
Outline Lecture  
•  Part 1 : Asymmetric cryptography, one way function, complexity 
•  Part 2 : arithmetic complexity and lower bounds : exponentiation 

•  Part 3 : Provable security and polynomial time reduction : 
–  P, NP classes. One-way function and NP class. 

 1. NP : definition ,examples 
   2. P-reduction, NP-hard, NP-complete, NP-intermediate 
   3. Relationship between asymetric cryptography and NP  

•  Part 4 : RSA : the algorithm 
•  Part 5 : Provable security of RSA 
•  Part 6 : Attacks and importance of padding. 

Polynomial reduction 

•  Lecture: Polynomial reduction 
– Very short « remind » about P and NP 

•  Example:  
– Least significant bit of LOG versus all bits of LOG 

•  LSB in a cyclic group: input x, output YES iff LOG(x) is odd 

•  Exercise n. 2 / Form 2:  
– Primes, Big Factor and Factorization 

Non deterministic polynomial time 
•  Problem F is in P if there is an algorithm A(x) that computes  

F(x) on input x in time polynomial in the input size, |x|. 
–  P is closed under composition and polynomially bounded iterations. 

•  Decision problem F is in NP if for all x such that F(x) holds, 
there exists a polynomial sized certificate c(x) and a verifying 
algorithm V(x, y) such that V(x, c(x)) computes F(x) in time 
polynomial in |x|. 
–  NP contains P . It is not known if P=? NP 

–  Co-NP definition:  F is in co-NP  iff  Complement(F)  is in NP. 

Example 1 : discrete log 

•  G = {gi, i=0, …, n-1} a cyclic group of order n 
•  Problem LOGG :  

–  Input: x in G ;  
– Output : 0 ! i < n such that gi = x.  

•  Decision Problem PLOGG :  
–  Input: x in G and an integer t ( 0 ! t < n) ; 
– Output : YES iff LOGG (x) " t.  



PLOG is in NP 
•  PLOG(x, t) = YES iff it exists 0 ! i < n such that gi = x 

and x " t. 
•  PLOG is in NP:  

–  Certificate : i an integer  
–  Verifying algorithm V(x, t, i) {  

     y = BinaryPower(g,i);  
     if ( y==x ) and (i " t) return « OK: PLOG(x,t) is proved »; 
  } 

–   Algorithm V is a verifying algorithm for PLOG  
•  Proof:  V(x,t,i) returns OK    !    PLOG(x,t) = YES 

–  Algorithm V runs in time polynomial in |x|+|t| for all input (x,t) 
satisfying PLOG(x,t)=YES  

•  Proof: if PLOG(x,t)=YES it exists a polynomial sized certificate i with  
|i|! log2 n = |x| and V(x,t,i) requires at most O(|i|+|x|+|t|) operations. 

NP-class equivalent definitions 

•  Def 1. NP = set of decision problems Q which YES 
output is verified by a deterministic polynomial time: 
–  There exists an algorithm VerificationQ(x , z)  : 

•  For all x such that Q(x)=YES, it exists z such that  
VerificationQ(x , z) returns “Q(x)=YES is proved” in polynomial time. 

•  For all x such that Q(x)=NO, for all z, VerificationQ(x , z) never 
returns “Q(x)=YES is proved”.  

•  Def 2. NP = set of Decision problems Q that admit a  
      Non-deterministic Polynomial-time algorithm: 

–  If Q output=YES, at least one path returns YES 
–  If Q output=NO, no path returns YES  

•  (i.e., any path returns NO or infinitely loops )  

Non-determinstic polynomial-
time algorithm: an example 

•  Decision problem PLOGG( x, t ) 
–  Input: w in G and an integer t 
– Output : YES iff  it exists i : gi = x and i " t.  

•  NDetAlgo_PLOG (x, t) { 
  Int i = nonderministic_choice (0, .., |G|-1) ; 
  y = BinaryPower( g, i ) ;  
  if ( y == x ) return YES ; 
  else { while (1) ; /* infinite loop */  
} 

Non-determinstic polynomial-
time algorithm: an example 

•  Decision problem IS_COMPOSITE ( N ) 
–  Input: an integer N 
–  Output : YES iff N is composite 

•  NDetAlgo_IsComposite (N) { 
  Int a = nonderministic_choice (1, .., #N) ; 
  if ( N mod a == 0 )  return YES ; 
  return NO; 
} 

•  Remark: another proof: PRIME is in P.  
So IS_COMPOSITE is in PDEC, which is included in NP. 



P-reduction, NP-Hard, NP-Complete 
•  Let A and B be two problems. 

OracleB(x): oracle that computes B(x) in time |x|. 

•  Def: Polynomial Reduction: A !P B iff there exists an algorithm 
Algo A that computes A(x) in polynomial time using standard 
operations (DTM or RAM model) and oracles for B.  
Note: This polynomial reduction is named « Turing-reduction » or « Cook-reduction ») 

PLOGG !P LOGG 

•  Algorithm PLOG_reduction (G x, Int t)  
{   logx = OracleLOG( x ) ;  
    if (logx " t) return YES else return NO; 
}    

•  Assuming cost of OracleLOG is constant,  
and since 0 ! logx < n  and 0 ! t < n, 
cost of  PLOG_reduction is O( log n). 

•  Thus  PLOGG !P LOGG. 

LOGG !P PLOGG 
•  Algorithm LOG_reduction (G x)  

{   // computation by binary search in [min, max( 
    min = 0 ; max = n ; 
    while (min < max)  
    { mid = (min + max ) / 2 ; 
      if ( OraclePLOG( x, mid)) { min=mid;}  else {max=mid;}; 
     } 
    return min; 
} 

•  Cost including calls to the Oracle: O( log2 n ),  
   which is polynomial in the input size ( |x| = log n ). 

•  Thus LOGG !P PLOGG 

Relation between PLOG and LOG 

•  Theorem: if LOGG is computationally 
impossible, then PLOGG is computationally 
impossible too. 
– Proof:  

•  Variants [exercise]:  
– Least significant bit: PLOG-LSB  

Let PLOG-LSB(x) = YES iff LOG(x) mod 2=1. 
– Highest significant  bit : PLOG-HSB  

Let PLOG-LSB(x) = YES iff LOG(x) " (log2 n-1)/2. 



NP class and !P_Karp reduction 
•  Prop. NP is closed under !P_Karp   

–  i.e. (A!P_KarpB and B∈NP) => A∈NP. 

•  Def. A decision problem Q is NP-hard iff       
  ∀X∈NP :   X !P _KarpQ. 

•  Def.   NP-complete = NP $ NP-Hard 
•  Theo: SAT∈NP-complete.         

–  Def: SAT(F : boolean formula)=YES iff F is not always false. 
–  Moreover, 3-SAT∈NP-complete (but 2-SAT∈P) 

•  Def. coNP:     Q∈coNP iff  ¬Q∈NP 
–  Def: TAUT(F : boolean formula)=YES iff F is always true. 
–  Theo: TAUT∈coNP-complete  

•  Open questions in 2011: P=NP?    P=NP$co-NP?  

P-reduction, NP-Hard, NP-Complete 
•  Let A and B be two problems. 

OracleB(x): oracle that computes B(x) in time |x|. 

•  Def: Polynomial Reduction: A !P B iff there exists an algorithm 
Algo A that computes A(x) in polynomial time using standard 
operations (DTM or RAM model) and oracles for B.  
Note: This polynomial reduction is named « Turing-reduction » or « Cook-reduction ») 

•  Remark: The reduction !P is used for security proofs;  
but it is different from the « standard » many-to-one reduction (Karp-reduction). 

–  With Turing reduction: NP =P co-NP  (but open question with Karp reduction) 
–  With Turing reduction: it is not known wether NP is closed or not (but NP is closed under Karp-reduction 

This affects the below (non standard) definition of NP-Hard and NP-complete:  
–  Def:  Q is NP-hard iff, ∀X∈NP :  X!P Q 

  Q NP-complete iff both Q is NP-hard and  Q ∈ NP.  
–  Cook theorem : NP-complete %  .      SAT and 3-SAT are NP-complete. 

NP - Intermediate 

•  Def: NP-intermediate == problems that  
          are neither in P nor NP-complete. 
–  Theorem: If P%NP,  NP-intermediate %  

•  Good candidates for NP-intermediate problems: 
–  P_LOGG∈NP-intermediate 

•  DISCRETE_LOGARITHM !P PLOG   [See exercise sheet 2] 

–  HAS_BIG_FACTOR ∈NP-intermediate 
•  INTEGER_FACTORIZATION !P HAS_BIG_FACTOR [See exercise 

sheet 2] 

–  Graph isomorphism 

One-way function  and  NP class 
•  E : { 0,1 }n  ! { 0,1 }n   (or Im( E ) " { 0,1 }n+1 ) 

 injective (one-to-one mapping),  
    and easy to compute  i.e. ~linear time to compute E(X) 

•  D = E-1 : should be computationally impossible 

•  Does such functions exist? Anyway: 
–   E « easy » to compute   # E $ P  
–  Then, since D=E-1   # D $ NP  (non-deterministic) 
–  Note: if one-way functions exist, P%NP  

•  Then, look for a convenient D among the most difficult 
problems inside NP… conjectured intractable 
–  NP-complete ones: eg subset sum/knapsack [Merkle-Hellman, Chor-Rivest…] 
–  Conjectured computationally imposible ones: factorization… 



Some «hard » problems used 
to build  one-way functions 

•  Subset sum  [NP-complete] 
–  Input : S, (a1, …, an) ;  - Output : (x1, …, xn) $ {0,1}n : 

•  Discrete logarithm  (NP-intermediate) 
–  Input : g, M ;   - Output : x such that gx = M 

•  Factorization  (NP-intermediate) 
1.  Input : N   - output : factorization of N  
2.  Input: N, M, C ;  - output : d s.t  Md = C mod N 
3.  Input : N, e, C ;  - output : M s.t. Me = C mod N 
4.  Input : N, x ;   - output : YES iff % y such that x = y2 mod N 
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Example 1 : « Exponential and 
Discrete logarithm » 

•  (G, * )  : cyclic group of order n; g a generator of G  
•  G = { gi ; i = 0, …, n-1 } 

•  Exponential :   Exp:  { 0, …, n-1} ! G defined by Exp(i) = gi  

 Computation cost of Exp (i ) = O(log (i)) = O( log n) [upper and lower bound, lect2]  
Example : 5 11 [7] = ((52)2 5)2 5 = ((4)2 5)2 5 = (2.5)2 5 = 2.5 = 3 

•  Discrete Logarithm:   Log : G ! { 0, …, n-1} defined by Log(x) =i s.t. x= gi  
 Example : find x  / 6x = 8 [11]  

 Best known algorithms for any G  in O( n0.5) [Shanks] 
–  Note : INTEGER-FACTORIZATION !P   DISCRETE-LOGARITHM  

Conjectured hard to compute :  
–  Very used in asymmetric cryptography:  ex  RSA, El Gamal, ECDLP 
–  But : some specific instances are easy to compute 

(Answer: x = 7 ) 

One-way trapdoor function 

•  Definition: 
–  E is one-way 
–  D(E(x)) = x      [ and   E(D(x)) = x for signature]   
–  But, given a trapdoor (the secret key), 

  D is easy to compute (almost linear time) 

•  Provable security:  
–  Given c = E(x),   computing  x is untractable  
–  How to prove it? By reduction (contractiction) ! 

•   assume there exists an algorithm to compute x from c 
•   then exhibit an algorithm that computes an untracatable problem ! 

Example 2 : « knapsack » 

•  SUBSETSUM $ NP -complete 
–  Input : (a1, …, an) and  S integers 
–  Output : YES iff it exists (x1, …, xn) $ { 0,1 }n :  

•  Idea for an encoding: E(x1, …, xn) =  

•  Building a trapdoor function 
–  Easy to solve instance;  choose (a1, …, an) super-increasing.  

•  What is the decoding algorithm? 
–  Hiding simplicity bi = t.ai mod m with t secret and prime to m 

–  Public :  (b1, …, bn) and m  :   E(x1, …, xn) =  

–  Secret  : (a1, …, an),  t and u = t-1 mod m :   
•  Decoding: just compute (S.u mod n) and decode from (a1, …, an) 
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 [Merkle- 
  Hellman,78] 



Outline lecture 2 

•  P ⊂ NP ⊂  NP-complete ⊂ NP-hard 
•  The (polynomial) complexity of E bounds the 

complexity of D : 
  (E ∈ P)  ⇒   (D ∈ NP) 

•  Conjecture for asymetric cryptography:P % NP    
– so asymetric cryptograpy is based on NP-

intermediate problems. 
•  Discrete LOG has a complexity polynomially 

equivalent to LSB_LOG.  


