Security Models: Proofs

Lecture 2

Jean-Louis Roch

Master-2 Security, Cryptology and Coding of Information Systems Grenoble University, France ENSIMAG/INPG – UJF

- Lecture 1 : attacks; security defs; unconditional security and entropy.
- Lecture 2 :
 - Part 2 : Asymmetric protocols and provable security
 - Asymmetric cryptography is not unconditionally secure
 - 2 Provable security : arithmetic complexity and reduction
 - **3** Complexity and lower bounds : exponentiation
 - P, NP classes

Symmetric cryptosystem and unconditional security

Definition : Unconditional security or Perfect secrecy

The symmetric cipher is unconditionally secure iff H(P|C) = H(P)

Shannon's theorem : necessary condition, lower bound on K

In any unconditionally secure cryptosystem : $H(K) \ge H(P)$.

Existence of unconditionally secure cryptosystem

In any group *G*, Vernam cipher (or One-Time-Pad) is unconditionally secure.

Asymmetric cryptography : not unconditionally secure

• Let K_e = public key; let K_d =secret key. The public key K_e is fixed and known; then C gives all information about P :

$$H(P|C)=0$$

 \implies asymmetric cryptography is not unconditionally secure.

- Moreover, $D_{K_d} = E_{K_e}^{-1}$: then $H(K_d|K_e) = 0$.
- Shannon's information theory cannot characterize the security of an asymmetric cryptosystem → complexity theory

Asymmetric cipher and Provable security

Definition : one-way function

A bijection (i.e. one-to-one mapping) f is **one-way** iff

- (i) It is easy to compute f(x) from x;
- (ii) Computation of $x = f^{-1}(y)$ from y = f(x) is intractable,

i.e. requires too much operations, e.g. $10^{120}\simeq 2^{400}$

How to prove one-way?

- (i) Analyze the arithmetic complexity of an algorithm that computes f.
- (ii) Provide a lower bound on the minimum arithmetic complexity to compute x = f⁻¹(y) given y
 - very hard to obtain lower bounds in complexity theory
 - it is related both to the problem f^{-1} and the input y (i.e. x)

Provable security [Contradiction proof, by reduction] if computation of f^{-1} is not intractable, then a well-studied and presumed intractable problem could be solved.

Polynomial reductions

Definition of P-reduction : \leq_P

- Let A and B be two problems
- Def : oracle for B : OracleB(x) computes B(x) in time |x|.
- Def : A ≤_P B iff there exists an algorithm AlgoA that computes A(x) in polynomial time
 i.e. in Time ≤ α.|x|^k = |x|^{O(1)} using standard operations (DTM or RAM model) and oracles for B.

Example : Brown's reduction for RSA (with straight line program)

LE-RSA == RSA with low exponent e

if there is an efficient program that, given N, constructs a straight line program that efficiently solves LE-RSA with modulus N, (*i.e.* constructs a polynomial that inverts the RSA encryption function), then the program can also be used to efficiently factor N. \hookrightarrow This suggests that LE-RSA may very well be equivalent to factoring.

Arithmetic complexity : an example

Exponentiation in a group (G, \otimes, e) with m = |G| elements

- Input : $x \in G$, $n \in \{0, \dots, |G|-1\}$ an integer
- Output : $y \in G$ such that $y = x^n$;
- In practice : G is finite but has at least 10¹²⁰ elements

Naive algorithm

- y=e; for (i=0; i < n; i++) y=y \otimes x;
- This algorithm does not work in practice : why?

What's about this one?

```
G power( G x, int n)
{
    return (n==0)? e : x ⊗ power( x, n-1 );
}
```

 \hookrightarrow Can you do better?

Recursive binary exponentiation : $x^n = (x^{n/2})^2 \otimes x^{n\%2}$

```
G power( G x, int n)
{
    if (n==0) { return e; }
    elsif (n==1) { return x; }
    else { G tmp = power( x, n/2);
        tmp = tmp & tmp;
        return (n%2 ==0)? tmp : tmp & x;
    }
}
```

Arithmetic complexity

$$\log_2 n \le \#$$
multiplications $\le 2 \log_2 n$

E.g. : x^{15} : computed with 6 multiplications

 \hookrightarrow Can you do better?

Lower bound for #multiplications to compute x^n

Let g(n) = minimum number of multiplications to compute x^n .

Direct lower bound of g(n)

 \implies recursive binary powering is not optimal (e.g. x^{15})

Theorem : $g(n) \ge \log_2 n$

Proof : by recurrence [dynamic programming]

•
$$g(2) = 1;$$

•
$$g(n) = \min_{i=1,...,n-1} \max(g(i); g(n-i)) + 1 \ge \log_2(n-1) + 1 \ge \log_2 n$$

- Lecture 2 : Asymmetric protocols and provable security
 - Asymmetric cryptography is not unconditionally secure
 - Provable security : arithmetic complexity and reduction
 - Complexity and lower bounds : exponentiation
 - P, NP classes. Reduction.

P and NP : defintions

- Complexity classes : Two basic computing models :
 - Deterministc Turing Machine (DTM) (almost equivalent to RAM)
 - Non-Deterministic Turing Machine (NDTM) : prefix N
 - $X \subset NX \subset NX SPACE = X SPACE$
- 2 Decision problems and NP class
- **③** Equivalent definitions of NP :
 - == set of decision problems that can be solved in polynomial-time on a Non-Deterministic TM (NDTM) ↔ Non-deterministic Polynomial time
 - == set of decision problems which YES output can be proved by a certification algorithm that runs in polynomial time on a Deterministic TM → Polynomial-time proofs
- Includes P.
 - $\mathsf{Examples}:\mathsf{IsCompose}\in\mathsf{NP}\,\mathsf{;}\,\mathsf{IsPrime}\in\mathsf{co-NP}$ (indeed both are in P)
- ref "The status of the P versus NP problem", Lance Fortnow, Communications of the ACM, 2009, Sept

- P-reduction : \leq_P Theorem : if $(A \leq_P B)$ and $(B \in P)$ then $A \in P$. Contrapositive : if $(A \leq_P B)$ and $(A \notin P)$ then $(B \notin P)$.
- Rem. NP is closed under Karp-P-reduction (but non known with general Turing P-reduction)
- In NP-hard, NP-complete
- Examples of NP-complete problems : SAT (NP-complete), SubsetSum (NP-Complete, APX)
- Examples of presumed intractable problems : Discrete logarithm (?), Integer Factorization (?)
- **One-way trapdoor function and NP-completeness**
- Building a one-way trapdoor function from an presumed untractable problem : Example : Merkle-Hellman