TD 4 - Design of a provably secure hash function

I. Design of a hash function $\{0,1\}^{2m} \longrightarrow \{0,1\}^m$

1. p-1 = 2q and q is prime; so, the divisors of p-1 are $\{1, 2, q, 2q = p-1\}$. Since d is a divisor of p-1, we have $d \in \{1, 2, q, p-1\}$.

2. Since $0 \le x_2, x_4 \le q - 1$: $-(q - 1) \le x_4 - x_2 \le q - 1$. But q is prime; then $(x_4 - x_2)$ is prime to q and lesser than q, so $d \ne q$; and, since p - 1 = 2q, $d \ne p - 1$.

3. Obvious: $\alpha^{x_1}\beta^{x_2} \equiv \alpha^{x_3}\beta^{x_4} \mod p \iff \alpha^{(x_1-x_3)} \equiv \beta^{(x_4-x_2)} \mod p$

4. If d = 1, let $u = (x_4 - x_2)^{-1} \mod (p - 1)$: $u.(x_4 - x_2) = 1 + k.(p - 1)$ Then $\beta^{(x_4 - x_2).u} \mod p \equiv \beta^{1+k(p-1)} \mod p \equiv \beta \mod p$ (from Fermat's little theorem). Replacing in 3., we obtain: $\beta = \alpha^{(x_1 - x_3).u} \mod p$, i.e. $\lambda = (x_1 - x_3).u \mod p - 1$, qed.

5. 5.a. Since d = 2 and p - 1 = 2.q, we have $x_4 - x_2$ prime to q; so $u.(x_4 - x_2) = 1 + k.q$. Then $\beta^{(x_4 - x_2).u} \mod p \equiv \beta^{1+kq} \mod p \equiv \beta.(\beta^q)^k \mod p$. But $q = \frac{p-1}{2}$ and β is a primitive elements mod p. Thus, $\beta^{p-1} = 1 \mod p$ and $\beta^q = \beta^{\frac{p-1}{2}} = -1$ mod p. Finally, $\beta^{(x_4 - x_2).u} = (-1)^k.\beta \mod p$, qed. **5.b.** Replacing in 3., we have: $\beta = \pm \alpha^{(x_1 - x_3).u} \mod p$ ie $\beta = \alpha^{(x_1 - x_3).u + \delta.q} \mod p$ with $\delta \in \{0, 1\}$. Thus, either $\delta = 0$, i.e. $\lambda = u.(x_1 - x_3) \mod p - 1$ or $\delta = 1$, i.e. $\lambda = u.(x_1 - x_3) + q$ mod p - 1, qed.

6. From previous questions, we have the following algorithm:

```
AlgoCalculLogBeta( p, \alpha, \beta, ;x_1, x_2, x_3, x_4 ) {

q = (p-1)/2;

d = pgcd(x_4 - x_2, p - 1) ;

if (d == 1) {

u = (x_4 - x_2)^{-1} \mod (p - 1);

\lambda = (x_1 - x_3).u \mod p - 1;

}

else {// here d == 2

u = (x_4 - x_2)^{-1} \mod q;

\lambda = (x_1 - x_3).u \mod p - 1;

if (ExpoMod(\alpha, \lambda, p) == -\beta) \lambda = \lambda + q ;

}

return \lambda ;
```

The cost is O(1) arithmetic operations mod p-1, p and q; thus $O(\log^{1+\epsilon} p)$, which is small even for large values of p (eg 1024 bits). So, if a collision is known for h_1 , Then we may easily compute the discrete logarithm β , which is in contradiction with the hypothesis that λ is very expensive to compute. Thus h_1 is collision resistant. II. Extension to a hash function: $\{0,1\}^* \longrightarrow \{0,1\}^m$

7.

$$\begin{array}{rccc} h_2: & (\{0,1\}^m)^4 & \to & \{0,1\}^m \\ & (x_1,x_2,x_3,x_4) & \mapsto & h_1(h_1(x_1,x_2),h_1(x_3,x_4)) \end{array}$$

- 8. Let $x \neq y$ be a collision for $h_2 : h_2(x) = h_2(y)$. We distinguish two cases:
 - either $h_1(x_1, x_2) \neq h_1(y_1, y_2)$ or $h_1(x_3, x_4) \neq h_1(y_3, y_4)$: thus, since $h_1(x_1, x_2), h_1(x_3, x_4)) = h_1(y_1, y_2), h_1(y_3, y_4))$ we found a collision on h_1 .
 - or, since $x \neq y$, we may by symmetry restrict to the case $(x_1, x_2) \neq (y_1, y_2)$. Then, since $h_1(x_1, x_2) = h_1(y_1, y_2)$, we have a collision on h_1 .

All computations are performed in O(m) time –comparisons here-, which is polynomial (linear here) in the input (x, y) size.

Since h_1 is assumed collision resistant, we deduce by contradiction that h_2 is collision resistant too.

- **9.** By induction, we state that if h_i is collision resistant, then h_{i+1} is collision resistant too.
 - Base case: for i = 1, h_1 is assumed collision resistant.
 - Induction: similarly to previous question, we prove that if h_{i+1} is not collision resistant, then h_i is not collision resistant; the proof is exactly the same, just replacing h_1 by h_i and h_2 by h_{i+1} .

Since h_1 is collision resistant by hypothesis, then h_i is collision resistant for any $i \ge 2$.

10. Let C(i) be the number of calls to h_1 performed during computation of h_i . We have $C(i) = 2.C(i-1) + 1 = 2^i.C(0) + \sum_{k=0}^{i-1} 2^k = 2^i - 1$. For a n bits sequence, we thus call n/m times h_1 . The cost of h_1 is $\tilde{\Theta}(m)^{1+\epsilon}$). Then the cost is then $O(n.m^{\epsilon}) = O(n^{1+\epsilon}) = \tilde{O}(n)$.

11. Let A ne the message and n its number of bits. To compute H(A), let i such that $2^i \cdot m = n$ i.e. $i = \lceil \log_2 \frac{n}{m} \rceil$. Then we compute $H(A) = h_i(A)$. Using recursion, this algorithm may also be used on-line to hash an input bit stream (i.e. the size n of the message is discovered when EOF is met).

Another alternative is to use the Merkle-Damgard protocol (cf lecture).

III. HAIFA Extension scheme

12

 $\mathbf{13}$

$14\star$ M2R assignment