TD 6 - Zero-knowledge protocol

1. Completeness: if Alice, who knows B, answers correctly, then we have; $T' = D^v.J^d \mod n = (r.B^d)^v.J^d \mod n = r^v.(B^v.J)^d \mod n = r^v \mod n = T$.

Soundness: if Eve, who doesn't know B, is correctly authenticated by Bob, then she has sent a correct couple (T, D) to Bob, with D v-root of $T.J^{-d} \mod n$. But she cannot compute v-root; thus the only way for Eve is to compute a couple (T, D) verifying $T = D^v.J^d$, then such that $J^d = D^v.T \mod n$, also $D^v.T = B^{-vd} \mod n$. This may be possible for some values of d, for d = 0 for instance. But she does not know d; her only possibility is thus to bet on the value of d before sending T: she bets on d, chooses D and computes $T = D^v.J^d \mod n$. Her probability of success in correctly guessing d is only $\frac{1}{v} \leq \frac{1}{2}$.

2. For any value of d, we have to proove that the transcript $(T = r^v \mod n; d; D = rB^d \mod n)$ gives no information on the secret key B.

- if d = 0: we have $D = r \mod n$ and $T = r^{v} \mod n$. So there is no information on B.
- id d = 1: $T = r^v$ and D = rB: due to assumption, T gives no knowledge on r; then knowing rB mod n gives no information on B.
- if $d \ge 2$: Let $B' = B^d \mod n$. We have $T = r^v \mod n$ and D = r.B'; similarly to previous case, we have no information on B' except it is a v-power $\mod n$. But if we know B then we know B' by polynomial computation; so, by contradiction, if we do not know B', we do not know B.

3. Bob takes the first $\log_2 v$ bits of σ and computes $T' = D^v J^d \mod n$. Then it computes d' = h(M||T'). The signature is verified iff d = d'.