•  No physical RNG normalized in 2011 (but patents) 

Pseudo Random Bit/Number 
Generator 

•  PRBG 
–  Input: a seed  i.e.  a truly random input sequence of length k (the seed) 

•  Use a physical RNG to initialize the ssinon 0 pts eed (human, date, pid, …) 
–  Output: a deterministic sequence of length l >> k that “seems random” 

•  An adversary cannot efficiently distinguish between sequences of PRBG and truly 
RBG of length l. 

�

	�

���� ����
��
�����
�
��	�



PRNG 
Iteration    and   random sequence 

•  S = finite set of states;   r = #bits generated at each step. 

•  ITERATION (secret)   RANDOM SEQUENCE (output) 
f : S -> S     Bit extraction function g: S -> {0,1}r  

 
–  Seed s0   

 initial state = [user+ reseed]  
–     
–   s1 := f(s0)    r1 := g(s1)    
–   s2 := f(s1)    r2 := g(s2) 
–  …     … 
–   si+1 := f(si)    ri+1 := g(s1+1) 
–   …     … 

•  Element rank k in the sequence :   rk := g ( fk (s0) ) 
 

•  Example [BBS] : S = {0, …, n-1} 
–  f(x) = x2 mod n    - g(x) = LSB(x)         (i.e. x mod 2) 

Pseudo Random Bit/Number 
Generator 

•  PRBG 
–  Input: a seed  i.e.  a truly random input sequence of length k (the seed) 

•  Use a physical RNG to initialize the seed (human, date, pid, …) 
–  Output: a deterministic sequence of length l >> k that “seems random” 

•  An adversary cannot efficiently distinguish between sequences of PRBG and truly 
RBG of length l. 

•  PRBG can be used to generate random numbers (ie PRNG) 
–  Ex.  :RNG of random integers in the interval [0; n] can be built from a RBG 

•  Use RBG to generate !lg n" + 1 bits and convert to integer (discard if >n) 

•  Example: Linear Congruential Generator LCG 
–  Parameters: m and  a, b, x0 in {0, m-1} 

 xn+1 = a.xn + b mod m   (x0 is the seed)  

–  Eg: Unix PRNG: rand() with seed initialized by srand() ;  rand48(), …) 
 



Example: mid-square method 
•  proposed by von Neumann in the 1940’s.  

–  starts with a seed,  
–  the seed is squared and the middle digits become the 

random number. 
•  Example: 

–  X0 = 5497 
–  X0

2 = (5497)2 = 30,217,009 ⇒ X1 = 2170 
•  R1 = 0.2170 

–  X1
2 = (2170)2 = 04,708,900 ⇒ X2 = 7089 

•  R2 = 0.7089 
 

•  Problems: difficult to assure that the sequence will not 
degenerate over a long period of time 
–   zeros once they appear are carried in subsequent numbers 

(try  5197 as a seed). 

•  Definitions :  
–  a (P)RBG passes all polynomial-time statistical tests if no poly algorithm 

can distinguish between output sequence and truly random sequence of 
the same length with probability significantly greater that ½  

–   a PRBG is a CSPRBP iff it passes the next-bit test, i.e.  
Given first k bits in input,  no polynomial-time algorithm can predict  
the (k + 1)st bit with probability significantly greater than ½  

•  Also called right-unpredictable or forward unpredictable 

•  Similarly previous-bit test, or left-unpredictable or backward-unpredictable 



Statistical tests [FIPS 140-1] 
•  Why: impossible to give a mathematical proof that a generator 

is indeed a random bit generator; 
-> the tests help detect certain kinds of weaknesses the 
generator may have. 
 

•  How: by taking a sample output sequence of the generator and 
subjecting it to various statistical tests. 
–  No risk “0”:  “accepted” should be replaced by “not rejected”  
–  Significance Level: α=type 1 error; β = type 2 error  (eg = 0.001) 

 
•  Five Basic Test (Using Chi-square analysis) 

–  Frequency Test: # of 0 and 1 
–  Serial Test: # of 00, 01, 10, 11 
–  Poker-k Test: # of each k-bit string 
–  Run Test: comparing with expected run length 
–  Autocorrelation test: correlations between s and shifted version 
 

Common classical quantitative tests 
See: Exploratory Data Analysis, NIST/SEMATECH e-Handbook of 

Statistical Methods, http://www.itl.nist.gov/div898/handbook/  
[http://www.itl.nist.gov/div898/handbook/eda/section3/eda35.htm]    

 
 

•  Location 
–  Measures of Location 
–  Confidence Limits for the Mean and One Sample t-Test 
–  Two Sample t-Test for Equal Means 
–  One Factor Analysis of Variance 
–  Multi-Factor Analysis of Variance 

•  Scale (or variability or spread) 
–  Measures of Scale 
–  Bartlett's Test 
–  Chi-Square Test 
–  F-Test 
–  Levene Test 

•  Skewness and Kurtosis 
–  Measures of Skewness and Kurtosis 



•  Randomness 
–  Autocorrelation 
–  Runs Test 

•  Distributional Measures 
–  Anderson-Darling Test 
–  Chi-Square Goodness-of-Fit Test 
–  Kolmogorov-Smirnov Test 

•  Outliers 
–  Detection of Outliers 
–  Grubbs Test 
–  Tietjen-Moore Test 
–  Generalized Extreme Deviate Test 

•  2-Level Factorial Designs 
–  Yates Analysis 

Some random number test suites 
•  NIST test suite of random number generators: 

[ http://csrc.nist.gov/groups/ST/toolkit/rng/batteries_stats_test.html  ] 
 

•  Diehard tests [G. Marsaglia]  
[ http://www.stat.fsu.edu/pub/diehard/] 

•  Dieharder [R. Brown, D. Eddelbuettel, D. Bauer,  
[ http://www.phy.duke.edu/~rgb/General/dieharder.php ] 

•  TestU01[ P. L�Evuyer, R. Simard ]  2009 
[ http://www.iro.umontreal.ca/~simardr/testu01/tu01.html ] 
–  TestU01: A C Library for Empirical Testing of Random Number Generators, 

P. L'Ecuyer and R. Simard,   
ACM Transactions on Mathematical Software, Vol. 33, 4, article 22, 2007. 



Cryptographic Secure Pseudo- 
Random Number Generator 

•  RNG, PRNG and CSPRNG 
– Pseudorandom bit generation 
– Statistical tests 

•  De-skewing techniques PRNG 
– Example Deterministic Parallel Random-Number 

Generation for Dynamic-Multithreading Platforms  
•  Cryptographically secure pseudorandom bit 

generation 
– Security proof 

De-skewing techniques 
•  A PRNG may be defective:  

 output bits may be biased or correlated 
•  De-skewing techniques: to generate “truly” random bit 

sequences from the output bits of a defective 
generator 
– To suppress the biais (von Neumann technique) 
– To decrease correlation (combination of 2 

sequences)  (eg Vitany (δ,ε)-decorrelation) 
 

•  In practice: to pass sequence whose bits are biased 
or correlated through  
– a hash function (eg SHA-1/2) 
– or a block cipher 



Deterministic Parallel Random-Number Generation
for Dynamic-Multithreading Platforms

Charles E. Leiserson, Tao B. Schardl, and Jim Sukha

MIT Computer Science and Artificial Intelligence Laboratory

PPoPP 2012

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 1 / 32

Pedigrees

Pedigrees

A pedigree is a unique, processor-oblivious identifier for a strand.

Simple Idea: We can uniquely identify strands by their location in the
invocation tree.

Example: fib(4)

4

3

2

1 0

1

2

1 0

J = h0, 0, 1, 0i

The invocation tree of a
deterministic,
processor-oblivious program
is deterministic and
processor-oblivious.
The pedigree J(s) of a strand
s can be viewed as the path
in the invocation tree from
the root to s.

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 19 / 32



Pedigrees

Pedigrees

A pedigree is a unique, processor-oblivious identifier for a strand.

Simple Idea: We can uniquely identify strands by their location in the
invocation tree.

Example: fib(4)

4
0 1 2

3
0 1 2

2
0 1 2

1
0

0
0

1
0

2
0 1 2

1
0

0
0

J = h0, 0, 1, 0i

The invocation tree of a
deterministic,
processor-oblivious program
is deterministic and
processor-oblivious.
The pedigree J(s) of a strand
s can be viewed as the path
in the invocation tree from
the root to s.

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 19 / 32

Pedigrees

Pedigrees

A pedigree is a unique, processor-oblivious identifier for a strand.

Simple Idea: We can uniquely identify strands by their location in the
invocation tree.

Example: fib(4)

4
0 1 2

3
0 1 2

2
0 1 2

1
0

0
0

1
0

2
0 1 2

1
0

0
0

J = h0, 0, 1, 0i

The invocation tree of a
deterministic,
processor-oblivious program
is deterministic and
processor-oblivious.
The pedigree J(s) of a strand
s can be viewed as the path
in the invocation tree from
the root to s.

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 19 / 32



Pedigrees

Pedigrees

A pedigree is a unique, processor-oblivious identifier for a strand.

Simple Idea: We can uniquely identify strands by their location in the
invocation tree.

Example: fib(4)

4
0 1 2

3
0 1 2

2
0 1 2

1
0

0
0

1
0

2
0 1 2

1
0

0
0

J = h1, 1, 0i

The invocation tree of a
deterministic,
processor-oblivious program
is deterministic and
processor-oblivious.
The pedigree J(s) of a strand
s can be viewed as the path
in the invocation tree from
the root to s.

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 19 / 32

Pedigrees

Pedigrees

A pedigree is a unique, processor-oblivious identifier for a strand.

Simple Idea: We can uniquely identify strands by their location in the
invocation tree.

Example: fib(4)

4
0 1 2

3
0 1 2

2
0 1 2

1
0

0
0

1
0

2
0 1 2

1
0

0
0

J = h0, 2i

The invocation tree of a
deterministic,
processor-oblivious program
is deterministic and
processor-oblivious.
The pedigree J(s) of a strand
s can be viewed as the path
in the invocation tree from
the root to s.

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 19 / 32



The DOTMIX DPRNG

Outline

1 The DPRNG Problem

2 Pedigrees

3 The DOTMIX DPRNG

4 Concluding Remarks

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 23 / 32

The DOTMIX DPRNG

The DOTMIX DPRNG

DOTMIX hashes a pedigree in two stages.
1

Compression: Convert the pedigree into a single word while
preserving uniqueness.

2
Mixing: Remove correlation between the compressed pedigrees.

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 24 / 32



The DOTMIX DPRNG

DOTMIX compression

Dot-product compression: Compute the dot product of the pedigree
with a vector of random odd 64-bit integers.

Theorem: For any randomly chosen vector � of odd integers and any
two distinct pedigrees J and J 0, the probability that � · J = � · J 0 is at
most 1/263.

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 25 / 32

The DOTMIX DPRNG

Efficacy of DOTMIX

0
0.000001

0.001

0.01

0.1

0.5

0.9

0.99

0.999

0.999999
1

 1  100  10000  1e+06  1e+08  1e+10  1e+12
















Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 26 / 32



The DOTMIX DPRNG

DOTMIX mixing

DOTMIX(r) “randomly” permutes the result of the compression function
using r iterations of the following “mixing” routine.

RC6 mixing: Let Xi designate the result of the i th round of mixing,
where X0 is the result of the compression function.

1 for (int i = 0; i < r ; ++i) {
2 Y = Xi · (2Xi + 1) mod 264;
3 Xi+1 = swap left and right halves of Y ;
4 }

One can show that this function is bijective [CRRY98], so mixing does
not generate further collisions.

Thanks to Ron Rivest for suggesting this mixing function.

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 27 / 32

The DOTMIX DPRNG

Dieharder statistical tests













 

























Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 28 / 32



Examples of normalized PRNG 
•  ANSI X9.17 generator 

–  Input: m, a random seed s, Triple-DES encryption key k. 
–  Output: m pseudorandom 64-bit strings x1, x2, … , xm 

•  Let I = Ek(D) with D=64-bit date/time (finest available resolution) 
•  For i=1.. m { xi ←Ek(I ⊕ s);  s ← Ek(xi ⊕ I) ; };  
•  Return(x1, x2, … , xm) 

•  FIPS 186 for DSA 
–  Input an integer m and a 160 prime number q 
–  Output:  m pseudorandom numbers k1,… , km in {0, .., q-1} 
–  Parameters: (b,G) = (160, DES)  or  (b,G) = (160..512, SHA1) 

•  Let  s be a secret random seed with b bits 
•  Let t= 160 bits constant     t = efcdab89 98badcfe 10325476 c3d2e1f0 67452301 
•  For i=1.. m { ki ←G(t, s) mod q ; s ← (1 + s + ki)mod 2b ; };  
•  Return(k1, … , km) 

Cryptographic Secure Pseudo- 
Random Number Generator 

•  RNG, PRNG and CSPRNG 
– Pseudorandom bit generation 
– Statistical tests 

•  De-skewing techniques PRNG 
– Example Deterministic Parallel Random-Number 

Generation for Dynamic-Multithreading Platforms  
•  Cryptographically secure pseudorandom bit 

generation 
– Security proof 



Some Provable CSPRNG  
[Ben Lynn, http://crypto.stanford.edu/pbc/notes/crypto/prng.xhtml] 

•  RSA Generator :  
–  Primes p, q;  n = p.q and Φ = (p − 1)(q − 1); e (3 or …) 
–   xk= xk-1

e mod n ;  output: bk=xk mod 2 [ie LSB(xk)] 

•  Blum-Micali Generator : 
–  Prime p, g generator of Z/pZ*;  
–  xk= gxk-1 mod p ;  output: bk= 1 if xk ≥ (p-1)/2; else 0  [ie HSB(xn)] 

•  Blum-Blum-Shub (BBS) Generator: 
–  Primes p, q of the form 4m+3 ; n=p.q 
–  xk= xk-1

2 mod n;  output: LSB(xk) 

Blum-Blum-Shub (BBS) CSPRNG 
•  Primes p, q of the form 4m+3;  n=p.q 
•  seed s prime to n (why?); x0= s2 mod n; 
•  xk= xk-1

2 mod n;  output: LSB(xk) = xk mod 2 



Security proof: example 

•  Theorem:  
If it is impossible to compute [… one way function …], 
then the PRNG is computationally secure 
–  Proof of left-unpredicatbility (previous bit) 
–  Proof of right-unpredicatbility (next bit) 

–  By polynomial time reduction from computation of s 
•  To inverse a one-way function by using an Oracle RightPrediction  

•  General scheme of a polynomial-time reduction 
•  AlgoReductionF ( y )   // outputs x such that y=F(x), where 

           //  F is  conjectured one-way  
{ 
  Let G=PRNG  built from y ;  
  for (b0=0..1) // Speculation loop with fixed b0: polynomial time logO(1)|x|  

{   … ; 
   // Use oracle to predict logO(1)|x| bits  

       … bi = OracleRightPrediction(b0, …, bi-1) ; 
   x= … ; // compute x  

       z= F(x) ;  
    if  (z==y) return x ;  
  } 

} 
 

•  May be extended to O(loglog |x|) bits extracted : 
–  #speculation loop=2O(loglog |x|)  = O(logO(1)|x| ): yet polynomial time 

Ex:  BBS, RSA provable secure with O(loglog n) bits at each iteration 
–  Constant of O() : matters a lot in practice!!  

   =>Fine analysis of complexity required! 



Example: Blum-Micali is CSPRNG  
 

 
•  Blum-Micali: in Fp,  with g primitive element mod p 

f(x) = gx mod p ;  hardcore bit: b = HSB(x) 
  BM generator:   x0 = seed (or reseed) 
        xk= gxk-1 mod p ;   
         bk= 1 if xk-1 ≥ (p-1)/2; else 0  [ie HSB(xk-1)] 

•  Theorem: if there exists A, 1 <A<p, such that  
  it is impossible to compute α such that gα = A mod p 

then BM generator is resistant to right and left prediction. 
 
•  Proof: by reduction:  

  DiscreteLog ≤P  PreviousBitBM ≤P NextBitBM 

•  Assumption ( f one-way permutation distinguishable in polynomial time):  
it exists N = logO(1) p such that for all s=(b1, …, bN) in {0,1}N,  
there exists an unique seed x that generates s. 

Prop. 1:  PreviousBit_BM ≥P DiscreteLog  
•  OraclePreviousBitBM (bi, bi+1, … , bk) returns bi-1.  

–  From state=x,   PLOG_HSB (x) returns 1 iff (DiscreteLogg x ≥ (p-1)/2). 
–  PLOG_HSB(x) ≤P PreviousBitBM 

•  AlgoReductionPLOG_HSB(x)  
{  for (y0 = x, i=1; i <= log p ; ++i)  { yi = gy_{i-1} ; bi = (yi-1 ≥ (p-1)/2 ) ? 1 : 0 ; }  

 return b0= OraclePrevioustBitBM ( b1, b2, … , blog p) ; } 
•  Lower Bound: PreviousBitBM ≥ BitPredictionBM(x) – O(log3 p) 

 
•  An Oracle for  BitPredictionBM enables to compute α such that 

A = gα mod p in polynomial time [thus breaks discrete log] : 
–  AlgoReductionDiscreteLog( A )  

{  for ( k = log2 p , i = 0; i <=k; i+=1 )  
          { bi = OraclePLOG_HSB( A^{2i} mod p ); res = res + bi * (p-1)/2i+1 ; } 
        return α = res ; } 
- Lower Bound: PLOG_HSB ≥ (log2 p)-1.DiscreteLog – O (log2 p)  

•  Thus:  DiscreteLog ≤P PLOG_HSB  ≤P  PreviousBitBM  
Can be extended to randomized attack. 



Blum-Micali passes the Next Bit test  
B
M
:
 
 
 
x
k
=
 
g
x
k
-
1

 
m
o
d
 
p
 
;
 
 
o
u
t
p
u
t
:
 
b
k
=
 
1
 
i
f
 
x
k
-
1
 
≥
 
(
p
-
1
)
/
2
;
 
e
l
s
e
 
0
 
 
[
i
e
 
H
S
B
(
x
k
-
1
)
]
 

 

•  Sketch of the Proof: if Eve can predict the next bit,  
            then she can compute  the previous bit ! 

•  PreviousBitBM ≤P  NextBitBM  
Note that OracleNextBitBM (bi, bi+1, … , bk) returns bk+1. 
Proof by reduction:  

AlgoReductionPreviousBitBM(bi, bi+1, … , bk)  
{  // Returns bi-1 which is either 0 or 1: just speculate to find the good value !  

   for (j=1; true ; j+=1 )   
               {    bk+j    = OracleNextBitBM(bi+j-1, bi+j, … , bk+j-1) ;  // the correct value of  bk+j  

         hyp0 = OracleNextBitBM ( 0, bi, bi+1, …,  bk+j-1) ; // value if previous bit = 0 
       hyp1 = OracleNextBitBM ( 1, bi, bi+1, …,  bk+j-1) ; // value if previous bit = 1 

      if (hyp0 ≠ hyp1)  // Then we know the value of the previous bit bi-1 ! 
                    {    if (bk+j = hyp0) return 0; else return 1 ;  
    }   }   } 

•  Finally:   
 DiscreteLog ≤P PLOG_HSB ≤P PreviousBitBM ≤P NextBitBM 
  

Remark: extracting, at each step, loglog p bits instead of 1 is 
provably secure. [since loglog p bits can be speculated in polynomial time]   

 

Prop. 2:  NextBit_BM ≥P DiscreteLog  

Security of RSA Generator 
•  RSA - PRNG:  

–  Primes p, q;  n = p.q and Φ = (p − 1)(q − 1); e (3 or …) 
–  x0 = initial seed  (prime to n) 
–   xk+1= xk

e mod n ;  output: bk+1=xk+1 mod 2 [ie LSB(xk)] 
 
 

•  RSA Hypothesis.  Let M proportional to N2/e.  
For x in {1,…,M}, the distribution induced by xe mod n cannot be 
distinguished in polynomial time from the uniform distribution on 
{1, …, n}. 

•  Under RSA hypothesis,  
 RSA-PRNG is cryptographically secure. 

 



•  Block cipher :  
–  secret key and counter mode 
–  The counter mode can be replaced 

by a RNG. 

 

•  Provable secure PRNG under the black box model 

Example of PRNG based on 
block cipher 

• K1 and K2 are two keys for 3DES 

 

• DTi is a 64 bit representation  
of current system date and time 
 

 

• Vi =initialization value  
(initially, V0 =seed) 

  

• Ri is the Random Number generated 

• Vi+1 is the initialization value for the next iteration 

ANSI X9.17 CSPRNG 
[Cadence / Document Number:I-IPA01-0087-USR, 2008] 



Intel Random Number Generator 
•  cf Intel Random Number Generator (B. Jun, P. Kocher, 1999) 

–  Intel 80802 Firmware Hub chip included a hardware RNG  
•  optional on 840 chipset, not included in current PCs 

–  Uses two oscillators (hardware) 
•   one fast, one slow, the slow is modulated by a thermal noise from two diodes) 

–  Output debiaised using Von Neumann decorrelation step 

–  Finally, mix process using SHA1: 
•  32 bits from the RNG are input to a 

SHA1 mixer, that provides the  
final 32 bits output. 

Some readings 
•  RFC1750.txt   Randomness Recommendations for Security 

(D. Eastlake, S. Crocker, J. Schiller, 1994) 



Back slides 




