Security models Master INPG-UJF SCCI

TD 4 - Design of a provably secure hash function

A one-way hash function h is a function from E C {0,1}* to F' C {0,1}™ :
h:EcC{0,1} — F c {0,1}"
where m is a given integer (eg m = 128 for h = MD5).
A hash function is said collision resistant if it is computationally impossible (i.e. very ex-
pensive) to compute (z,y) € E* with x # y such that h(z) = h(y).

Assuming that discrete logarithm is a one-way function, this exercise builds a collision resistant
hash function.

I. Design of a hash function {0,1}*" — {0,1}™

Let p be a large prime number such that ¢ = p%l is prime too. Let F, = Z/p.Z; I, denotes the

multiplicative group ({1,2,...,p — 1}, Xmod p). Similarly, we define IF, et FF;.

Let a and 3 be two primitive (i.e. generators) elements of Fy. It is assumed that o, 3 and p
are public (known by everyone) and let hy defined by:

hy: F,xF, — F,
(x1,22) +— ™" mod p

Let A € {1,...,q — 1} equal to the discrete logarithm of 3 in basis a: o* = 3 mod p.
In all this question, it is assumed that A is not known and impossible to compute.

To prove that h; is collision resistant, we proceed as follows:

e we assume that a collision is known for hq, i.e.
(1, To, w3, 74) € {0,1,...,q— 1}* such that (zy,x9) # (23, 24) and hy(z1, 22) = hy(r3,74)

e we then prove that it is easy then to compute A. For this, let d denotes
d = pged(xy — 29, p — 1).

Nota Bene. p and ¢ are prime and that p = 2¢ + 1.

1. What are the divisors of p — 1 ? Deduce that d € {1,2,q,p — 1}.

p — 1 =2q and q is prime; so, the divisors of p — 1 are {1,2,¢,2¢g =p — 1}.
Since d is a divisor of p — 1, we have d € {1,2,q,p — 1}.

2. Justify —(¢ — 1) <24y — 29 < g —1; prove that d # g and d # p — 1.

Since 0 < 9,2y < q—1: —(¢—1)<zy—129 < q—1.
But ¢ is prime; then (x4 — x2) is prime to ¢ and lesser than ¢, so d # ¢; and, since p — 1 = 2gq,
d#p-—1.

3. Prove a®—3) = pl#a=r2) 1o p.

Obvious: a®3%2 = o®3 4% mod p <= ol®1723) = BEa=22) mod p

4. In this question, it is assumed that d = 1; prove A\ = (x; — x3).(z4 — x2)~" mod (p — 1).

Ifd=1,let u= (x4 —22)"" mod (p—1): u.(rgy — 25) =1+ k.(p— 1) Then p@+~22)* mod p =
BUHRP=1 mod p = f mod p (from Fermat’s little theorem).
Replacing in 3., we obtain: 3 = a(®723)% mod p, i.e. A = (z; — x3).u mod p — 1, ged.

5. In this question, it is assumed that d = 2; let u = (x4 — x9) 7"

5.a. Justify that 87 = —1 mod p; deduce f*®+=*2) = +£5 mod p.
5.b. Prove that either A = u.(z; —x3) mod p—1 or A = u.(z; — x3) + ¢ mod p — 1.

mod gq.

5.a. Since d =2 and p — 1 = 2.q, we have 24 — x5 prime to ¢; so u.(xy — x2) = 1 + k.q.
Then f*+=22)% mod p = % mod p = B.(87)* mod p.

But ¢ = ’%1 and [is a primitive elements mod p. Thus, fP~! =1 mod p and B9 = ﬁp%l =—1
mod p. Finally, 3@+=2)% = (—1)*.3 mod p, qed.

5.b. Replacing in 3., we have: 3 = £a(®1 %)% mod pie f = o®~#3)u+3¢ mod pwith § € {0, 1}.
Thus, either § =0, i.e. A=wu.(x; —x3) modp—1lord=1,ie A=wu.(z; —x3)+qg modp—1,
ged.

6. Conclude: give an a reduction algorithm that takes in input a collision (z1,x2) # (x3,24)
and returns .
Give an upper bound on the cost of this algorithm; conclude by stating h; is collision-resistant.

From previous questions, we have the following algorithm:
AlgoCalculLogBeta(p,a, 3, ;21,T2,23, 24) {

¢=(p—1)/2;
d = pged(xy —z2,p— 1) ;
if (d==1) {

u= (x4 —x2)"! mod (p—1);
A= (21 —z3).u mod p—1;
}
else {// here d == 2
u= (x4 —x3)"" mod g;
A= (z1 —23).u mod p—1;
if (ExpoMod(a, \,p) == —f3) A=A+q ;
}
return A\ ;
}
The cost is O(1) arithmetic operations mod p — 1, p and ¢; thus O(log' ™ p), which is small even
for large values of p (eg 1024 bits). So, if a collision is known for h;, Then we may easily compute
the discrete logarithm 3, which is in contradiction with the hypothesis that \ is very expensive
to compute. Thus h; is collision resistant.

I1. Extension to a hash function: {0,1}* — {0,1}"

Let hy : {0,1}*™ — {0,1}™ be a collision resistant hash function (such as the one introduced in

D).
hy : {O, 1}m x {0, 1}m — {0, l}m
(1, x2) = hi(xy, 20)

Then, h; is inductively defined by: h; : {0,1}*™ — {0, 1} par:

hy ({0,1}21'1”1)2 {0, 1)
(21, 22) = ha(himi (1), hio1(22))

7. Let (x1,29,73,74) € Fg; explicit ho(xy, e, T3, x4) With respect to hy.

hy o ({0,1}™)* — {0,1}"
(1’1,$2,$3,$4) —> hl(hl(l'l,ig),hl(ig,l@))

8. Prove that hs is collision resistant. Hint: proceed by contradiction (i.e. reduction), by
stating that if a collision is known for ho, then it is easy to compute a collision on h;.

Let # y be a collision for hs : ho(x) = hy(y). We distinguish two cases:

e cither h1<$1,l‘2) 7é hl(yl,yg) or h1($3,56'4> 7é hl(y37y4) 5 thllS, since hl(xl,l'g), hl(afg,l‘4)) =
hi(y1,y2), h1(ys, ys4)) we found a collision on h;.

e or, since x # y, we may by symmetry restrict to the case (z1,x2) # (y1,92). Then, since
hi(z1,x2) = hi(y1,y2), we have a collision on hy.

All computations are performed in O(m) time —comparisons here-, which is polynomial (linear
here) in the input (z,y) size.

Since h; is assumed collision resistant, we deduce by contradiction that hs is collision resistant
too.

9. Generalization: prove that h; is collision resistant.

By induction, we state that if h; is collision resistant, then h;,; is collision resistant too.
e Base case: for i = 1, hy is assumed collision resistant.

e Induction: similarly to previous question, we prove that if h;,; is not collision resistant, then
h; is not collision resistant; the proof is exactly the same, just replacing h; by h; and hy by

hi—i—l o

Since h; is collision resistant by hypothesis, then h; is collision resistant for any ¢ > 2.

10. How many calls to h; are performed to compute hi(x) 7 Assuming that the cost of hy is
O(m) = O (m'*¢), deduce that computing the hash of a n bit sequences has a cost O(n).

Let C(i) be the number of calls to h; performed during computation of h;. We have C(i) =
2.0(i —1)+1=2.C(0) + Y1 2k =2 — 1. ~

For a n bits sequence, we thus call n/m times hi. The cost of h; is ©(m)'™€). Then the cost is
then O(n.m¢) = O (n't¢) = O(n).

11. How to extend to build a collision resistant hash function H : {0,1}* — {0,1}™ ?

Let A ne the message and n its number of bits. To compute H(A), let 4 such that 2°.m = n i.e.
i = [loga7=]. Then we compute H(A) = h;(A).

Using recursion, this algorithm may also be used on-line to hash an input bit stream (i.e. the size
n of the message is discovered when EOF is met).

Another alternative is to use the Merkle-Damgard protocol (cf lecture).

IT1. HAIFA Extension scheme

Let F : {0, 1}*+6% — {0, 1}* be a compression function. The HAIFA (HAsh Iterative FrAme-
work) defines the following iterative extension scheme. In order to have a message bitlength mul-
tiple of r, the input message M is suffixed by pad(M) =" 0...0'||ul|1||v, where u =bitlength(M)
and v =’ 0'°8() Then, let M; be the i-th block of r bits and define

hi = F(hi—1||Mi|c(4))

where ¢(4) is the index ¢ encoded on 64 bits. The hash is h; obtained after the last block M;.
12 Justify that the padding is a one-to-one mapping.
13 On what condition HAIFA is resistant to collision?

14x M2R assignment HAIFA guarantees a lower bound (2*) for second preimage attacks,
while there exist O(2%7!) second-preimage attacks for 2'-blocks messages iteratively hashed with
Merkle-Damgard.

Establish this result; are there lower bound for first preimage attacks too ?

