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Outlines

Lecture 1 : attacks ; security defs ; unconditional security and
entropy.

Lecture 2 :
Part 2 : Asymmetric protocols and provable security

1 Asymmetric cryptography is not unconditionally secure
2 Provable security : arithmetic complexity and reduction
3 Complexity and lower bounds : exponentiation
4 P, NP classes
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Symmetric cryptosystem and unconditional security

General model Simplified model

Definition : Unconditional security or Perfect secrecy

The symmetric cipher is unconditionally secure iff H(P|C ) = H(P)

Shannon’s theorem : necessary condition, lower bound on K

In any unconditionally secure cryptosystem : H(K ) ≥ H(P).

Existence of unconditionally secure cryptosystem

In any group G , Vernam cipher (or One-Time-Pad) is
unconditionally secure.
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Asymmetric cryptography : not unconditionally secure

Model of asymmetric cryptography

Let Ke= public key ; let Kd=secret key. The public key Ke is fixed and
known ; then C gives all information about P :

H(P|C) = 0

=⇒ asymmetric cryptography is not unconditionally secure.

Moreover, DKd = E−1
Ke

: then H(Kd |Ke) = 0.

Shannon’s information theory cannot characterize the security of an
asymmetric cryptosystem ↪→ complexity theory
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Asymmetric cipher and Provable security

Definition : one-way function

A bijection (i.e. one-to-one mapping) f is one-way iff

(i) It is easy to compute f (x) from x ;

(ii) Computation of x = f −1(y) from y = f (x) is intractable,
i.e. requires too much operations, e.g. 10120 ' 2400

How to prove one-way ?

(i) Analyze the arithmetic complexity of an algorithm that computes f .

(ii) Provide a lower bound on the minimum arithmetic complexity to

compute x = f −1(y) given y

very hard to obtain lower bounds in complexity theory
it is related both to the problem f −1 and the input y (i.e. x)

Provable security [Contradiction proof, by reduction] if computation of f −1 is

not intractable, then a well-studied and presumed intractable problem could be

solved.
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Polynomial reductions

Definition of P-reduction : ≤P

Let A and B be two problems

Def : oracle for B : OracleB(x) computes B(x) in time |x |.
Def : A ≤P B iff there exists an algorithm AlgoA that
computes A(x) in polynomial time
i.e. in Time ≤ α.|x |k = |x |O(1) using standard operations
(DTM or RAM model) and oracles for B.

Example : Brown’s reduction for RSA (with straight line program)

LE-RSA == RSA with low exponent e
if there is an efficient program that, given N, constructs a straight
line program that efficiently solves LE-RSA with modulus N, (i.e.
constructs a polynomial that inverts the RSA encryption function),
then the program can also be used to efficiently factor N.
↪→ This suggests that LE-RSA may very well be equivalent to
factoring.
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Arithmetic complexity : an example

Exponentiation in a group (G ,⊗, e) with m = |G | elements

Input : x ∈ G , n ∈ {0, . . . , |G | − 1} an integer

Output : y ∈ G such that y = xn ;

In practice : G is finite but has at least 10120 elements

Naive algorithm

y=e ; for (i=0 ; i < n ; i++) y=y ⊗ x ;

This algorithm does not work in practice : why ?

What’s about this one ?

G power( G x, int n)

{
return (n==0) ? e : x ⊗ power( x, n-1 ) ;

}

↪→ Can you do better ?

Jean-Louis Roch Security Proofs - Lecture 2



Recursive binary exponentiation : xn =
(
xn/2

)2 ⊗ xn%2

G power( G x, int n)

{
if (n==0) { return e ; }
elsif (n==1) { return x ; }
else { G tmp = power( x, n/2) ;

tmp = tmp ⊗ tmp ;

return (n%2 ==0) ? tmp : tmp ⊗ x ;

}
}

Arithmetic complexity

log2 n ≤ #multiplications ≤ 2 log2 n

E.g. : x15 : computed with 6 multiplications

↪→ Can you do better ?
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Lower bound for #multiplications to compute xn

Let g(n) = minimum number of multiplications to compute xn.

Direct lower bound of g(n)

#multiplications xn

1 x2

2 x3, x4

3 x5, x6, x7, x8

4 x9, x10, x11, x12, x13, x14, x15, x16

=⇒ recursive binary powering is not optimal (e.g. x15)

Theorem : g(n) ≥ log2 n

Proof : by recurrence [dynamic programming]

g(2) = 1 ;

g(n) = mini=1,...,n−1 max(g(i); g(n − i)) + 1 ≥ log2(n − 1) + 1 ≥ log2 n
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Outlines

Lecture 2 : Asymmetric protocols and provable security

Asymmetric cryptography is not unconditionally secure
Provable security : arithmetic complexity and reduction
Complexity and lower bounds : exponentiation
P, NP classes. Reduction.
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P and NP : defintions

1 Complexity classes : Two basic computing models :
Deterministc Turing Machine (DTM) (almost equivalent to
RAM)
Non-Deterministic Turing Machine (NDTM) : prefix N
X ⊂ NX ⊂ NX − SPACE = X − SPACE

2 Decision problems and NP class
3 Equivalent definitions of NP :

== set of decision problems that can be solved in
polynomial-time on a Non-Deterministic TM (NDTM) ↪→
Non-determinstic Polynomial time
== set of decision problems which YES output can be proved
by a certification algorithm that runs in polynomial time on a
Deterministic TM ↪→ Polynomial-time proofs

4 NP includes P.
Examples : IsCompose ∈ NP ; IsPrime ∈ co-NP (indeed both
are in P)

ref ”The status of the P versus NP problem”, Lance Fortnow,
Communications of the ACM, 2009, Sept
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1 P-reduction : ≤P

Theorem : if (A ≤P B) and (B ∈ P) then A ∈ P.
Contrapositive : if (A ≤P B) and (A 6∈ P) then (B 6∈ P).

2 Rem. NP is closed under Karp-P-reduction (but non known
with general Turing P-reduction)

3 NP-hard, NP-complete

4 Examples of NP-complete problems : SAT (NP-complete),
SubsetSum (NP-Complete, APX)

5 Examples of presumed intractable problems :
Discrete logarithm ( ?), Integer Factorization ( ?)

6 One-way trapdoor function and NP-completeness

7 Building a one-way trapdoor function from an presumed
untractable problem :
Example : Merkle-Hellman
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