Randomization

Deterministic randomized algorithms

- Randomized algorithms for decision problems
- Atlantic City (B) / Monte Carlo (R) / Las Vegas (Z)
- Complexity classes:
- Atlantic City, polynomial time: BPP
- Monte Carlo, polynomial time: RP
- Las Vegas, polynomial time: ZP

One way function

- Definition: A polynomial time computable function

$$
\text { f: }\{0,1\}^{*}->\{0,1\}^{*}
$$

is a one-way function iff
\forall probabilistic polynomial-time algorithm A, there exists a negigible function $\varepsilon=n^{-\omega(1)}$ such that $\forall n$
$\operatorname{Prob}_{y=} f(x)$ with x randome\{0,1\} $\left[A(y)=x^{\prime}\right.$ with $\left.f\left(x^{\prime}\right)=y\right]<\varepsilon(n)$

- Theorem: if there exists a one-way function, $\mathrm{P} \neq \mathrm{NP}$
- Proof: contradiction
- Conjecture: there exists a one-way function.

Randomized algorithm and BPP

- Probabilistic algorithm:
- Uses instruction Random() that returns 0 with probability $1 / 2$ and 1 with probability $1 / 2$.
- BPP = Bounded-error Probabilistic Polynomial time
$B P P=\{f$ functions such that there exists a probabilistic polynomial time algorithm A : $\left.\forall x \in\{0,1\}^{*} \quad \operatorname{Prob}[A(x)=f(x)] \geq 2 / 3\right\}$
- Equivalent def: random values are set in input: BPP $=\{f$: it exists polynomial-time DTM M and a polynomial P $\left.\forall x \in\{0,1\}^{*} \operatorname{Prob}_{\text {r random } \in\{0,1\}^{P(x) \mid}}[M(x, r)=f(x)] \geq 2 / 3\right\}$

Examples of presumed one-way

 (based on factorization)- Ex1: multiplication $f\left(x_{1} \| x_{2}\right)=x_{1} \cdot x_{2}$
- Ex2 : n bits of the input x used as random bits to generate two $n / 3$ bits primes P_{x} and $Q_{x} . f(x)=P_{x} \cdot Q_{x}$
$-E x 3: R S A_{N, e}(x)=x^{e} \bmod N$ with $N=P Q$ and e coprime to $(P-1)(Q-1)$
- One-to-one mapping in $\mathrm{Z}_{\mathrm{N}}{ }^{*}$
- Ex4: Rabin function: $f(X)=X^{2} \bmod N$ for X in $Q R_{N}$ (X quadratic residue modulo N iff it exists $\mathrm{W}: \mathrm{X}=\mathrm{W}^{2} \bmod \mathrm{~N}$)
- One-to-one mapping in QR_{N}

Levin's universal one-way function

- Let $\mathrm{M}_{\mathrm{i}}=$ the i^{th} DTM (according to some arbitrary numbering $\mathrm{M} 1, \ldots, \mathrm{Mn}, \ldots$)
and let $M_{i}^{t}(x)$ be the output of $M_{i}(x)$ if $M_{i}(x)$ uses less than t steps, else $0^{|x|}$.
- Levin's universal one-way function f_{U} :
- Input n bits treated as a list $x_{1}, \ldots x_{\log n}$ of $n / \log n$ bit strings
- Output: $M_{1}^{\top}\left(x_{1}\right), \ldots, M_{\log n}{ }^{\top}\left(x_{\log n}\right)$ with $T=n^{2}$
- Theorem : if some one-way function g exists, then f_{U} is one way.

Encryption from one-way functions

- Def: (E,D) encryption with n-bits keys for m-bits messages. (E, D) is computationnaly secure iff, for every probabilistic polynomial-time algorithm A,
there exists a negigible function $\varepsilon=n^{-\omega(1)}$ such that $\forall n$ $\operatorname{Prob}_{k \in{ }_{R}\{0,1\}^{n}, x \in R\{0,1\}^{m}}\left[A\left(E_{k}(x)\right)=(i, b)\right.$ such that $\left.x_{i}=b\right] \leq 1 / 2+\varepsilon(n)$
- Theorem: Suppose one-way functions exist. Then, for every integer $c \geq 1$, there exists a computationally secure encryption scheme (E,D) using n -length keys for n^{c}-length messages.

Semantic security

- The encryption scheme provides no additional information on the plaintext than its previously know distribution.
- A sequence $X=\left(X_{n}\right)_{n \in N}$ of rand. var. with $X_{n} \in\{0,1\}^{m(n)}$ (m polynom) is sampleable if it exists a probabilistic polynomial time algorithm D such that, for any $\mathrm{n}, \mathrm{X}_{\mathrm{n}}=$ distribution $\mathrm{D}\left(1^{\mathrm{n}}\right)$.
- Then the encryption should not provide more information than D - le ciphertext distribution is undistinguishable from distribution $E\left(D\left(1^{n}\right)\right)$
- Def: (E,D) encryption with n-bits keys for $m(n)$-bits messages for some polynomial m. (E, D) is semantically secure iff
- \forall sampleable sequence $\left(X_{n}\right)_{n \in N}$ with $X_{n} \in\{0,1\}^{m(n)}$ (m polynom)
- \forall polynomial-time computable function f: $\{0,1\}^{*->}\{0,1\}$
- \forall probabilistic polynomial-time algorithm A,
there exists a negigible function $\varepsilon=n^{-\omega(1)}$ and a probabilistic polynomial algorithm B such that $\forall n$
$\operatorname{Prob}_{k \in R\{0,1\}^{n}, x \in x_{n}}\left[A\left(E_{k}(x)\right)=f(x)\right] \quad \leq \operatorname{Prob}_{x \in \in_{n}}\left[B\left(1^{n}\right)=f(x)\right]+\varepsilon(n)$

Outline Lecture 2

- Part 1 : Asymmetric cryptography, one way function, complexity
- Part 2 : arithmetic complexity and lower bounds : exponentiation
- Part 3 : Provable security. One-way function and NP class.
- Part 4 : RSA : the algorithm
- Part 5 : Provable security of RSA
- Part 6 : Importance of padding. Application to RSA signature

Provable security of RSA

Rivest / Shamir / Adleman (1977)

Outlines:

- RSA cipher: E and D
- Provable security of RSA

1. $E(D(x))=D(E(x))=x$
2. E is easy to compute
3. E is hard to invert without knowing D

RSA

Alice

Wants to send secret M to Bob

Bob

1/ Building keys - Bob

- p, q large prime numbers
- $\mathrm{n}=\mathrm{p} \times \mathrm{q}$
- $\varphi(\mathrm{n})=(\mathrm{p}-1)^{*}(\mathrm{q}-1)$
- e small, prime to $\varphi(\mathrm{n})$
- $\mathrm{d}=\mathrm{e}^{-1}(\bmod \varphi(\mathrm{n}))$
- Private key: (d, n) Public key: (e, n)
$\forall x \in\{0, \ldots, n-1\}$:
$D^{\mathrm{Bob}}(\mathrm{x})=\mathrm{x}^{\mathrm{d}}(\bmod \mathrm{n})$
$E^{B o b}(x)=x^{e}(\bmod n)$

Provable security of RSA

1. To generate a RSA key $[(\mathrm{n}, \mathrm{d}),(\mathrm{n}, \mathrm{e})]$ is easy (almost linear time)
2. $D^{B o b}$ is the inverse of $E^{B o b}$:

$$
\text { - } \quad \forall x \in\{0, \ldots, n-1\}: \quad D^{\mathrm{Bob}}\left(E^{\mathrm{Bob}}(\mathrm{x})\right)=E^{\mathrm{Bob}}\left(\mathrm{D}^{\mathrm{Bob}}(\mathrm{x})\right)=\mathrm{x}
$$

3. $E^{B o b}$ is a one-way trap-door function :
a) $E^{\mathrm{Bob}}(x)$ is easy to compute (in almost linear time)
b) $D^{B o b}(x)$ is easy to compute (in almost linear time) for the one who knows the trapdoor d
c) Recover x from $\mathrm{E}^{\mathrm{Bob}}(\mathrm{x})$ is computationally impossible

- Conjectured
- Theorem: Breaking the RSA private key, ie computing d from n and e is computationally more difficult than factorising n
=> Believed secure if its hard to factor big numbers

Challenges RSA

- Challenge

RSA-576
RSA-640
RSA-704
RSA-768
RSA-896
RSA-1024
RSA-1536
RSA-2048

Price	Date
$\$ 10000$	$3 / 12 / 20$
$\$ 20000$	$2 / 12 / 20$
$\$ 30000$	open
$\$ 50000$	open
$\$ 75000$	open
$\$ 100000$	open
$\$ 150000$	open
$\$ 200000$	open

Complements on RSA

- Choice of the keys:
- p, q: primes large enough [512 bits, 1024 bits=> RSA 2048]
- d large (> N1/4 [attaque de Wiener]
- e small (efficiency and ensures d to be large):
- e=3, 17, 65537 [X. 509 norm: $\mathbf{e}=65537$, only 17 multiplication]
- p such that $p-1$ has a large prime factor: $\mathrm{p}=2 . \mathrm{p}^{\prime}+1$ (idem for q) [Gordon algorithm based on Miller-Rabin primality test]
- Other attacks
- Timing-attack: based on the analysis of the time to compute $x^{d} \bmod n$: - Blinding trick: to decode, choose a random r and compute ($\left.\mathrm{r}^{\mathrm{e}} \mathrm{x}\right)^{\mathrm{d}} . \mathrm{r}^{11} \bmod \mathrm{n}$
- Chosen-ciphertext attack, adpative chosen ciphertext attack
- Frequency analysis

Outline Lecture 2

- Part 1 : Asymmetric cryptography, one way function, complexity
- Part 2 : arithmetic complexity and lower bounds : exponentiation
- Part 3 : Provable security. One-way function and NP class.
- Part 4 : RSA : the algorithm
- Part 5 : Provable security of RSA
- Part 6 : Attacks and importance of padding. Application to RSA signature.

Protection: Padding and chaining

- Protection: always add some random initalization bits to the first block and use a chaining mode.
- Eg: mode CBC [Cipher Block Chaininal

- Other modes: OFB, Counter, GCM

Assymmetric cryptography applications / RSA

- Authentication
- Signature

RSA Signature

Alice	Eve	
Receives a message M signed by Bob and verifies its signature (authentication)		Signs message M and sends it to Alice
		1. Compute $\mathrm{S}=\mathrm{D}^{\mathrm{Bob}}(\mathrm{M})$ 2. Sends (M, S) to Alice
3. receive M, S	M S	
4. compute $\mathrm{T}=\mathrm{E}(\mathrm{S})$		
5. Verifies Bob's signature By testing $\mathrm{T}=\mathrm{M}$?		

Outline Course 2

- Part 1 : Asymmetric cryptography, one way function, complexity
- Part 2 : arithmetic complexity and lower bounds : exponentiation
- Part 3 : Provable security. One-way function and NP class.
- Part 4 : RSA : the algorithm
- Part 5 : Provable security of RSA
- Part 6 : Importance of padding. Application to RSA signature

Summary Course2

- Provable security relies on complexity
- Breaking and RSA key is proved more difficult than factorization
- But decrypting a message without computing d remains an open question
- There exists variants that are proved more difficult than factorization [Rabin]: - But they are more expensive than RSA
- Choices of the key (size and form of the primes) matters
- There exist other protocols with comparable security and smaller keys [ECDLP,..]
- Importance of padding and hash function
- -> Next lecture: hash functions

