Randomization Deterministic randomized algorithms

- Randomized algorithms for decision problems
 Atlantic City (B) / Monte Carlo (R) / Las Vegas (Z)
- Complexity classes:
 - Atlantic City, polynomial time: BPP
 - Monte Carlo, polynomial time: RP
 - Las Vegas, polynomial time: ZP

One way function

Definition: A polynomial time computable function

 f: {0,1}* -> {0,1}*
 is a one-way function iff

 \forall probabilistic polynomial-time algorithm A, there exists a negigible function $\epsilon = n^{-\omega(1)}$ such that $\forall n$

 $Prob_{y = f(x) \text{ with } x \text{ random} \in \{0,1\}^n} [A(y) = x' \text{ with } f(x')=y] < \epsilon(n)$

- Theorem: if there exists a one-way function, P≠NP
 Proof: contradiction
- Conjecture: there exists a one-way function.

Randomized algorithm and BPP

- Probabilistic algorithm:
 - Uses instruction Random() that returns 0 with probability $\frac{1}{2}$ and 1 with probability $\frac{1}{2}.$
- BPP = Bounded-error Probabilistic Polynomial time

$$\begin{split} \mathsf{BPP} &= \{ f \text{ functions such that there exists a} \\ & \text{probabilistic polynomial time algorithm } A: \\ & \forall x \in \{0,1\}^* \quad \mathsf{Prob}[\ A(x) = f(x) \] \geq 2/3 \ \} \end{split}$$

 Equivalent def: random values are set in input: BPP = { *f*: it exists polynomial-time DTM *M* and a polynomial P ∀x∈{0,1}* Prob<sub>r random∈{0,1}^{P(|x|)} [*M*(x,r)=*f*(x)] ≥ 2/3 }
</sub>

Examples of presumed one-way (based on factorization)

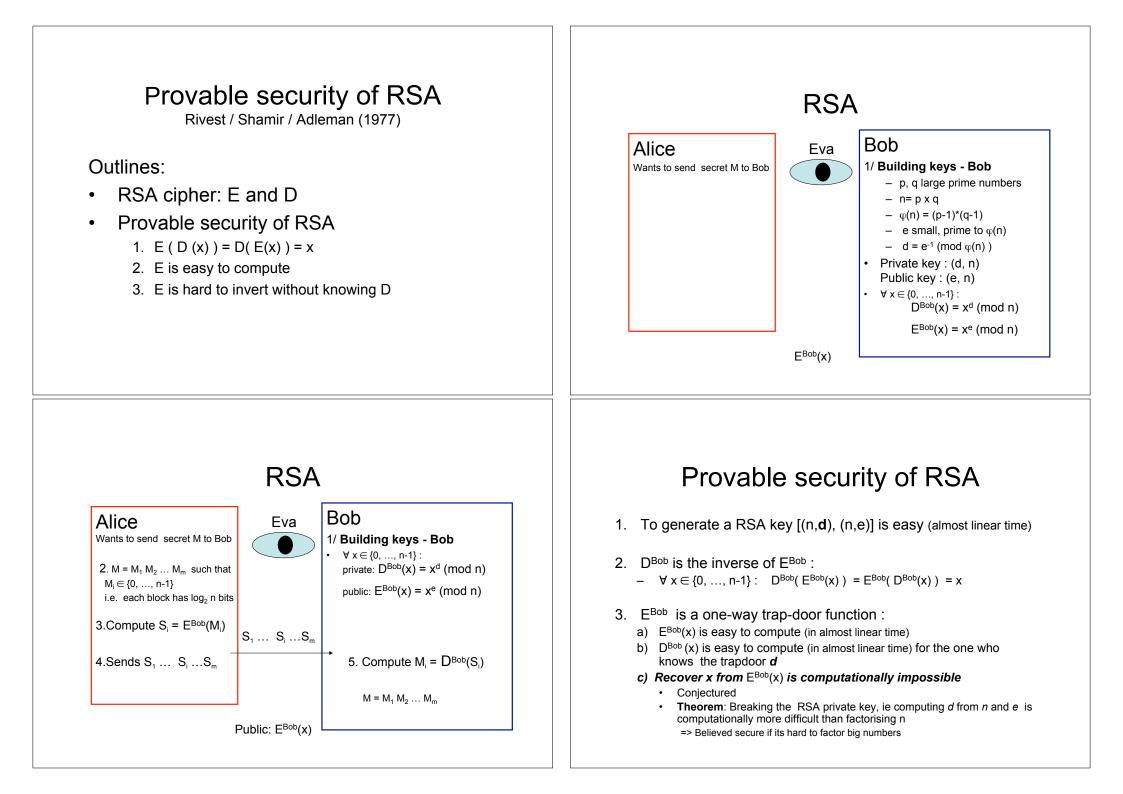
- Ex1: multiplication $f(x_1 || x_2) = x_1 \cdot x_2$
- Ex2 : n bits of the input x used as random bits to generate two n/3 bits primes P_x and Q_x . $f(x) = P_x Q_x$
- $Ex3: RSA_{N,e}(x) = x^e \mod N \quad \text{with } N=PQ \text{ and } e \text{ coprime to } (P-1)(Q-1) \\ \bullet \text{ One-to-one mapping in } Z_N^*$
- Ex4: Rabin function: $f(X) = X^2 \mod N$ for X in QR_N (X quadratic residue modulo N iff it exists W: X=W² mod N)
 - One-to-one mapping in QR_N

Levin's universal one-way function

- Let M_i= the ith DTM (according to some arbitrary numbering M1, ..., Mn, ...) and let M_i^t(x) be the output of M_i(x) if M_i(x) uses less than t steps, else 0^{|x|}.
- Levin's universal one-way function f_U :
 - Input n bits treated as a list $x_1,\,\ldots\,x_{log\,n}$ of n/log n bit strings
 - Output: $M_1^T(x_1)$, ..., $M_{\log n}^T(x_{\log n})$ with $T = n^2$
- Theorem : if some one-way function g exists, then $f_{\rm U}$ is one way.

Semantic security

- The encryption scheme provides no additional information on the plaintext than its previously know distribution.
 - A sequence X=(X_n)_{n∈N} of rand. var. with X_n∈{0,1}^{m(n)} (m polynom) is *sampleable* if it exists a probabilistic polynomial time algorithm D such that, for any n, X_n = distribution D(1ⁿ).
 - Then the encryption should not provide more information than D
 I ciphertext distribution is undistinguishable from distribution E(D(1ⁿ))
- **Def**: (E,D) encryption with n-bits keys for m(n)-bits messages for some polynomial m. (E,D) is **semantically secure** iff
 - ∀ sampleable sequence $(X_n)_{n \in N}$ with $X_n \in \{0,1\}^{m(n)}$ (m polynom)
 - − \forall polynomial-time computable function f: {0,1}*-> {0,1}
 - \forall probabilistic polynomial-time algorithm A,
 - there exists a negigible function ϵ = $n^{-\omega(1)}$ and a probabilistic polynomial algorithm B such that $\,\forall\,n$


```
\operatorname{Prob}_{k \in {\scriptscriptstyle \mathbb{R}}\{0,1\}^n, x \in {\scriptscriptstyle \mathbb{R}}X_n}[A(\mathsf{E}_k(x))=\mathsf{f}(x)] \quad \leq \operatorname{Prob}_{x \in {\scriptscriptstyle \mathbb{R}}X_n}[B(1^n)=\mathsf{f}(x)] + \epsilon(n)
```

Encryption from one-way functions

- Def: (E,D) encryption with n-bits keys for m-bits messages. (E,D) is computationnaly secure iff, for every probabilistic polynomial-time algorithm A, there exists a negigible function ε = n^{-ω(1)} such that ∀n Prob<sub>k∈_R{0,1}ⁿ, x∈_R{0,1}^m} [A(E_k(x))=(i,b) such that x_i=b] ≤ ½ + ε(n)
 </sub>
- Theorem: Suppose one-way functions exist. Then, for every integer c≥1, there exists a computationally secure encryption scheme (E,D) using n-length keys for n^c-length messages.

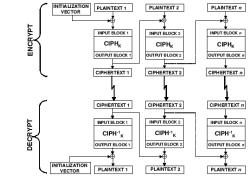
Outline Lecture 2

- Part 1 : Asymmetric cryptography, one way function, complexity
- Part 2 : arithmetic complexity and lower bounds : exponentiation
- Part 3 : Provable security. One-way function and NP class.
- Part 4 : RSA : the algorithm
- Part 5 : Provable security of RSA
- Part 6 : Importance of padding. Application to RSA signature.

Challenges RSA

 Challenge 	Price	Date
RSA-576	\$10 000	3/12/2003 [Franke&al]
RSA-640	\$ 20 000	2/12/2005 [Bahr&al]
RSA-704	\$30 000	open
RSA-768	\$50 000	open
RSA-896	\$75 000	open
RSA-1024	\$100 000	open
RSA-1536	\$150 000	open
RSA-2048	\$200 000	open

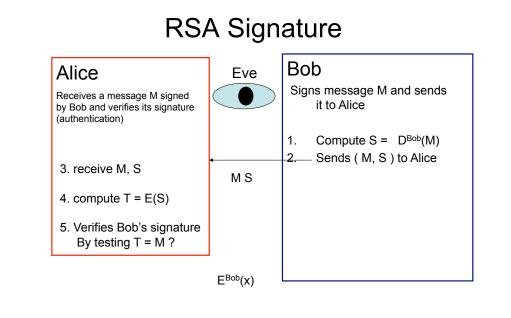
Complements on RSA

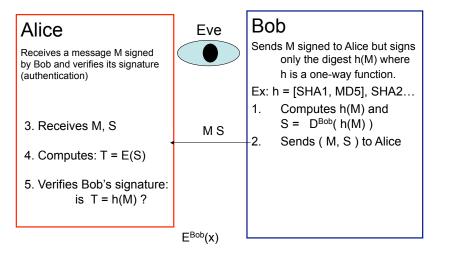

- Choice of the keys:
 - p, q: primes large enough [512 bits, 1024 bits=> RSA 2048]
 - d large (> N1/4 [attaque de Wiener]
 - e small (efficiency and ensures d to be large):
 - e=3, 17, 65537 [X.509 norm: e=65537, only 17 multiplication]
 - p such that p-1 has a large prime factor: p=2.p'+1 (idem for q) [Gordon algorithm based on Miller-Rabin primality test]
- Other attacks
 - Timing-attack: based on the analysis of the time to compute x^d mod n:
 Blinding trick: to decode, choose a random r and compute (r^ex)^d.r⁻¹ mod n
 - Chosen-ciphertext attack, adpative chosen ciphertext attack
 - Frequency analysis

Outline Lecture 2

- Part 1 : Asymmetric cryptography, one way function, complexity
- Part 2 : arithmetic complexity and lower bounds : exponentiation
- Part 3 : Provable security. One-way function and NP class.
- Part 4 : RSA : the algorithm
- Part 5 : Provable security of RSA
- Part 6 : Attacks and importance of padding. Application to RSA signature.

Protection: Padding and chaining


- Protection: always add some random initalization bits to the first block and use a chaining mode.
- Eg: mode CBC [Cipher Block Chaining]


• Other modes: OFB, Counter, GCM

Assymmetric cryptography applications / RSA

- Authentication
- Signature

RSA signature of the digest

Outline Course 2

- Part 1 : Asymmetric cryptography, one way function, complexity
- Part 2 : arithmetic complexity and lower bounds : exponentiation
- Part 3 : Provable security. One-way function and NP class.
- Part 4 : RSA : the algorithm
- Part 5 : Provable security of RSA
- Part 6 : Importance of padding. Application to RSA signature.

Summary Course2

- Provable security relies on complexity
- Breaking and RSA key is proved more difficult than factorization
 - But decrypting a message without computing d remains an open question
 - There exists variants that are proved more difficult than factorization [Rabin]:
 - But they are more expensive than RSA
 - Choices of the key (size and form of the primes) matters
- There exist other protocols with comparable security and smaller keys [ECDLP,..]
- Importance of padding and hash function
- -> Next lecture: hash functions