
Randomization 
Deterministic randomized algorithms 

•  Randomized algorithms for decision problems 
– Atlantic City (B) / Monte Carlo (R) / Las Vegas (Z) 

•  Complexity classes:  
– Atlantic City, polynomial time: BPP  
– Monte Carlo, polynomial time: RP 
– Las Vegas, polynomial time: ZP 

Randomized algorithm and BPP 
•  Probabilistic algorithm:  

–  Uses instruction Random() that returns 0 with probability ! 
and 1 with probability !. 

•  BPP = Bounded-error Probabilistic Polynomial time 

BPP = { f functions such that there exists a 
     probabilistic polynomial time algorithm A: 

  ∀x∈{0,1}*   Prob[ A(x)=f(x) ] " 2/3  } 

•  Equivalent def: random values are set in input: 
BPP = { f: it exists polynomial-time DTM M and a polynomial P     
         ∀x∈{0,1}*  Probr random∈{0,1}P(|x|) [ M(x,r)=f(x) ] " 2/3  }    

One way function 
•  Definition: A polynomial time computable function 

  f: {0,1}*  ->    {0,1}*  
is a one-way function iff 

∀ probabilistic polynomial-time algorithm A, 
there exists a negigible function # = n-$(1) such that ∀n 

Proby = f(x) with x random∈{0,1}n [A(y) = x’ with f(x’)=y ] < #(n)   

•  Theorem: if there exists a one-way function, P%NP 
–  Proof: contradiction 

•  Conjecture: there exists a one-way function. 

Examples of presumed one-way 
(based on factorization) 

– Ex1: multiplication  f(x1 || x2 ) = x1 . x2  

– Ex2 : n bits of the input x used as random bits to 
generate two n/3 bits primes Px and Qx.  f(x) = Px.Qx 

– Ex3 : RSAN,e(x) = xe mod N  with N=PQ and e coprime to (P-1)(Q-1)    

•  One-to-one mapping in ZN* 

– Ex4: Rabin function: f(X) = X2 mod N  for X in QRN 
   (X quadratic residue modulo N iff it exists W: X=W2 mod N ) 
•  One-to-one mapping in QRN 



Levin’s universal one-way function 

•  Let Mi= the ith DTM (according to some arbitrary 
numbering M1, …, Mn, …) 
and let Mi

t(x) be the output of Mi(x) if Mi(x) uses less 
than t steps, else 0|x|. 

•  Levin’s universal one-way function fU : 
–  Input n bits treated as a list x1, … xlog n of n/log n bit strings 
–  Output: M1

T(x1), …, Mlog n
T(xlog n)  with T = n2   

•  Theorem : if some one-way function g exists, 
   then fU is one way. 

Encryption from one-way functions 
•  Def: (E,D) encryption with n-bits keys for m-bits messages. 

(E,D) is computationnaly secure iff, for every probabilistic 
polynomial-time algorithm A, 
there exists a negigible function # = n-$(1) such that ∀n 
Probk∈R{0,1}n, x∈R{0,1}m [A(Ek(x))=(i,b) such that xi=b] & ! + #(n)    

•  Theorem: Suppose one-way functions exist. 
Then, for every integer c"1, there exists a 
computationally secure encryption scheme (E,D) using 
n-length keys for nc-length messages. 

Semantic security 
•  The encryption scheme provides no additional information on 

the plaintext than its previously know distribution. 
–  A sequence X=(Xn)n∈N of rand. var. with Xn∈{0,1}m(n)  (m polynom) 

is sampleable if it exists a probabilistic polynomial time algorithm D such 
that, for any n,  Xn = distribution D(1n) . 

–  Then the encryption should not provide more information than D 
•  Ie ciphertext distribution is  undistinguishable from  distribution E(D(1n)) 

•  Def: (E,D) encryption with n-bits keys for m(n)-bits messages 
for some polynomial m. (E,D) is semantically secure iff 
–  ∀sampleable sequence (Xn)n∈N with Xn∈{0,1}m(n)  (m polynom) 
–  ∀polynomial-time computable function f: {0,1}*-> {0,1} 
–  ∀probabilistic polynomial-time algorithm A, 
there exists a negigible function # = n-$(1) and a probabilistic polynomial 

algorithm B such that ∀n 
Probk∈R{0,1}n, x∈RXn [A(Ek(x))= f(x) ]     &  Probx∈RXn

[ B(1n) = f(x)] + #(n)    

Outline Lecture 2 
•  Part 1 : Asymmetric cryptography, one way function, complexity 
•  Part 2 : arithmetic complexity and lower bounds : exponentiation 
•  Part 3 : Provable security. One-way function and NP class. 

•  Part 4 : RSA : the algorithm 
•  Part 5 : Provable security of RSA 

•  Part 6 : Importance of padding.  Application to RSA signature. 



Provable security of RSA 
Rivest / Shamir / Adleman (1977) 

Outlines: 
•  RSA cipher: E and D 
•  Provable security of RSA 

1.  E ( D (x) ) = D( E(x) ) = x 
2.  E is easy to compute 
3.  E is hard to invert without knowing D 

RSA 
Alice 
Wants to send  secret M to Bob 

Bob 
1/ Building keys - Bob 

–  p, q large prime numbers 
–  n= p x q 
–  !(n) = (p-1)*(q-1) 
–   e small, prime to !(n)  
–   d = e-1 (mod !(n) ) 

•  Private key : (d, n)  
Public key : (e, n) 

•  " x # {0, …, n-1} :  
  DBob(x) = xd (mod n) 
  EBob(x) = xe (mod n) 

Eva 

EBob(x) 

RSA  
Alice 
Wants to send  secret M to Bob 

Bob 
1/ Building keys - Bob 
•  " x # {0, …, n-1} :  

private: DBob(x) = xd (mod n) 
public: EBob(x) = xe (mod n) 

Eva 

Public: EBob(x) 

3.Compute Si = EBob(Mi)  

4.Sends S1 …  Si …Sm  

 S1 …  Si …Sm  

5. Compute Mi = DBob(Si)  

M = M1 M2 … Mm 

2. M = M1 M2 … Mm  such that 
  Mi # {0, …, n-1}  
  i.e.  each block has log2 n bits 

Provable security of RSA 
1.  To generate a RSA key [(n,d), (n,e)] is easy (almost linear time) 

2.  DBob is the inverse of EBob : 
–  " x # {0, …, n-1} :    DBob( EBob(x) )  = EBob( DBob(x) )  = x 

3.  EBob  is a one-way trap-door function : 
a)  EBob(x) is easy to compute (in almost linear time) 
b)  DBob (x) is easy to compute (in almost linear time) for the one who 

knows  the trapdoor d 
c)  Recover x from EBob(x) is computationally impossible  

•  Conjectured 
•  Theorem: Breaking the  RSA private key, ie computing d from n and e  is 

computationally more difficult than factorising n 
=> Believed secure if its hard to factor big numbers 



Challenges RSA 

•  Challenge  Price   Date 
RSA-576  $10 000  3/12/2003 [Franke&al] 
RSA-640  $ 20 000  2/12/2005 [Bahr&al] 
RSA-704  $30 000   open 
RSA-768  $50 000   open 
RSA-896  $75 000   open  
RSA-1024  $100 000   open  
RSA-1536  $150 000   open  
RSA-2048  $200 000   open 

Outline Lecture 2 
•  Part 1 : Asymmetric cryptography, one way function, complexity 
•  Part 2 : arithmetic complexity and lower bounds : exponentiation 
•  Part 3 : Provable security. One-way function and NP class. 
•  Part 4 : RSA : the algorithm 
•  Part 5 : Provable security of RSA 

•  Part 6 : Attacks and importance of padding.   
      Application to RSA signature. 

Complements on RSA 

•  Choice of the keys: 
–   p, q: primes large enough [512 bits, 1024 bits=> RSA 2048]  
–   d large     (> N1/4 [attaque de Wiener]  
–   e small (efficiency and ensures d to be large):  

•  e=3, 17, 65537    [X.509 norm: e=65537, only 17 multiplication] 
–   p such that p-1 has a large prime factor: p=2.p’+1  (idem for q) 

  [Gordon algorithm based on Miller-Rabin primality test]    

•  Other attacks 
–  Timing-attack: based on the analysis of the time to compute xd mod n:  

•  Blinding trick: to decode, choose a random r and compute (rex)d.r-1 mod n 
–  Chosen-ciphertext attack, adpative chosen ciphertext attack 
–  Frequency analysis  

Protection: Padding and chaining 
•  Protection: always add some random initalization bits to the first block and  

use a chaining mode. 
•  Eg:  mode CBC [Cipher Block Chaining] 

•  Other modes: OFB, Counter, GCM  



Assymmetric cryptography 
applications / RSA 

•  Authentication 
•  Signature 

RSA Signature  
Alice Bob 

 Signs message M and sends  
it to Alice 

1.  Compute S =   DBob(M) 
2.  Sends ( M, S ) to Alice 

Eve 

EBob(x) 

3. receive M, S 

4. compute T = E(S) 

5. Verifies Bob’s signature 
     By testing T = M ? 

    M S 

Receives a message M signed 
by Bob and verifies its signature 
(authentication) 

RSA signature of the digest 
Alice Bob 

Sends M signed to Alice but signs 
only the digest h(M) where 
h is a one-way function. 

Ex: h = [SHA1, MD5], SHA2… 
1.  Computes h(M) and  

S =   DBob( h(M) ) 
2.  Sends ( M, S ) to Alice 

Eve 

EBob(x) 

3. Receives M, S 

4. Computes: T = E(S) 

5. Verifies Bob’s signature: 
               is  T = h(M) ? 

    M S 

Receives a message M signed 
by Bob and verifies its signature 
(authentication) 

Outline Course 2 
•  Part 1 : Asymmetric cryptography, one way function, complexity 
•  Part 2 : arithmetic complexity and lower bounds : exponentiation 
•  Part 3 : Provable security. One-way function and NP class. 
•  Part 4 : RSA : the algorithm 
•  Part 5 : Provable security of RSA 
•  Part 6 : Importance of padding.  Application to RSA signature. 



Summary Course2 
•  Provable security relies on complexity 
•  Breaking and RSA key is proved more difficult than factorization 

–  But decrypting a message without computing d remains an open question 
–  There exists variants that are proved more difficult than factorization [Rabin]: 

•  But they are more expensive than RSA 
–  Choices of the key (size and form of the primes) matters  

•  There exist other protocols with comparable security and smaller keys [ECDLP,..] 

•  Importance of padding  and hash function 

•  -> Next lecture: hash functions 


