Randomization
Deterministic randomized algorithms

* Randomized algorithms for decision problems
— Atlantic City (B) / Monte Carlo (R) / Las Vegas (2)

« Complexity classes:
— Atlantic City, polynomial time: BPP
— Monte Carlo, polynomial time: RP
— Las Vegas, polynomial time: ZP

Randomized algorithm and BPP

 Probabilistic algorithm:

— Uses instruction Random() that returns O with probability 2
and 1 with probability 7%.

« BPP = Bounded-error Probabilistic Polynomial time

BPP = { ffunctions such that there exists a
probabilistic polynomial time algorithm A:
vx€{0,1}* Prob[ A(x)=f(x)]=2/3 }

» Equivalent def: random values are set in input:
BPP = { f: it exists polynomial-time DTM M and a polynomial P
VXE{0,1}* PI'Ob,. randomE{O,'l}P(le)[ M(X,I’)=f(X) ] 2 2/3 }

One way function

 Definition: A polynomial time computable function
f. {0,1}* > {0,1}*
is a one-way function iff

V probabilistic polynomial-time algorithm A,
there exists a negigible function € = n"®(") such that ¥n

Prob, - ¢ with x randome{o,1jn [A(Y) = X" with f(X')=y ] < €(n)

* Theorem: if there exists a one-way function, PZNP
— Proof: contradiction

» Conjecture: there exists a one-way function.

Examples of presumed one-way
(based on factorization)
— Ex1: multiplication (x4 || X, ) = X4 . X,

— Ex2 : n bits of the input x used as random bits to
generate two n/3 bits primes P, and Q,. f(x) = P,.Q,

—Ex3: RSAN,e(X) = X mod N with N=PQ and e coprime to (P-1)(Q-1)
* One-to-one mapping in Z*

— Ex4: Rabin function: f(X) = X2 mod N for X in QR

(X quadratic residue modulo N iff it exists W: X=W2 mod N )
* One-to-one mapping in QR




Levin’s universal one-way function

Let M= the it" DTM (according to some arbitrary
numbering M1, ..., Mn, ...)

and let M{(x) be the output of M;(x) if M,(x) uses less
than t steps, else 0.

Levin’s universal one-way function f, :
— Input n bits treated as a list x,, ... X4 , Of N/log n bit strings
— Output: M;T(X1), .., Miog o (Xiog n) With T =n?

Theorem : if some one-way function g exists,
then f, is one way.

Encryption from one-way functions

+ Def: (E,D) encryption with n-bits keys for m-bits messages.
(E,D) is computationnaly secure iff, for every probabilistic
polynomial-time algorithm A,
there exists a negigible function € = n"®(M such that ¥n

Proby e 10,10, xe 0,1 [A(E((X))=(i,b) such that x=b] < 72 + ¢(n)

» Theorem: Suppose one-way functions exist.
Then, for every integer c21, there exists a
computationally secure encryption scheme (E,D) using
n-length keys for n°-length messages.

Semantic security

The encryption scheme provides no additional information on
the plaintext than its previously know distribution.

— A sequence X=(X,),en Of rand. var. with X, €{0,1}™™ (m polynom)
is sampleable if it exists a probabilistic polynomial time algorithm D such
that, for any n, X, = distribution D(1") .

— Then the encryption should not provide more information than D
* le ciphertext distribution is undistinguishable from distribution E(D(1"))

Def: (E,D) encryption with n-bits keys for m(n)-bits messages
for some polynomial m. (E,D) is semantically secure iff
— Vsampleable sequence (X,),<n With X, €{0,1}™™ (m polynom)
— Vpolynomial-time computable function f: {0,1}*-> {0,1}
— Vprobabilistic polynomial-time algorithm A,
there exists a negigible function € = n"@() and a probabilistic polynomial
algorithm B such that ¥n
Probyc 0,10, xex, A(E((X))= f(x) ] = Prob,c x [ B(1") = f(x)] + &(n)
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« Part 1 : Asymmetric cryptography, one way function, complexity
» Part 2 : arithmetic complexity and lower bounds : exponentiation
» Part 3 : Provable security. One-way function and NP class.

* Part 4 : RSA : the algorithm
* Part 5 : Provable security of RSA

» Part 6 : Importance of padding. Application to RSA signature.




Provable security of RSA

Rivest / Shamir / Adleman (1977)

Outlines:
 RSAcipher: E and D

* Provable security of RSA
1. E(D(x))=D(E(x))=x
2. E is easy to compute
3. Eis hard to invert without knowing D

RSA

Alice Eva |Bob

Wants to send secret M to Bob @ 1/ Building keys - Bob
— p, g large prime numbers

- n=pxq
= ¢(n) = (p-1)*(a-1)
— e small, prime to ¢(n)
— d=e"(mod ¢(n))
» Private key : (d, n)
Public key : (e, n)
Vxe{0,...,n1}:
DBob(x) = x4 (mod n)

EBod(x) = x¢ (mod n)

EBOb(X)

RSA

Alice Eva |Bob

Wants to send secret M to Bob @ 1/ Building keys - Bob
+ Vx€{0,...,n1}:

2.M=M; M, ... M,, such that private: DB(x) = x4 (mod n)
M, €{0, ..., n-1} ... EBob = ye
i.e. each block has log, n bits public: E5%(x) = x° (mod n)

3.Compute S; = EBob(M,)

4SendsS, ... S,...S, 5. Compute M, = DBob(S)

M=M,M,..M,

Public: EBb(x)

1.

2.

3.

Provable security of RSA

To generate a RSA key [(n,d), (n,e)] is easy (almost linear time)

DBob js the inverse of EBeb :
— VXE(0,...,n-1}: DBob( EBob(x)) = EBob( DBob(x) ) = x

EBob is a one-way trap-door function :
a) EBo(x) is easy to compute (in almost linear time)
b) DBeb(x) is easy to compute (in almost linear time) for the one who
knows the trapdoor d
c) Recover x from EB°®(x) is computationally impossible
Conjectured

Theorem: Breaking the RSA private key, ie computing d from n and e is
computationally more difficult than factorising n
=> Believed secure if its hard to factor big numbers




* Challenge
RSA-576
RSA-640
RSA-704
RSA-768
RSA-896
RSA-1024
RSA-1536
RSA-2048

Challenges RSA

Price Date

$10 000 3/12/2003 [Franke&al]
$ 20000 2/12/2005 [Bahr&al]
$30 000 open

$50 000  open

$75000 open

$100 000 open

$150 000 open

$200 000 open
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Part 1 : Asymmetric cryptography, one way function, complexity
Part 2 : arithmetic complexity and lower bounds : exponentiation
Part 3 : Provable security. One-way function and NP class.

Part 4 : RSA : the algorithm

Part 5 : Provable security of RSA

Part 6 : Attacks and importance of padding.
Application to RSA signature.

Complements on RSA

» Choice of the keys:

— p, q: primes large enough [512 bits, 1024 bits=> RSA 2048]

dlarge (> N1/4 [attaque de Wiener]
e small (efficiency and ensures d to be large):

» e=3, 17, 65537 [X.509 norm: e=65537, only 17 multiplication]

p such that p-1 has a large prime factor: p=2.p’+1 (idem for q)

[Gordon algorithm based on Miller-Rabin primality test]

e Other attacks

— Timing-attack: based on the analysis of the time to compute x¢ mod n:
* Blinding trick: to decode, choose a random r and compute (rex)d.r'* mod n
— Chosen-ciphertext attack, adpative chosen ciphertext attack

— Frequency analysis

Protection: Padding and chaining

Protection: always add some random initalization bits to the first block and
use a chaining mode.

Eg: mode CBC [Cipher Block Chaininal

(~ [NTIALZATION PLAINTEXT 2 PLAINTEXT
TRLIZAT [peamntexts | [ | [ |
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I I
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. CIPHERTEXT 1 CIPHERTEXT 2 CIPHERTEXT n
a CIPHERTEXT 1 [ciPHERTEXT 2] [cipHERTEXT 0]
T
¥ ¥
I INPUTBLOCK 1 INPUT BLOCK 2 INPUT BLOCK n
>
&Y CIPH, CIPH, CIPH,
5
w [OUTPUT BLOCK 1 OUTPUTBLOCK 2 [OUTPUT BLOCK n)
° 3 3
NITIALIZATION ,—I—\
\_. | vecror PLAINTEXT 1 PLAINTEXT 2 PLAINTEXT n

Other modes: OFB, Counter, GCM




Assymmetric cryptography
applications / RSA

* Authentication

 Signature

RSA Signature

Alice

Receives a message M signed
by Bob and verifies its signature
(authentication)

3. receive M, S

4. compute T = E(S)

5. Verifies Bob’s signature
By testing T=M ?

Eve

o

Bob

Signs message M and sends
it to Alice

1.  Compute S = DBod(M)

MS

EBOb(X)

2. Sends (M, S) to Alice

RSA signature of the digest

Alice

Receives a message M signed
by Bob and verifies its signature
(authentication)

3. Receives M, S
4. Computes: T = E(S)

5. Verifies Bob’s signature:
is T=h(M)?

Eve

o

MS

Bob

Sends M signed to Alice but signs
only the digest h(M) where
h is a one-way function.

Ex: h = [SHA1, MD5], SHA2...

1.  Computes h(M) and
S = DBob( h(M))

EBob(X)

2. Sends (M, S) toAlice
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Summary Course2

Provable security relies on complexity
Breaking and RSA key is proved more difficult than factorization
— But decrypting a message without computing d remains an open question
— There exists variants that are proved more difficult than factorization [Rabin]:
» But they are more expensive than RSA
— Choices of the key (size and form of the primes) matters

There exist other protocols with comparable security and smaller keys [ECDLP,..]
Importance of padding and hash function

-> Next lecture: hash functions




