
Security models Master INPG-UJF SCCI

TD 4 - Design of a provably secure hash function

A one-way hash function h is a function from E ⊂ {0, 1}∗ to F ⊂ {0, 1}m :

h : E ⊂ {0, 1}∗ −→ F ⊂ {0, 1}m

where m is a given integer (eg m = 128 for h = MD5).

A hash function is said collision resistant if it is computationally impossible (i.e. very ex-
pensive) to compute (x, y) ∈ E2 with x 6= y such that h(x) = h(y).
Assuming that discrete logarithm is a one-way function, this exercise builds a collision resistant
hash function.

I. Design of a hash function {0, 1}2m −→ {0, 1}m

Let p be a large prime number such that q = p−1
2

is prime too. Let Fp = Z/p.Z; F∗p denotes the
multiplicative group ({1, 2, . . . , p− 1},×mod p). Similarly, we define Fq et F∗q.

Let α and β be two primitive (i.e. generators) elements of F∗p. It is assumed that α, β and p
are public (known by everyone) and let h1 defined by:

h1 : Fq × Fq → Fp
(x1, x2) 7→ αx1 .βx2 mod p

Let λ ∈ {1, . . . , q − 1} equal to the discrete logarithm of β in basis α : αλ = β mod p.
In all this question, it is assumed that λ is not known and impossible to compute.

To prove that h1 is collision resistant, we proceed as follows:

• we assume that a collision is known for h1, i.e.
∃(x1, x2, x3, x4) ∈ {0, 1, . . . , q− 1}4 such that (x1, x2) 6= (x3, x4) and h1(x1, x2) = h1(x3, x4)

• we then prove that it is easy then to compute λ. For this, let d denotes

d = pgcd(x4 − x2, p− 1).

Nota Bene. p and q are prime and that p = 2q + 1.

1. What are the divisors of p− 1 ? Deduce that d ∈ {1, 2, q, p− 1}.

p− 1 = 2q and q is prime; so, the divisors of p− 1 are {1, 2, q, 2q = p− 1}.
Since d is a divisor of p− 1, we have d ∈ {1, 2, q, p− 1}.

2. Justify −(q − 1) ≤ x4 − x2 ≤ q − 1; prove that d 6= q and d 6= p− 1.

Since 0 ≤ x2, x4 ≤ q − 1: −(q − 1) ≤ x4 − x2 ≤ q − 1.
But q is prime; then (x4 − x2) is prime to q and lesser than q, so d 6= q; and, since p − 1 = 2q,
d 6= p− 1.

1

3. Prove α(x1−x3) ≡ β(x4−x2) mod p.

Obvious: αx1βx2 ≡ αx3βx4 mod p⇐⇒ α(x1−x3) ≡ β(x4−x2) mod p

4. In this question, it is assumed that d = 1; prove λ = (x1 − x3).(x4 − x2)−1 mod (p− 1).

If d = 1, let u = (x4 − x2)−1 mod (p− 1) : u.(x4 − x2) = 1 + k.(p− 1) Then β(x4−x2).u mod p ≡
β1+k(p−1) mod p ≡ β mod p (from Fermat’s little theorem).
Replacing in 3., we obtain : β = α(x1−x3).u mod p, i.e. λ = (x1 − x3).u mod p− 1, qed.

5. In this question, it is assumed that d = 2; let u = (x4 − x2)−1 mod q.
5.a. Justify that βq = −1 mod p; deduce βu.(x4−x2) = ±β mod p.
5.b. Prove that either λ = u.(x1 − x3) mod p− 1 or λ = u.(x1 − x3) + q mod p− 1.

5.a. Since d = 2 and p− 1 = 2.q, we have x4 − x2 prime to q; so u.(x4 − x2) = 1 + k.q.
Then β(x4−x2).u mod p ≡ β1+kq mod p ≡ β.(βq)k mod p.
But q = p−1

2
and β is a primitive elements mod p. Thus, βp−1 = 1 mod p and βq = β

p−1
2 = −1

mod p. Finally, β(x4−x2).u = (−1)k.β mod p, qed.
5.b. Replacing in 3., we have : β = ±α(x1−x3).u mod p ie β = α(x1−x3).u+δ.q mod p with δ ∈ {0, 1}.
Thus, either δ = 0, i.e. λ = u.(x1 − x3) mod p− 1 or δ = 1, i.e. λ = u.(x1 − x3) + q mod p− 1,
qed.

6. Conclude: give an a reduction algorithm that takes in input a collision (x1, x2) 6= (x3, x4)
and returns λ.
Give an upper bound on the cost of this algorithm; conclude by stating h1 is collision-resistant.

From previous questions, we have the following algorithm:
AlgoCalculLogBeta(p, α, β, ;x1, x2, x3, x4) {
q = (p− 1)/2;
d = pgcd(x4 − x2, p− 1) ;
if (d == 1) {

u = (x4 − x2)−1 mod (p− 1);
λ = (x1 − x3).u mod p− 1;

}
else {// here d == 2

u = (x4 − x2)−1 mod q;
λ = (x1 − x3).u mod p− 1;
if (ExpoMod(α, λ, p) == −β) λ = λ+ q ;

}
return λ ;

}
The cost is O(1) arithmetic operations mod p− 1, p and q; thus O(log1+ε p), which is small even
for large values of p (eg 1024 bits). So, if a collision is known for h1, Then we may easily compute
the discrete logarithm β, which is in contradiction with the hypothesis that λ is very expensive
to compute. Thus h1 is collision resistant.

2

II. Extension to a hash function: {0, 1}∗ −→ {0, 1}m

Let h1 : {0, 1}2m → {0, 1}m be a collision resistant hash function (such as the one introduced in
I).

h1 : {0, 1}m × {0, 1}m → {0, 1}m
(x1, x2) 7→ h1(x1, x2)

Then, hi is inductively defined by: hi : {0, 1}2im −→ {0, 1}m par:

hi :
(
{0, 1}2i−1m

)2
−→ {0, 1}m

(x1, x2) 7→ h1(hi−1(x1), hi−1(x2))

7. Let (x1, x2, x3, x4) ∈ F4
q; explicit h2(x1, x2, x3, x4) with respect to h1.

h2 : ({0, 1}m)4 → {0, 1}m
(x1, x2, x3, x4) 7→ h1(h1(x1, x2), h1(x3, x4))

8. Prove that h2 is collision resistant. Hint : proceed by contradiction (i.e. reduction), by
stating that if a collision is known for h2, then it is easy to compute a collision on h1.

Let x 6= y be a collision for h2 : h2(x) = h2(y). We distinguish two cases:

• either h1(x1, x2) 6= h1(y1, y2) or h1(x3, x4) 6= h1(y3, y4) : thus, since h1(x1, x2), h1(x3, x4)) =
h1(y1, y2), h1(y3, y4)) we found a collision on h1.

• or, since x 6= y, we may by symmetry restrict to the case (x1, x2) 6= (y1, y2). Then, since
h1(x1, x2) = h1(y1, y2), we have a collision on h1.

All computations are performed in O(m) time –comparisons here-, which is polynomial (linear
here) in the input (x, y) size.
Since h1 is assumed collision resistant, we deduce by contradiction that h2 is collision resistant
too.

9. Generalization: prove that hi is collision resistant.

By induction, we state that if hi is collision resistant, then hi+1 is collision resistant too.

• Base case: for i = 1, h1 is assumed collision resistant.

• Induction: similarly to previous question, we prove that if hi+1 is not collision resistant, then
hi is not collision resistant; the proof is exactly the same, just replacing h1 by hi and h2 by
hi+1.

Since h1 is collision resistant by hypothesis, then hi is collision resistant for any i ≥ 2.

3

10. How many calls to h1 are performed to compute hi(x) ? Assuming that the cost of h1 is
Õ(m) = O (m1+ε), deduce that computing the hash of a n bit sequences has a cost Õ(n).

Let C(i) be the number of calls to h1 performed during computation of hi. We have C(i) =
2.C(i− 1) + 1 = 2i.C(0) +

∑i−1
k=0 2k = 2i − 1.

For a n bits sequence, we thus call n/m times h1. The cost of h1 is Θ̃(m)1+ε). Then the cost is
then O(n.mε) = O (n1+ε) = Õ(n).

11. How to extend to build a collision resistant hash function H : {0, 1}∗ −→ {0, 1}m ?

Let A ne the message and n its number of bits. To compute H(A), let i such that 2i.m = n i.e.
i = dlog2 nme. Then we compute H(A) = hi(A).
Using recursion, this algorithm may also be used on-line to hash an input bit stream (i.e. the size
n of the message is discovered when EOF is met).
Another alternative is to use the Merkle-Damgard protocol (cf lecture).

III. HAIFA Extension scheme

Let F : {0, 1}k+r+64 → {0, 1}k be a compression function. The HAIFA (HAsh Iterative FrAme-
work) defines the following iterative extension scheme. In order to have a message bitlength mul-
tiple of r, the input message M is suffixed by pad(M) =′ 0 . . . 0′||u||1||v, where u =bitlength(M)
and v =′ 0′ log(u). Then, let Mi be the i-th block of r bits and define

hi = F (hi−1||Mi||c(i))

where c(i) is the index i encoded on 64 bits. The hash is hj obtained after the last block Mj.

12 Justify that the padding is a one-to-one mapping.

13 On what condition HAIFA is resistant to collision?

14? M2R assignment HAIFA guarantees a lower bound Ω(2k) for second preimage attacks,
while there exist O(2k−t) second-preimage attacks for 2t-blocks messages iteratively hashed with
Merkle-Damgard.
Establish this result; are there lower bound for first preimage attacks too ?

4

