TD 4 - Design of a provably secure hash function

A one-way hash function h is a function from $E \subset \{0,1\}^*$ to $F \subset \{0,1\}^m$:

$$h: E \subset \{0,1\}^* \longrightarrow F \subset \{0,1\}^m$$

where m is a given integer (eg m = 128 for h = MD5).

A hash function is said **collision resistant** if it is computationally impossible (i.e. very expensive) to compute $(x, y) \in E^2$ with $x \neq y$ such that h(x) = h(y).

Assuming that discrete logarithm is a one-way function, this exercise builds a collision resistant hash function.

I. Design of a hash function $\{0,1\}^{2m} \longrightarrow \{0,1\}^m$

Let p be a large prime number such that $q = \frac{p-1}{2}$ is prime too. Let $\mathbb{F}_p = \mathbb{Z}/p.\mathbb{Z}$; \mathbb{F}_p^* denotes the multiplicative group $(\{1, 2, \dots, p-1\}, \times_{\text{mod } p})$. Similarly, we define \mathbb{F}_q et \mathbb{F}_q^* .

Let α and β be two primitive (i.e. *generators*) elements of \mathbb{F}_p^* . It is assumed that α, β and p are public (known by everyone) and let h_1 defined by:

$$\begin{array}{rccc} h_1: & \mathbb{F}_q \times \mathbb{F}_q & \to & F_p \\ & & (x_1, x_2) & \mapsto & \alpha^{x_1} . \beta^{x_2} \mod p \end{array}$$

Let $\lambda \in \{1, \ldots, q-1\}$ equal to the discrete logarithm of β in basis $\alpha \colon \alpha^{\lambda} = \beta \mod p$. In all this question, it is assumed that λ is not known and impossible to compute.

To prove that h_1 is collision resistant, we proceed as follows:

- we assume that a collision is known for h_1 , i.e. $\exists (x_1, x_2, x_3, x_4) \in \{0, 1, \dots, q-1\}^4$ such that $(x_1, x_2) \neq (x_3, x_4)$ and $h_1(x_1, x_2) = h_1(x_3, x_4)$
- we then prove that it is easy then to compute λ . For this, let d denotes

$$d = \operatorname{pgcd}(x_4 - x_2, p - 1).$$

Nota Bene. p and q are prime and that p = 2q + 1.

- **1.** What are the divisors of p-1? Deduce that $d \in \{1, 2, q, p-1\}$.
- **2.** Justify $-(q-1) \le x_4 x_2 \le q-1$; prove that $d \ne q$ and $d \ne p-1$.
- 3. Prove $\alpha^{(x_1-x_3)} \equiv \beta^{(x_4-x_2)} \mod p$.
- 4. In this question, it is assumed that d = 1; prove $\lambda = (x_1 x_3) \cdot (x_4 x_2)^{-1} \mod (p-1)$.

5. In this question, it is assumed that d = 2; let $u = (x_4 - x_2)^{-1} \mod q$.

- **5.a.** Justify that $\beta^q = -1 \mod p$; deduce $\beta^{u.(x_4-x_2)} = \pm \beta \mod p$.
- **5.b.** Prove that either $\lambda = u.(x_1 x_3) \mod p 1$ or $\lambda = u.(x_1 x_3) + q \mod p 1$.

6. Conclude: give an a reduction algorithm that takes in input a collision $(x_1, x_2) \neq (x_3, x_4)$ and returns λ .

Give an upper bound on the cost of this algorithm; conclude by stating h_1 is collision-resistant.

II. Extension to a hash function: $\{0,1\}^* \longrightarrow \{0,1\}^m$

Let $h_1: \{0,1\}^{2m} \to \{0,1\}^m$ be a collision resistant hash function (such as the one introduced in I).

Then, h_i is inductively defined by: $h_i : \{0, 1\}^{2^i m} \longrightarrow \{0, 1\}^m$ par:

$$h_{i}: \left(\{0,1\}^{2^{i-1}m}\right)^{2} \longrightarrow \{0,1\}^{m} \\ (x_{1},x_{2}) \longmapsto h_{1}(h_{i-1}(x_{1}),h_{i-1}(x_{2}))$$

7. Let $(x_1, x_2, x_3, x_4) \in \mathbb{F}_q^4$; explicit $h_2(x_1, x_2, x_3, x_4)$ with respect to h_1 .

8. Prove that h_2 is collision resistant. Hint: proceed by contradiction (i.e. reduction), by stating that if a collision is known for h_2 , then it is easy to compute a collision on h_1 .

9. Generalization: prove that h_i is collision resistant.

10. How many calls to h_1 are performed to compute $h_i(x)$? Assuming that the cost of h_1 is $\tilde{O}(m) = O(m^{1+\epsilon})$, deduce that computing the hash of a *n* bit sequences has a cost $\tilde{O}(n)$.

11. How to extend to build a collision resistant hash function $H : \{0, 1\}^* \longrightarrow \{0, 1\}^m$?

III. HAIFA Extension scheme

Let $F : \{0,1\}^{k+r+64} \to \{0,1\}^k$ be a compression function. The HAIFA (HAsh Iterative FrAmework) defines the following iterative extension scheme. In order to have a message bitlength multiple of r, the input message M is suffixed by $pad(M) = 0 \dots 0' ||u||1||v$, where u = bitlength(M)and $v = 0' \log^{(u)}$. Then, let M_i be the *i*-th block of r bits and define

$$h_i = F(h_{i-1}||M_i||c(i))$$

where c(i) is the index *i* encoded on 64 bits. The hash is h_j obtained after the last block M_j .

12 Justify that the padding is a one-to-one mapping.

13 On what condition HAIFA is resistant to collision?

14* M2R assignment HAIFA guarantees a lower bound $\Omega(2^k)$ for second preimage attacks, while there exist $O(2^{k-t})$ second-preimage attacks for 2^t -blocks messages iteratively hashed with Merkle-Damgard.

Establish this result; are there lower bound for first preimage attacks too ?