TD 6 - Zero-knowledge protocol

1. Completeness: if Alice, who knows B, answers correctly, then we have; $T^{\prime}=D^{v} . J^{d}$ $\bmod n=\left(r . B^{d}\right)^{v} . J^{d} \bmod n=r^{v} .\left(B^{v} . J\right)^{d} \bmod n=r^{v} \bmod n=T$.
Soundness: if Eve, who doesn't know B, is correctly authenticated by Bob, then she has sent a correct couple (T, D) to Bob, with $D v$-root of $T . J^{-d} \bmod n$. But she cannot compute v-root; thus the only way for Eve is to compute a couple (T, D) verifying $T=D^{v} . J^{d}$, then such that $J^{d}=D^{v} . T \bmod n$, also $D^{v} \cdot T=B^{-v d} \bmod n$. This may be possible for some values of d, for $d=0$ for instance. But she does not know d; her only possibility is thus to bet on the value of d before sending T : she bets on d, chooses D and computes $T=D^{v} . J^{d} \bmod n$. Her probability of success in correclty guessing d is only $\frac{1}{v} \leq \frac{1}{2}$.
2. For any value of d, we have to proove that the transcript $\left(T=r^{v} \bmod n ; d ; D=r B^{d}\right.$ $\bmod n)$ gives no information on the secret key B.

- if $d=0$: we have $D=r \bmod n$ and $T=r^{v} \bmod n$. So there is no information on B.
- $i d d=1: T=r^{v}$ and $D=r B:$ due to assumption, T gives no knowledge on r; then knowing $r B \bmod n$ gives no information on B.
- if $d \geq 2$: Let $B^{\prime}=B^{d} \bmod n$. We have $T=r^{v} \bmod n$ and $D=r . B^{\prime}$; similarly to previous case, we have no information on B^{\prime} except it is a v-power $\bmod n$. But if we know B then we know B^{\prime} by polynomial computation; so, by contradiction, if we do not know B^{\prime}, we do not know B.

3. Bob takes the first $\log _{2} v$ bits of σ and computes $T^{\prime}=D^{v} J^{d} \bmod n$. Then it computes $d^{\prime}=h\left(M \| T^{\prime}\right)$. The signature is verified iff $d=d^{\prime}$.
