
Outline Lecture
•  Part 1 : Asymmetric cryptography, one way function, complexity
•  Part 2 : arithmetic complexity and lower bounds : exponentiation

•  Part 3 : Provable security and polynomial time reduction :
–  P, NP classes. One-way function and NP class.

 1. NP : definition ,examples
 2. P-reduction, NP-hard, NP-complete, NP-intermediate
 3. Relationship between asymetric cryptography and NP

•  Part 4 : RSA : the algorithm
•  Part 5 : Provable security of RSA
•  Part 6 : Attacks and importance of padding.

Polynomial reduction

•  Lecture: Polynomial reduction
– Very short « remind » about P and NP

•  Example:
– Least significant bit of LOG versus all bits of LOG

•  LSB in a cyclic group: input x, output YES iff LOG(x) is odd

•  Exercise n. 2 / Form 2:
– Primes, Big Factor and Factorization

Non deterministic polynomial time
•  Problem F is in P if there is an algorithm A(x) that computes

F(x) on input x in time polynomial in the input size, |x|.
–  P is closed under composition and polynomially bounded iterations.

•  Decision problem F is in NP if for all x such that F(x) holds,
there exists a polynomial sized certificate c(x) and a verifying
algorithm V(x, y) such that V(x, c(x)) computes F(x) in time
polynomial in |x|.
–  NP contains P . It is not known if P=? NP

–  Co-NP definition: F is in co-NP iff Complement(F) is in NP.

Example 1 : discrete log

•  G = {gi, i=0, …, n-1} a cyclic group of order n
•  Problem LOGG :

–  Input: x in G ;
– Output : 0 ! i < n such that gi = x.

•  Decision Problem PLOGG :
–  Input: x in G and an integer t (0 ! t < n) ;
– Output : YES iff LOGG (x) " t.

PLOG is in NP
•  PLOG(x, t) = YES iff it exists 0 ! i < n such that gi = x

and x " t.
•  PLOG is in NP:

–  Certificate : i an integer
–  Verifying algorithm V(x, t, i) {

 y = BinaryPower(g,i);
 if (y==x) and (i " t) return « OK: PLOG(x,t) is proved »;
 }

–  Algorithm V is a verifying algorithm for PLOG
•  Proof: V(x,t,i) returns OK ! PLOG(x,t) = YES

–  Algorithm V runs in time polynomial in |x|+|t| for all input (x,t)
satisfying PLOG(x,t)=YES

•  Proof: if PLOG(x,t)=YES it exists a polynomial sized certificate i with
|i|! log2 n = |x| and V(x,t,i) requires at most O(|i|+|x|+|t|) operations.

NP-class equivalent definitions

•  Def 1. NP = set of decision problems Q which YES
output is verified by a deterministic polynomial time:
–  There exists an algorithm VerificationQ(x , z) :

•  For all x such that Q(x)=YES, it exists z such that
VerificationQ(x , z) returns “Q(x)=YES is proved” in polynomial time.

•  For all x such that Q(x)=NO, for all z, VerificationQ(x , z) never
returns “Q(x)=YES is proved”.

•  Def 2. NP = set of Decision problems Q that admit a
 Non-deterministic Polynomial-time algorithm:

–  If Q output=YES, at least one path returns YES
–  If Q output=NO, no path returns YES

•  (i.e., any path returns NO or infinitely loops)

Non-determinstic polynomial-
time algorithm: an example

•  Decision problem PLOGG(x, t)
–  Input: w in G and an integer t
– Output : YES iff it exists i : gi = x and i " t.

•  NDetAlgo_PLOG (x, t) {
 Int i = nonderministic_choice (0, .., |G|-1) ;
 y = BinaryPower(g, i) ;
 if (y == x) return YES ;
 else { while (1) ; /* infinite loop */
}

Non-determinstic polynomial-
time algorithm: an example

•  Decision problem IS_COMPOSITE (N)
–  Input: an integer N
–  Output : YES iff N is composite

•  NDetAlgo_IsComposite (N) {
 Int a = nonderministic_choice (1, .., #N) ;
 if (N mod a == 0) return YES ;
 return NO;
}

•  Remark: another proof: PRIME is in P.
So IS_COMPOSITE is in PDEC, which is included in NP.

P-reduction, NP-Hard, NP-Complete
•  Let A and B be two problems.

OracleB(x): oracle that computes B(x) in time |x|.

•  Def: Polynomial Reduction: A !P B iff there exists an algorithm
Algo A that computes A(x) in polynomial time using standard
operations (DTM or RAM model) and oracles for B.
Note: This polynomial reduction is named « Turing-reduction » or « Cook-reduction »)

PLOGG !P LOGG

•  Algorithm PLOG_reduction (G x, Int t)
{ logx = OracleLOG(x) ;
 if (logx " t) return YES else return NO;
}

•  Assuming cost of OracleLOG is constant,
and since 0 ! logx < n and 0 ! t < n,
cost of PLOG_reduction is O(log n).

•  Thus PLOGG !P LOGG.

LOGG !P PLOGG
•  Algorithm LOG_reduction (G x)

{ // computation by binary search in [min, max(
 min = 0 ; max = n ;
 while (min < max)
 { mid = (min + max) / 2 ;
 if (OraclePLOG(x, mid)) { min=mid;} else {max=mid;};
 }
 return min;
}

•  Cost including calls to the Oracle: O(log2 n),
 which is polynomial in the input size (|x| = log n).

•  Thus LOGG !P PLOGG

Relation between PLOG and LOG

•  Theorem: if LOGG is computationally
impossible, then PLOGG is computationally
impossible too.
– Proof:

•  Variants [exercise]:
– Least significant bit: PLOG-LSB

Let PLOG-LSB(x) = YES iff LOG(x) mod 2=1.
– Highest significant bit : PLOG-HSB

Let PLOG-LSB(x) = YES iff LOG(x) " (log2 n-1)/2.

NP class and !P_Karp reduction
•  Prop. NP is closed under !P_Karp

–  i.e. (A!P_KarpB and B∈NP) => A∈NP.

•  Def. A decision problem Q is NP-hard iff
 ∀X∈NP : X !P _KarpQ.

•  Def. NP-complete = NP $ NP-Hard
•  Theo: SAT∈NP-complete.

–  Def: SAT(F : boolean formula)=YES iff F is not always false.
–  Moreover, 3-SAT∈NP-complete (but 2-SAT∈P)

•  Def. coNP: Q∈coNP iff ¬Q∈NP
–  Def: TAUT(F : boolean formula)=YES iff F is always true.
–  Theo: TAUT∈coNP-complete

•  Open questions in 2011: P=NP? P=NP$co-NP?

P-reduction, NP-Hard, NP-Complete
•  Let A and B be two problems.

OracleB(x): oracle that computes B(x) in time |x|.

•  Def: Polynomial Reduction: A !P B iff there exists an algorithm
Algo A that computes A(x) in polynomial time using standard
operations (DTM or RAM model) and oracles for B.
Note: This polynomial reduction is named « Turing-reduction » or « Cook-reduction »)

•  Remark: The reduction !P is used for security proofs;
but it is different from the « standard » many-to-one reduction (Karp-reduction).

–  With Turing reduction: NP =P co-NP (but open question with Karp reduction)
–  With Turing reduction: it is not known wether NP is closed or not (but NP is closed under Karp-reduction

This affects the below (non standard) definition of NP-Hard and NP-complete:
–  Def: Q is NP-hard iff, ∀X∈NP : X!P Q

 Q NP-complete iff both Q is NP-hard and Q ∈ NP.
–  Cook theorem : NP-complete % . SAT and 3-SAT are NP-complete.

NP - Intermediate

•  Def: NP-intermediate == problems that
 are neither in P nor NP-complete.
–  Theorem: If P%NP, NP-intermediate %

•  Good candidates for NP-intermediate problems:
–  P_LOGG∈NP-intermediate

•  DISCRETE_LOGARITHM !P PLOG [See exercise sheet 2]

–  HAS_BIG_FACTOR ∈NP-intermediate
•  INTEGER_FACTORIZATION !P HAS_BIG_FACTOR [See exercise

sheet 2]

–  Graph isomorphism

One-way function and NP class
•  E : { 0,1 }n ! { 0,1 }n (or Im(E) " { 0,1 }n+1)

 injective (one-to-one mapping),
 and easy to compute i.e. ~linear time to compute E(X)

•  D = E-1 : should be computationally impossible

•  Does such functions exist? Anyway:
–  E « easy » to compute # E $ P
–  Then, since D=E-1 # D $ NP (non-deterministic)
–  Note: if one-way functions exist, P%NP

•  Then, look for a convenient D among the most difficult
problems inside NP… conjectured intractable
–  NP-complete ones: eg subset sum/knapsack [Merkle-Hellman, Chor-Rivest…]
–  Conjectured computationally imposible ones: factorization…

Some «hard » problems used
to build one-way functions

•  Subset sum [NP-complete]
–  Input : S, (a1, …, an) ; - Output : (x1, …, xn) $ {0,1}n :

•  Discrete logarithm (NP-intermediate)
–  Input : g, M ; - Output : x such that gx = M

•  Factorization (NP-intermediate)
1.  Input : N - output : factorization of N
2.  Input: N, M, C ; - output : d s.t Md = C mod N
3.  Input : N, e, C ; - output : M s.t. Me = C mod N
4.  Input : N, x ; - output : YES iff % y such that x = y2 mod N

!

xiai = S
i=1

n

"

Example 1 : « Exponential and
Discrete logarithm »

•  (G, *) : cyclic group of order n; g a generator of G
•  G = { gi ; i = 0, …, n-1 }

•  Exponential : Exp: { 0, …, n-1} ! G defined by Exp(i) = gi

 Computation cost of Exp (i) = O(log (i)) = O(log n) [upper and lower bound, lect2]
Example : 5 11 [7] = ((52)2 5)2 5 = ((4)2 5)2 5 = (2.5)2 5 = 2.5 = 3

•  Discrete Logarithm: Log : G ! { 0, …, n-1} defined by Log(x) =i s.t. x= gi
 Example : find x / 6x = 8 [11]

 Best known algorithms for any G in O(n0.5) [Shanks]
–  Note : INTEGER-FACTORIZATION !P DISCRETE-LOGARITHM

Conjectured hard to compute :
–  Very used in asymmetric cryptography: ex RSA, El Gamal, ECDLP
–  But : some specific instances are easy to compute

(Answer: x = 7)

One-way trapdoor function

•  Definition:
–  E is one-way
–  D(E(x)) = x [and E(D(x)) = x for signature]
–  But, given a trapdoor (the secret key),

 D is easy to compute (almost linear time)

•  Provable security:
–  Given c = E(x), computing x is untractable
–  How to prove it? By reduction (contractiction) !

•  assume there exists an algorithm to compute x from c
•  then exhibit an algorithm that computes an untracatable problem !

Example 2 : « knapsack »

•  SUBSETSUM $ NP -complete
–  Input : (a1, …, an) and S integers
–  Output : YES iff it exists (x1, …, xn) $ { 0,1 }n :

•  Idea for an encoding: E(x1, …, xn) =

•  Building a trapdoor function
–  Easy to solve instance; choose (a1, …, an) super-increasing.

•  What is the decoding algorithm?
–  Hiding simplicity bi = t.ai mod m with t secret and prime to m

–  Public : (b1, …, bn) and m : E(x1, …, xn) =

–  Secret : (a1, …, an), t and u = t-1 mod m :
•  Decoding: just compute (S.u mod n) and decode from (a1, …, an)

!

xiai = S
i=1

n

"

!

xiai
i=1

n

"

!

xibimodm
i=1

n

"

 [Merkle-
 Hellman,78]

Outline lecture 2

•  P ⊂ NP ⊂ NP-complete ⊂ NP-hard
•  The (polynomial) complexity of E bounds the

complexity of D :
 (E ∈ P) ⇒ (D ∈ NP)

•  Conjecture for asymetric cryptography:P % NP
– so asymetric cryptograpy is based on NP-

intermediate problems.
•  Discrete LOG has a complexity polynomially

equivalent to LSB_LOG.

