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TD - Quadratic residue - Zero-knowledge protocol

a 6= 0 is a square (or quadratic residue) modulo b i� it exists x such that x2 ≡ a mod b.
We say that x is a square root of a modulo b.
In the sequel, p and q are two odd distinct prime numbers and n = p.q.

1. Number of squares in Z/nZ?

a. Verify that if x2 ≡ a mod b, then (b− x)2 ≡ a mod b.

b. Prove that if a is a square modulo n, then a is a square mod p and mod q too.

c. Proove that any square a 6= 0 modulo p has exactly 2 roots : x and y = p− x.

d. Deduce that any square a in Z/nZ relatively prime to p and q has exactly four distinct
square roots: x1, n− x1, x2 and n− x2. Hint: use Chinese remainder theorem.

e. By using the property that (Z/pZ?,×) is a cyclic group, prove that there are p−1
2

non
zero squares modulo p.

f. Deduce the number of squares in Z/nZ?.

a. (b− x)2 = b2 − 2bx + x2 = x2 = a mod b.

b. a = x2 + kpq; thus a ≡ x2 mod p is a square mod p (similarly for q).

c. Let x 6= y such that a = x2 = y2 mod p. Then x2 − y2 = (x − y)(x + y) = 0 mod p.
But Z/pZ is a �eld (since p is prime): there are no zero divisor. Thus, since x − y 6= 0
mod p, necessarily x + y = 0 mod p; therefore y = p− x.

d. From b., any square a mod n is a square both mod p and mod q. Since a 6= 0
mod p, a has exactly two distinct roots u1 = u and u2 = p − u modulo p (resp. v1 = v
and v2 = q−v modulo q). From Chinese remainder theorem, this de�nes exactly 4 distinct
roots for a mod n: ui.q.q

−1[p] + vj.p.p
−1[q] mod n with 1 ≤ i, j ≤ 2.

From a., those roots can be expressed as x1, n− x1, x2 et n− x2.

e. Since p is prime, (Z/pZ?, .) is cyclic; let g a primitive root (generator). Assume there
exists x such that g = x2. From Fermat theorem, gp−1 = 1 mod p; since g is a primitive
root and p odd, we have g

p−1
2 mod p = −1 mod p = p−1 mod p. Then xp−1 = −1 6= 1

since p 6= 2 and therefore, yet from Fermat theorem, x 6∈ Z/pZ. Thus g is not a square
modulo p.
We deduce that the only non zero squares are the p−1

2
elements of the form g2i for 1 ≤

i ≤ p−1
2
.

NB: g2i has exactly two distinct square roots mod p: x = gi and gi+ p−1
2 = −x = p− x.

f. Let g a primitive root in (Z/pZ?, .) which is cyclic. From Chinese remainder theorem, each
couple of squares (u, v) ∈ Z/pZ×Z/qZ corresponds to exactly a unique square in Z/nZ.
Including 0, there are exactly p+1

2
squares modulo p. Thus, we have (p+1)(q+1)

4
= n+p+q+1

4

squares modulo n; thus the number of non zero squares modulo n is n+p+q+1
4

−1 = n+p+q−3
4

.
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2. Intractability of computing square roots. Let a < n; the goal of this question is to
prove that computing square roots x of a 6= 0 modulo n is (polynomially) more expensive than
factorization of n. The proof is performed by reduction (contradiction proof).
In all this question, it is assumed that we know the four distinct roots x1, x2, (n−x1) et (n−x2)
of a modulo n; we prove that then that the factors p and q of n can be quicly computed.

a. Let u = x1 − x2 mod n and v = x1 + x2 mod n. Prove that u.v ≡ 0 mod n.

b. Justify that 1 ≤ u, v < n; then explicit how to compute p and q from u and v.

c. Give an upper bound on the number of operations performed (Big O notation) with
respect to the number of bits of n.

d. Argue that the function Square of Z/nZ de�ned by Square(x) = x2 mod n may be
considered as a one-way function.

a. u.v = x2
1 − x2

2 = a2 − a2 = 0 mod n.

b. We can suppose 1 ≤ x1, x2 < n. Since x1 6= x2, u = x1 − x2 6= 0. Since x1 6= n − x2,
v = x1 + x2 = x1 − (n− x2) 6= 0. Therefore 1 ≤ u, v < n.
Now we have u.v = k.n; also n = p.q divides u.v. Since p and q are primes and u < p.q,
then p divides u or q divides u but p.q does not divide u. Then gcd(n, u) returns one of
the two factors of n; the other factor is n/pgcd(n,u).

c. Let t = log2 n the size -number of bits- of n. The previous computation consists in two
additions, a gcd and a division. The cost is dominated by the one of the gcd, which, by
Euclid's algorithm is O(t2) (or O(t log2 t log log t) = Õ(t) by Schonhagge's algorithm).

d. Computing x2 mod n is performed e�ciently in O(t2) (Õ(t) using a fast integer multi-
plication algorithm). However, computing x from x2 is polynomially more di�cult then
factorization: indeed, if we can compute the square roots of a mod n, we can compute
p and q in O(t2) as stated above. Then, under the conjecture (commonly considered at
this time) that integer factorization is a computationally impossible problem, Square is a
one-way function.
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3. Quadratic authentication protocol. Let n = pq an integer of 1024 bits with p and q
large primes; p and q are known by a trusted third part TTP, but, a priori, not by Alice not
Bob.
To authenticate to Bob, Alice chooses the integer xA < n as unique private key. Let a = x2

A

mod n; TTP delivers to Alice a passport one which are written the public integers n and a.

a. We assume that only Alice (and may be TTP) knows xA and that nobody, except TTP,
can compute square roots modulo n. Is this reasonable ?

b. To authenticate Alice, Bob reads a and n from her passport and uses the following protocol
(which is repeated 2 or 3 times):

1. Alice chooses an integer r < n at random; she keeps it secret.

2. Alice computes y = r2 mod n and z = xA.r mod n;

3. Alice sends y and z to Bob;

4. Bob tests Alice's identity by verifying a.y − z2 = 0 mod n.

Prove that if Eve, a spy who cannot compute square roots mod n, has succeeded to
compute r, then Eve knows Alice's private key xA. What to deduce?

c. However, with previous protocol, Eve can impersonate Alice; instead of steps 1 and 2,
Eve chooses at random an integer z and computes y = z2/a mod n.
To avoid this, the following zero-knowledge protocol is used (which is repeated k times);

1. Alice chooses r at random, computes y = r2 mod n and sends y to Bob;

2. Bob chooses at random b ∈ {0, 1}; Bob sends b to Alice;

3. If Alice receives 0, then she sends z = r to Bob (i.e. a square root of y modulo n);
else, if she receives 1, she sends to Bob z = xA.r mod n (i.e. a square root of y.a
mod n).

4. Bob tests Alice's identity by verifying that y.ab − z2 = 0 mod n.

Give an upper bound on the probability that Eve, who wants to impersonate Alice, can
correctly answer to Bob after k executions of the protocol.

a. Currently, no algorithm is known to factorize n (1024 bits) in a time lesser than the
duration of a passport (let say 5 years). Then, we can assume that nobody knows p and
q except TTP.
Moreover, we assume that nobody knows the private key xA of Alice, except Alice and
may be TTP.
The only solution to compute xA is then to compute the square root of a mod n; from 2.,
this computation is more di�cult that factorizing n. Thus, we may assume that nobody
knows xA (except Alice or TTP). The assumption is reasonable.
Complement (not asked): yet, we may assume that TTP, who knows p and q, does
not know xA. Indeed, computing xA from a requires to know how to compute square
roots mod p. However, we can then prove that TTP would know how to compute discrete
logarithm, which is conjectured computationally impossible. Let g be a primitive root
of Z/pZ?. Let y < p; by computing a square root of y mod p (or of y/g if y does not
have square root), TTP can compute y1 such that y2

1 = y. If y1 = g, he then recovers
the discrete logarithm of y: 2 (ou 1). Else by repeating this square root computation
from y1 until �nding yk = g, he can computes the discrete logarithm i of y1; and then
the discrete logarithm 2.i (or 2.i + 1) of y. TTP then would know how to compute the
discrete logarithm modulo p.
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b. If Eve cannot compute square roots, r being chosen at random, knowing y is of no help.
The only solution to compute r is then to use z; but computing r from z is equivalent to
compute xA. The only solution to compute r is then to compute xA.
We deduce that only Alice can systematically answers correctly to Bob; then Bob can
authenticate Alice.

c. If Eve doesn't know Alice's private key nor computing square roots, the only solution for
her is to cheat. She has to bet on what Bob will send (0 or 1) to sends him a value y
corresponding to a z she knows. But her probability to correctly succeed her bet is 1/2.
Then her probability to impersonate to Bob after k iterations is 2−k which is rather small
(if k = 40, it is < 10−12).
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