TD 6 - Zero-knowledge protocol

The Guillou-Quisquater authentication protocol is the following one. A trusted third part (TTP), issuer of smart cards, has a public key (n, v). The integer n is the product of two large primes p and q; it is assumed that factorization of n is intractable. The integer $2 \le v \le n/2$ is chosen such that extracting v-root mod n is considered intractable.

For her public key, Alice uses the public information of her card, that corresponds to a string of characters (for instance, name of the issuer || card number || validity date || ...); this string is a sequence of bits that correspond to an integer $J \pmod{n}$.

The private key of Alice is an integer B such that $J.B^v = 1 \mod n$.

The authentication protocol involves the 3 folowing communications:

- 1. Alice chooses at random $r \in \{1, \ldots, n-1\}$, computes $T = r^v \mod n$ and sends T to Bob.
- 2. Bob chooses at random $d \in \{0, \ldots, v-1\}$ and sends d to Alice.
- 3. Alice computes $D = r.B^d \mod n$ and sends D to Bob.

To authenticate Alice, Bob computes $T' = D^v J^d \mod n$. If T' = T then Alice is authenticated; else she is rejected.

1. Prove that authentication is correct (soundness and completeness).

2. We assume that $r^v \mod n$ gives no knowledge on r. Argue that this authentication is a zero-knowledge protocol.

3. Previous protocol is extended as follows in order to provide Alice a protocol to sign any message M.

- 1. Alice computes $T = r^{v} \mod n$ with r chosen at random.
- 2. Alice computes d = H(M||T) where H is a hash function on $\log_2 v$ bits resistant to collisions.
- 3. Alice computes $D = r.B^d \mod n$.
- 4. The signed message is $(M; \sigma)$ where $\sigma = (d||D||J)$ is the signature of M by Alice.

How Bob will verify the signature?