
Randomization
Deterministic randomized algorithms

•  Randomized algorithms for decision problems
– Atlantic City (B) / Monte Carlo (R) / Las Vegas (Z)

•  Complexity classes:
– Atlantic City, polynomial time: BPP
– Monte Carlo, polynomial time: RP
– Las Vegas, polynomial time: ZP

Randomized algorithm and BPP
•  Probabilistic algorithm:

–  Uses instruction Random() that returns 0 with probability !
and 1 with probability !.

•  BPP = Bounded-error Probabilistic Polynomial time

BPP = { f functions such that there exists a
 probabilistic polynomial time algorithm A:

 ∀x∈{0,1}* Prob[A(x)=f(x)] " 2/3 }

•  Equivalent def: random values are set in input:
BPP = { f: it exists polynomial-time DTM M and a polynomial P
 ∀x∈{0,1}* Probr random∈{0,1}P(|x|) [M(x,r)=f(x)] " 2/3 }

One way function
•  Definition: A polynomial time computable function

 f: {0,1}* -> {0,1}*
is a one-way function iff

∀ probabilistic polynomial-time algorithm A,
there exists a negigible function # = n-$(1) such that ∀n

Proby = f(x) with x random∈{0,1}n [A(y) = x’ with f(x’)=y] < #(n)

•  Theorem: if there exists a one-way function, P%NP
–  Proof: contradiction

•  Conjecture: there exists a one-way function.

Examples of presumed one-way
(based on factorization)

– Ex1: multiplication f(x1 || x2) = x1 . x2

– Ex2 : n bits of the input x used as random bits to
generate two n/3 bits primes Px and Qx. f(x) = Px.Qx

– Ex3 : RSAN,e(x) = xe mod N with N=PQ and e coprime to (P-1)(Q-1)

•  One-to-one mapping in ZN*

– Ex4: Rabin function: f(X) = X2 mod N for X in QRN
 (X quadratic residue modulo N iff it exists W: X=W2 mod N)
•  One-to-one mapping in QRN

Levin’s universal one-way function

•  Let Mi= the ith DTM (according to some arbitrary
numbering M1, …, Mn, …)
and let Mi

t(x) be the output of Mi(x) if Mi(x) uses less
than t steps, else 0|x|.

•  Levin’s universal one-way function fU :
–  Input n bits treated as a list x1, … xlog n of n/log n bit strings
–  Output: M1

T(x1), …, Mlog n
T(xlog n) with T = n2

•  Theorem : if some one-way function g exists,
 then fU is one way.

Encryption from one-way functions
•  Def: (E,D) encryption with n-bits keys for m-bits messages.

(E,D) is computationnaly secure iff, for every probabilistic
polynomial-time algorithm A,
there exists a negigible function # = n-$(1) such that ∀n
Probk∈R{0,1}n, x∈R{0,1}m [A(Ek(x))=(i,b) such that xi=b] & ! + #(n)

•  Theorem: Suppose one-way functions exist.
Then, for every integer c"1, there exists a
computationally secure encryption scheme (E,D) using
n-length keys for nc-length messages.

Semantic security
•  The encryption scheme provides no additional information on

the plaintext than its previously know distribution.
–  A sequence X=(Xn)n∈N of rand. var. with Xn∈{0,1}m(n) (m polynom)

is sampleable if it exists a probabilistic polynomial time algorithm D such
that, for any n, Xn = distribution D(1n) .

–  Then the encryption should not provide more information than D
•  Ie ciphertext distribution is undistinguishable from distribution E(D(1n))

•  Def: (E,D) encryption with n-bits keys for m(n)-bits messages
for some polynomial m. (E,D) is semantically secure iff
–  ∀sampleable sequence (Xn)n∈N with Xn∈{0,1}m(n) (m polynom)
–  ∀polynomial-time computable function f: {0,1}*-> {0,1}
–  ∀probabilistic polynomial-time algorithm A,
there exists a negigible function # = n-$(1) and a probabilistic polynomial

algorithm B such that ∀n
Probk∈R{0,1}n, x∈RXn [A(Ek(x))= f(x)] & Probx∈RXn

[B(1n) = f(x)] + #(n)

Outline Lecture 2
•  Part 1 : Asymmetric cryptography, one way function, complexity
•  Part 2 : arithmetic complexity and lower bounds : exponentiation
•  Part 3 : Provable security. One-way function and NP class.

•  Part 4 : RSA : the algorithm
•  Part 5 : Provable security of RSA

•  Part 6 : Importance of padding. Application to RSA signature.

Provable security of RSA
Rivest / Shamir / Adleman (1977)

Outlines:
•  RSA cipher: E and D
•  Provable security of RSA

1.  E (D (x)) = D(E(x)) = x
2.  E is easy to compute
3.  E is hard to invert without knowing D

RSA
Alice
Wants to send secret M to Bob

Bob
1/ Building keys - Bob

–  p, q large prime numbers
–  n= p x q
–  !(n) = (p-1)*(q-1)
–  e small, prime to !(n)
–  d = e-1 (mod !(n))

•  Private key : (d, n)
Public key : (e, n)

•  " x # {0, …, n-1} :
 DBob(x) = xd (mod n)
 EBob(x) = xe (mod n)

Eva

EBob(x)

RSA
Alice
Wants to send secret M to Bob

Bob
1/ Building keys - Bob
•  " x # {0, …, n-1} :

private: DBob(x) = xd (mod n)
public: EBob(x) = xe (mod n)

Eva

Public: EBob(x)

3.Compute Si = EBob(Mi)

4.Sends S1 … Si …Sm

 S1 … Si …Sm

5. Compute Mi = DBob(Si)

M = M1 M2 … Mm

2. M = M1 M2 … Mm such that
 Mi # {0, …, n-1}
 i.e. each block has log2 n bits

Provable security of RSA
1.  To generate a RSA key [(n,d), (n,e)] is easy (almost linear time)

2.  DBob is the inverse of EBob :
–  " x # {0, …, n-1} : DBob(EBob(x)) = EBob(DBob(x)) = x

3.  EBob is a one-way trap-door function :
a)  EBob(x) is easy to compute (in almost linear time)
b)  DBob (x) is easy to compute (in almost linear time) for the one who

knows the trapdoor d
c)  Recover x from EBob(x) is computationally impossible

•  Conjectured
•  Theorem: Breaking the RSA private key, ie computing d from n and e is

computationally more difficult than factorising n
=> Believed secure if its hard to factor big numbers

Challenges RSA

•  Challenge Price Date
RSA-576 $10 000 3/12/2003 [Franke&al]
RSA-640 $ 20 000 2/12/2005 [Bahr&al]
RSA-704 $30 000 open
RSA-768 $50 000 open
RSA-896 $75 000 open
RSA-1024 $100 000 open
RSA-1536 $150 000 open
RSA-2048 $200 000 open

Outline Lecture 2
•  Part 1 : Asymmetric cryptography, one way function, complexity
•  Part 2 : arithmetic complexity and lower bounds : exponentiation
•  Part 3 : Provable security. One-way function and NP class.
•  Part 4 : RSA : the algorithm
•  Part 5 : Provable security of RSA

•  Part 6 : Attacks and importance of padding.
 Application to RSA signature.

Complements on RSA

•  Choice of the keys:
–  p, q: primes large enough [512 bits, 1024 bits=> RSA 2048]
–  d large (> N1/4 [attaque de Wiener]
–  e small (efficiency and ensures d to be large):

•  e=3, 17, 65537 [X.509 norm: e=65537, only 17 multiplication]
–  p such that p-1 has a large prime factor: p=2.p’+1 (idem for q)

 [Gordon algorithm based on Miller-Rabin primality test]

•  Other attacks
–  Timing-attack: based on the analysis of the time to compute xd mod n:

•  Blinding trick: to decode, choose a random r and compute (rex)d.r-1 mod n
–  Chosen-ciphertext attack, adpative chosen ciphertext attack
–  Frequency analysis

Protection: Padding and chaining
•  Protection: always add some random initalization bits to the first block and

use a chaining mode.
•  Eg: mode CBC [Cipher Block Chaining]

•  Other modes: OFB, Counter, GCM

Assymmetric cryptography
applications / RSA

•  Authentication
•  Signature

RSA Signature
Alice Bob

 Signs message M and sends
it to Alice

1.  Compute S = DBob(M)
2.  Sends (M, S) to Alice

Eve

EBob(x)

3. receive M, S

4. compute T = E(S)

5. Verifies Bob’s signature
 By testing T = M ?

 M S

Receives a message M signed
by Bob and verifies its signature
(authentication)

RSA signature of the digest
Alice Bob

Sends M signed to Alice but signs
only the digest h(M) where
h is a one-way function.

Ex: h = [SHA1, MD5], SHA2…
1.  Computes h(M) and

S = DBob(h(M))
2.  Sends (M, S) to Alice

Eve

EBob(x)

3. Receives M, S

4. Computes: T = E(S)

5. Verifies Bob’s signature:
 is T = h(M) ?

 M S

Receives a message M signed
by Bob and verifies its signature
(authentication)

Outline Course 2
•  Part 1 : Asymmetric cryptography, one way function, complexity
•  Part 2 : arithmetic complexity and lower bounds : exponentiation
•  Part 3 : Provable security. One-way function and NP class.
•  Part 4 : RSA : the algorithm
•  Part 5 : Provable security of RSA
•  Part 6 : Importance of padding. Application to RSA signature.

Summary Course2
•  Provable security relies on complexity
•  Breaking and RSA key is proved more difficult than factorization

–  But decrypting a message without computing d remains an open question
–  There exists variants that are proved more difficult than factorization [Rabin]:

•  But they are more expensive than RSA
–  Choices of the key (size and form of the primes) matters

•  There exist other protocols with comparable security and smaller keys [ECDLP,..]

•  Importance of padding and hash function

•  -> Next lecture: hash functions

