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TD - Quadratic residue - Zero-knowledge protocol

a 6= 0 is a square (or quadratic residue) modulo b i� it exists x such that x2 ≡ a mod b.
We say that x is a square root of a modulo b.
In the sequel, p and q are two odd distinct prime numbers and n = p.q.

1. Number of squares in Z/nZ?

a. Verify that if x2 ≡ a mod b, then (b− x)2 ≡ a mod b.

b. Prove that if a is a square modulo n, then a is a square mod p and mod q too.

c. Proove that any square a 6= 0 modulo p has exactly 2 roots : x and y = p− x.

d. Deduce that any square a in Z/nZ relatively prime to p and q has exactly four distinct
square roots: x1, n− x1, x2 and n− x2. Hint: use Chinese remainder theorem.

e. By using the property that (Z/pZ?,×) is a cyclic group, prove that there are p−1
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non
zero squares modulo p.

f. Deduce the number of squares in Z/nZ?.

2. Intractability of computing square roots. Let a < n; the goal of this question is to
prove that computing square roots x of a 6= 0 modulo n is (polynomially) more expensive than
factorization of n. The proof is performed by reduction (contradiction proof).
In all this question, it is assumed that we know the four distinct roots x1, x2, (n−x1) et (n−x2)
of a modulo n; we prove that then that the factors p and q of n can be quicly computed.

a. Let u = x1 − x2 mod n and v = x1 + x2 mod n. Prove that u.v ≡ 0 mod n.

b. Justify that 1 ≤ u, v < n; then explicit how to compute p and q from u and v.

c. Give an upper bound on the number of operations performed (Big O notation) with
respect to the number of bits of n.

d. Argue that the function Square of Z/nZ de�ned by Square(x) = x2 mod n may be
considered as a one-way function.
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3. Quadratic authentication protocol. Let n = pq an integer of 1024 bits with p and q
large primes; p and q are known by a trusted third part TTP, but, a priori, not by Alice not
Bob.
To authenticate to Bob, Alice chooses the integer xA < n as unique private key. Let a = x2

A

mod n; TTP delivers to Alice a passport one which are written the public integers n and a.

a. We assume that only Alice (and may be TTP) knows xA and that nobody, except TTP,
can compute square roots modulo n. Is this reasonable ?

b. To authenticate Alice, Bob reads a and n from her passport and uses the following protocol
(which is repeated 2 or 3 times):

1. Alice chooses an integer r < n at random; she keeps it secret.

2. Alice computes y = r2 mod n and z = xA.r mod n;

3. Alice sends y and z to Bob;

4. Bob tests Alice's identity by verifying a.y − z2 = 0 mod n.

Prove that if Eve, a spy who cannot compute square roots mod n, has succeeded to
compute r, then Eve knows Alice's private key xA. What to deduce?

c. However, with previous protocol, Eve can impersonate Alice; instead of steps 1 and 2,
Eve chooses at random an integer z and computes y = z2/a mod n.
To avoid this, the following zero-knowledge protocol is used (which is repeated k times);

1. Alice chooses r at random, computes y = r2 mod n and sends y to Bob;

2. Bob chooses at random b ∈ {0, 1}; Bob sends b to Alice;

3. If Alice receives 0, then she sends z = r to Bob (i.e. a square root of y modulo n);
else, if she receives 1, she sends to Bob z = xA.r mod n (i.e. a square root of y.a
mod n).

4. Bob tests Alice's identity by verifying that y.ab − z2 = 0 mod n.

Give an upper bound on the probability that Eve, who wants to impersonate Alice, can
correctly answer to Bob after k executions of the protocol.
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