Security Models: Proofs

Lecture 2

Jean-Louis Roch

Master-2 Security, Cryptology and Coding of Information Systems
Grenoble University, France
ENSIMAG/INPG - UJF

Outlines

- Lecture 1 : attacks; security defs; unconditional security and entropy.
- Lecture 2 :
- Part 2 : Asymmetric protocols and provable security
(1) Asymmetric cryptography is not unconditionally secure
(2) Provable security: arithmetic complexity and reduction
(3) Complexity and lower bounds: exponentiation
(9) P, NP classes

Symmetric cryptosystem and unconditional security

General model

Simplified model

Definition : Unconditional security or Perfect secrecy

The symmetric cipher is unconditionally secure iff $H(P \mid C)=H(P)$

Shannon's theorem : necessary condition, lower bound on K
In any unconditionally secure cryptosystem : $H(K) \geq H(P)$.

Existence of unconditionally secure cryptosystem

In any group G, Vernam cipher (or One-Time-Pad) is unconditionally secure.

Asymmetric cryptography : not unconditionally secure

Model of asymmetric cryptography

- Let $K_{e}=$ public key; let $K_{d}=$ secret key. The public key K_{e} is fixed and known ; then C gives all information about P :

$$
H(P \mid C)=0
$$

\Longrightarrow asymmetric cryptography is not unconditionally secure.

- Moreover, $D_{K_{d}}=E_{K_{e}}^{-1}$: then $H\left(K_{d} \mid K_{e}\right)=0$.
- Shannon's information theory cannot characterize the security of an asymmetric cryptosystem \hookrightarrow complexity theory

Asymmetric cipher and Provable security

Definition : one-way function

A bijection (i.e. one-to-one mapping) f is one-way iff

- (i) It is easy to compute $f(x)$ from x;
- (ii) Computation of $x=f^{-1}(y)$ from $y=f(x)$ is intractable, i.e. requires too much operations, e.g. $10^{120} \simeq 2^{400}$

How to prove one-way?

- (i) Analyze the arithmetic complexity of an algorithm that computes f.
- (ii) Provide a lower bound on the minimum arithmetic complexity to compute $x=f^{-1}(y)$ given y
- very hard to obtain lower bounds in complexity theory
- it is related both to the problem f^{-1} and the input y (i.e. x)

Provable security [Contradiction proof, by reduction] if computation of f^{-1} is not intractable, then a well-studied and presumed intractable problem could be solved.

Polynomial reductions

Definition of P-reduction : $\leq P$

- Let A and B be two problems
- Def : oracle for B : Oracle $B(x)$ computes $B(x)$ in time $|x|$.
- Def : $A \leq_{P} B$ iff there exists an algorithm AlgoA that computes $A(x)$ in polynomial time i.e. in Time $\leq \alpha .|x|^{k}=|x|^{O(1)}$ using standard operations (DTM or RAM model) and oracles for B.

Example: Brown's reduction for RSA (with straight line program)
LE-RSA $==$ RSA with low exponent e if there is an efficient program that, given N, constructs a straight line program that efficiently solves LE-RSA with modulus N, (i.e. constructs a polynomial that inverts the RSA encryption function), then the program can also be used to efficiently factor N.
\hookrightarrow This suggests that LE-RSA may very well be equivalent to factoring.

Arithmetic complexity : an example

Exponentiation in a group (G, \otimes, e) with $m=|G|$ elements

- Input : $x \in G, n \in\{0, \ldots,|G|-1\}$ an integer
- Output : $y \in G$ such that $y=x^{n}$;
- In practice : G is finite but has at least 10^{120} elements

Naive algorithm

- $y=e$; for ($\mathrm{i}=0$; $\mathrm{i}<\mathrm{n}$; i++) $\mathrm{y}=\mathrm{y} \otimes \mathrm{x}$;
- This algorithm does not work in practice : why?

What's about this one?

```
G power( G x, int n)
```

\{

$$
\text { return }(n==0) ? e: x \otimes \operatorname{power}(x, n-1) ;
$$

\}

```
Recursive binary exponentiation : \(x^{n}=\left(x^{n / 2}\right)^{2} \otimes x^{n \% 2}\)
G power ( G x, int n )
\{
    if ( \(\mathrm{n}==0\) ) \{ return e; \}
    elsif ( \(n==1\) ) \{ return \(x\); \}
    else \(\{G \operatorname{tmp}=\operatorname{power}(x, n / 2)\);
        tmp \(=t m p \otimes \operatorname{tmp} ;\)
        return ( \(n \% 2==0\) ) ? tmp : tmp \(\otimes \mathrm{x}\);
    \}
\}
```


Arithmetic complexity

$$
\log _{2} n \leq \# \text { multiplications } \leq 2 \log _{2} n
$$

E.g. : x^{15} : computed with 6 multiplications

Lower bound for \#multiplications to compute x^{n}

Let $g(n)=$ minimum number of multiplications to compute x^{n}.
Direct lower bound of $g(n)$

\#multiplications	x^{n}
1	x^{2}
2	x^{3}, x^{4}
3	$x^{5}, x^{6}, x^{7}, x^{8}$
4	$x^{9}, x^{10}, x^{11}, x^{12}, x^{13}, x^{14}, x^{15}, x^{16}$

\Longrightarrow recursive binary powering is not optimal (e.g. x^{15})

Theorem : $g(n) \geq \log _{2} n$

Proof : by recurrence [dynamic programming]

- $g(2)=1$;
- $g(n)=\min _{i=1, \ldots, n-1} \max (g(i) ; g(n-i))+1 \geq \log _{2}(n-1)+1 \geq \log _{2} n$

Outlines

- Lecture 2 : Asymmetric protocols and provable security
- Asymmetric cryptography is not unconditionally secure
- Provable security : arithmetic complexity and reduction
- Complexity and lower bounds : exponentiation
- P, NP classes. Reduction.
(1) Complexity classes: Two basic computing models:
- Deterministc Turing Machine (DTM) (almost equivalent to RAM)
- Non-Deterministic Turing Machine (NDTM) : prefix N
- $X \subset N X \subset N X-S P A C E=X-S P A C E$
(2) Decision problems and NP class
(3) Equivalent definitions of NP :
- == set of decision problems that can be solved in polynomial-time on a Non-Deterministic TM (NDTM) \hookrightarrow Non-determinstic Polynomial time
- == set of decision problems which YES output can be proved by a certification algorithm that runs in polynomial time on a Deterministic TM \hookrightarrow Polynomial-time proofs
(9) NP includes P.

Examples : IsCompose \in NP ; IsPrime \in co-NP (indeed both are in P)
ref "The status of the P versus NP problem", Lance Fortnow, Communications of the ACM, 2009, Sept
(1) P-reduction: $\leq P$

Theorem : if $\left(A \leq_{P} B\right)$ and $(B \in P)$ then $A \in P$. Contrapositive : if $\left(A \leq_{P} B\right)$ and $(A \notin P)$ then $(B \notin P)$.
(2) Rem. NP is closed under Karp-P-reduction (but non known with general Turing P-reduction)
(3) NP-hard, NP-complete
(9) Examples of NP-complete problems: SAT (NP-complete), SubsetSum (NP-Complete, APX)
(6) Examples of presumed intractable problems : Discrete logarithm (?), Integer Factorization (?)
(0) One-way trapdoor function and NP-completeness
(1) Building a one-way trapdoor function from an presumed untractable problem :
Example: Merkle-Hellman

