TD 4 - Design of a provably secure hash function

A one-way hash function h is a function from $E \subset\{0,1\}^{*}$ to $F \subset\{0,1\}^{m}$:

$$
h: E \subset\{0,1\}^{*} \longrightarrow F \subset\{0,1\}^{m}
$$

where m is a given integer (eg $m=128$ for $h=$ MD5).
A hash function is said collision resistant if it is computationally impossible (i.e. very expensive) to compute ($x, y) \in E^{2}$ with $x \neq y$ such that $h(x)=h(y)$.
Assuming that discrete logarithm is a one-way function, this exercise builds a collision resistant hash function.

I. Design of a hash function $\{0,1\}^{2 m} \longrightarrow\{0,1\}^{m}$

Let p be a large prime number such that $q=\frac{p-1}{2}$ is prime too. Let $\mathbb{F}_{p}=\mathbb{Z} / p \cdot \mathbb{Z} ; \mathbb{F}_{p}^{*}$ denotes the multiplicative group $\left(\{1,2, \ldots, p-1\}, \times_{\bmod p}\right)$. Similarly, we define \mathbb{F}_{q} et \mathbb{F}_{q}^{*}.

Let α and β be two primitive (i.e. generators) elements of \mathbb{F}_{p}^{*}. It is assumed that α, β and p are public (known by everyone) and let h_{1} defined by:

$$
\begin{aligned}
& h_{1}: \mathbb{F}_{q} \times \mathbb{F}_{q} \rightarrow F_{p} \\
& \left(x_{1}, x_{2}\right) \mapsto \alpha^{x_{1}} \cdot \beta^{x_{2}} \quad \bmod p
\end{aligned}
$$

Let $\lambda \in\{1, \ldots, q-1\}$ equal to the discrete logarithm of β in basis $\alpha: \alpha^{\lambda}=\beta \bmod p$.
In all this question, it is assumed that λ is not known and impossible to compute.
To prove that h_{1} is collision resistant, we proceed as follows:

- we assume that a collision is known for h_{1}, i.e.

$$
\exists\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in\{0,1, \ldots, q-1\}^{4} \text { such that }\left(x_{1}, x_{2}\right) \neq\left(x_{3}, x_{4}\right) \text { and } h_{1}\left(x_{1}, x_{2}\right)=h_{1}\left(x_{3}, x_{4}\right)
$$

- we then prove that it is easy then to compute λ. For this, let d denotes

$$
d=\operatorname{pgcd}\left(x_{4}-x_{2}, p-1\right)
$$

Nota Bene. $\quad p$ and q are prime and that $p=2 q+1$.

1. What are the divisors of $p-1$? Deduce that $d \in\{1,2, q, p-1\}$.
$p-1=2 q$ and q is prime; so, the divisors of $p-1$ are $\{1,2, q, 2 q=p-1\}$.
Since d is a divisor of $p-1$, we have $d \in\{1,2, q, p-1\}$.
2. Justify $-(q-1) \leq x_{4}-x_{2} \leq q-1$; prove that $d \neq q$ and $d \neq p-1$.

Since $0 \leq x_{2}, x_{4} \leq q-1:-(q-1) \leq x_{4}-x_{2} \leq q-1$.
But q is prime; then $\left(x_{4}-x_{2}\right)$ is prime to q and lesser than q, so $d \neq q$; and, since $p-1=2 q$, $d \neq p-1$.
3. Prove $\alpha^{\left(x_{1}-x_{3}\right)} \equiv \beta^{\left(x_{4}-x_{2}\right)} \bmod p$.

Obvious: $\alpha^{x_{1}} \beta^{x_{2}} \equiv \alpha^{x_{3}} \beta^{x_{4}} \bmod p \Longleftrightarrow \alpha^{\left(x_{1}-x_{3}\right)} \equiv \beta^{\left(x_{4}-x_{2}\right)} \bmod p$
4. In this question, it is assumed that $d=1$; prove $\lambda=\left(x_{1}-x_{3}\right) \cdot\left(x_{4}-x_{2}\right)^{-1} \bmod (p-1)$.

If $d=1$, let $u=\left(x_{4}-x_{2}\right)^{-1} \bmod (p-1): u \cdot\left(x_{4}-x_{2}\right)=1+k .(p-1)$ Then $\beta^{\left(x_{4}-x_{2}\right) \cdot u} \bmod p \equiv$ $\beta^{1+k(p-1)} \bmod p \equiv \beta \bmod p($ from Fermat's little theorem).
Replacing in 3., we obtain : $\beta=\alpha^{\left(x_{1}-x_{3}\right) \cdot u} \bmod p$, i.e. $\lambda=\left(x_{1}-x_{3}\right) \cdot u \bmod p-1$, qed.
5. In this question, it is assumed that $d=2$; let $u=\left(x_{4}-x_{2}\right)^{-1} \bmod q$.
5.a. Justify that $\beta^{q}=-1 \bmod p$; deduce $\beta^{u .\left(x_{4}-x_{2}\right)}= \pm \beta \bmod p$.
5.b. Prove that either $\lambda=u .\left(x_{1}-x_{3}\right) \bmod p-1$ or $\lambda=u .\left(x_{1}-x_{3}\right)+q \bmod p-1$.
5.a. Since $d=2$ and $p-1=2 . q$, we have $x_{4}-x_{2}$ prime to q; so $u .\left(x_{4}-x_{2}\right)=1+k . q$.

Then $\beta^{\left(x_{4}-x_{2}\right) \cdot u} \bmod p \equiv \beta^{1+k q} \bmod p \equiv \beta \cdot\left(\beta^{q}\right)^{k} \bmod p$.
But $q=\frac{p-1}{2}$ and β is a primitive elements $\bmod p$. Thus, $\beta^{p-1}=1 \bmod p$ and $\beta^{q}=\beta^{\frac{p-1}{2}}=-1$ $\bmod p$. Finally, $\beta^{\left(x_{4}-x_{2}\right) \cdot u}=(-1)^{k} . \beta \bmod p$, qed.
5.b. Replacing in 3., we have : $\beta= \pm \alpha^{\left(x_{1}-x_{3}\right) \cdot u} \bmod p$ ie $\beta=\alpha^{\left(x_{1}-x_{3}\right) \cdot u+\delta \cdot q} \bmod p$ with $\delta \in\{0,1\}$. Thus, either $\delta=0$, i.e. $\lambda=u .\left(x_{1}-x_{3}\right) \bmod p-1$ or $\delta=1$, i.e. $\lambda=u .\left(x_{1}-x_{3}\right)+q \bmod p-1$, qed.
6. Conclude: give an a reduction algorithm that takes in input a collision $\left(x_{1}, x_{2}\right) \neq\left(x_{3}, x_{4}\right)$ and returns λ.
Give an upper bound on the cost of this algorithm; conclude by stating h_{1} is collision-resistant.

From previous questions, we have the following algorithm:

```
AlgoCalculLogBeta ( \(p, \alpha, \beta\), ; \(x_{1}, x_{2}, x_{3}, x_{4}\) ) \{
    \(q=(p-1) / 2\);
    \(d=\operatorname{pgcd}\left(x_{4}-x_{2}, p-1\right)\);
    if ( \(d==1\) ) \{
        \(u=\left(x_{4}-x_{2}\right)^{-1} \bmod (p-1) ;\)
        \(\lambda=\left(x_{1}-x_{3}\right) \cdot u \bmod p-1 ;\)
    \}
    else \{// here \(d==2\)
            \(u=\left(x_{4}-x_{2}\right)^{-1} \bmod q ;\)
            \(\lambda=\left(x_{1}-x_{3}\right) \cdot u \bmod p-1\);
            if \((\operatorname{ExpoMod}(\alpha, \lambda, p)==-\beta) \lambda=\lambda+q\);
    \}
    return \(\lambda\);
\}
```

The cost is $O(1)$ arithmetic operations $\bmod p-1, p$ and q; thus $O\left(\log ^{1+\epsilon} p\right)$, which is small even for large values of p (eg 1024 bits). So, if a collision is known for h_{1}, Then we may easily compute the discrete logarithm β, which is in contradiction with the hypothesis that λ is very expensive to compute. Thus h_{1} is collision resistant.

II. Extension to a hash function: $\{0,1\}^{*} \longrightarrow\{0,1\}^{m}$

Let $h_{1}:\{0,1\}^{2 m} \rightarrow\{0,1\}^{m}$ be a collision resistant hash function (such as the one introduced in I).

$$
\begin{aligned}
h_{1}:\{0,1\}^{m} \times\{0,1\}^{m} & \rightarrow\{0,1\}^{m} \\
& \left(x_{1}, x_{2}\right)
\end{aligned}
$$

Then, h_{i} is inductively defined by: $h_{i}:\{0,1\}^{2^{i} m} \longrightarrow\{0,1\}^{m}$ par:

$$
\begin{array}{rlll}
h_{i}:\left(\{0,1\}^{2^{i-1} m}\right)^{2} & \longrightarrow & \{0,1\}^{m} \\
\left(x_{1}, x_{2}\right) & \mapsto & h_{1}\left(h_{i-1}\left(x_{1}\right), h_{i-1}\left(x_{2}\right)\right)
\end{array}
$$

7. Let $\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{F}_{q}^{4}$; explicit $h_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ with respect to h_{1}.

$$
\begin{aligned}
h_{2}: & \left(\{0,1\}^{m}\right)^{4}
\end{aligned} \rightarrow\{0,1\}^{m}, ~\left(x_{1}, x_{2}, x_{3}, x_{4}\right) ~ \mapsto h_{1}\left(h_{1}\left(x_{1}, x_{2}\right), h_{1}\left(x_{3}, x_{4}\right)\right) .
$$

8. Prove that h_{2} is collision resistant. Hint: proceed by contradiction (i.e. reduction), by stating that if a collision is known for h_{2}, then it is easy to compute a collision on h_{1}.

Let $x \neq y$ be a collision for $h_{2}: h_{2}(x)=h_{2}(y)$. We distinguish two cases:

- either $h_{1}\left(x_{1}, x_{2}\right) \neq h_{1}\left(y_{1}, y_{2}\right)$ or $h_{1}\left(x_{3}, x_{4}\right) \neq h_{1}\left(y_{3}, y_{4}\right)$: thus, since $\left.h_{1}\left(x_{1}, x_{2}\right), h_{1}\left(x_{3}, x_{4}\right)\right)=$ $\left.h_{1}\left(y_{1}, y_{2}\right), h_{1}\left(y_{3}, y_{4}\right)\right)$ we found a collision on h_{1}.
- or, since $x \neq y$, we may by symmetry restrict to the case $\left(x_{1}, x_{2}\right) \neq\left(y_{1}, y_{2}\right)$. Then, since $h_{1}\left(x_{1}, x_{2}\right)=h_{1}\left(y_{1}, y_{2}\right)$, we have a collision on h_{1}.

All computations are performed in $O(m)$ time -comparisons here-, which is polynomial (linear here) in the input (x, y) size.
Since h_{1} is assumed collision resistant, we deduce by contradiction that h_{2} is collision resistant too.
9. Generalization: prove that h_{i} is collision resistant.

By induction, we state that if h_{i} is collision resistant, then h_{i+1} is collision resistant too.

- Base case: for $i=1, h_{1}$ is assumed collision resistant.
- Induction: similarly to previous question, we prove that if h_{i+1} is not collision resistant, then h_{i} is not collision resistant; the proof is exactly the same, just replacing h_{1} by h_{i} and h_{2} by h_{i+1}.

Since h_{1} is collision resistant by hypothesis, then h_{i} is collision resistant for any $i \geq 2$.
10. How many calls to h_{1} are performed to compute $h_{i}(x)$? Assuming that the cost of h_{1} is $\tilde{O}(m)=O\left(m^{1+\epsilon}\right)$, deduce that computing the hash of a n bit sequences has a cost $\tilde{O}(n)$.

Let $C(i)$ be the number of calls to h_{1} performed during computation of h_{i}. We have $C(i)=$ $2 . C(i-1)+1=2^{i} . C(0)+\sum_{k=0}^{i-1} 2^{k}=2^{i}-1$.
For a n bits sequence, we thus call n / m times h_{1}. The cost of h_{1} is $\left.\tilde{\Theta}(m)^{1+\epsilon}\right)$. Then the cost is then $O\left(n . m^{\epsilon}\right)=O\left(n^{1+\epsilon}\right)=\tilde{O}(n)$.
11. How to extend to build a collision resistant hash function $H:\{0,1\}^{*} \longrightarrow\{0,1\}^{m}$?

Let A ne the message and n its number of bits. To compute $H(A)$, let i such that $2^{i} . m=n$ i.e. $i=\left\lceil\log _{2} \frac{n}{m}\right\rceil$. Then we compute $H(A)=h_{i}(A)$.
Using recursion, this algorithm may also be used on-line to hash an input bit stream (i.e. the size n of the message is discovered when EOF is met).
Another alternative is to use the Merkle-Damgard protocol (cf lecture).

III. HAIFA Extension scheme

Let $F:\{0,1\}^{k+r+64} \rightarrow\{0,1\}^{k}$ be a compression function. The HAIFA (HAsh Iterative FrAmework) defines the following iterative extension scheme. In order to have a message bitlength multiple of r, the input message M is suffixed by $\operatorname{pad}(M)=^{\prime} 0 \ldots 0^{\prime}\|u\| 1 \| v$, where $u=\operatorname{bitlength}(M)$ and $v=^{\prime} 0^{\prime \log (u)}$. Then, let M_{i} be the i-th block of r bits and define

$$
h_{i}=F\left(h_{i-1}\left\|M_{i}\right\| c(i)\right)
$$

where $c(i)$ is the index i encoded on 64 bits. The hash is h_{j} obtained after the last block M_{j}.

12 Justify that the padding is a one-to-one mapping.
13 On what condition HAIFA is resistant to collision?

14^ M2R assignment HAIFA guarantees a lower bound $\Omega\left(2^{k}\right)$ for second preimage attacks, while there exist $O\left(2^{k-t}\right)$ second-preimage attacks for 2^{t}-blocks messages iteratively hashed with Merkle-Damgard.
Establish this result; are there lower bound for first preimage attacks too ?

