TD 4 - Design of a provably secure hash function

I. Design of a hash function $\{0,1\}^{2 m} \longrightarrow\{0,1\}^{m}$

1. $p-1=2 q$ and q is prime; so, the divisors of $p-1$ are $\{1,2, q, 2 q=p-1\}$.

Since d is a divisor of $p-1$, we have $d \in\{1,2, q, p-1\}$.
2. Since $0 \leq x_{2}, x_{4} \leq q-1:-(q-1) \leq x_{4}-x_{2} \leq q-1$.

But q is prime; then $\left(x_{4}-x_{2}\right)$ is prime to q and lesser than q, so $d \neq q$; and, since $p-1=2 q$, $d \neq p-1$.
3. Obvious: $\alpha^{x_{1}} \beta^{x_{2}} \equiv \alpha^{x_{3}} \beta^{x_{4}} \bmod p \Longleftrightarrow \alpha^{\left(x_{1}-x_{3}\right)} \equiv \beta^{\left(x_{4}-x_{2}\right)} \bmod p$
4. If $d=1$, let $u=\left(x_{4}-x_{2}\right)^{-1} \bmod (p-1): u \cdot\left(x_{4}-x_{2}\right)=1+k \cdot(p-1)$ Then $\beta^{\left(x_{4}-x_{2}\right) \cdot u}$ $\bmod p \equiv \beta^{1+k(p-1)} \bmod p \equiv \beta \bmod p($ from Fermat's little theorem).
Replacing in 3., we obtain: $\beta=\alpha^{\left(x_{1}-x_{3}\right) \cdot u} \bmod p$, i.e. $\lambda=\left(x_{1}-x_{3}\right) \cdot u \bmod p-1$, qed.
5. 5.a. Since $d=2$ and $p-1=2 . q$, we have $x_{4}-x_{2}$ prime to q; so $u .\left(x_{4}-x_{2}\right)=1+k . q$. Then $\beta^{\left(x_{4}-x_{2}\right) \cdot u} \bmod p \equiv \beta^{1+k q} \bmod p \equiv \beta .\left(\beta^{q}\right)^{k} \bmod p$.
But $q=\frac{p-1}{2}$ and β is a primitive elements mod p. Thus, $\beta^{p-1}=1 \bmod p$ and $\beta^{q}=\beta^{\frac{p-1}{2}}=-1$ $\bmod p$. Finally, $\beta^{\left(x_{4}-x_{2}\right) \cdot u}=(-1)^{k} \cdot \beta \bmod p$, qed.
5.b. Replacing in 3., we have: $\beta= \pm \alpha^{\left(x_{1}-x_{3}\right) . u} \bmod p$ ie $\beta=\alpha^{\left(x_{1}-x_{3}\right) . u+\delta . q} \bmod p$ with $\delta \in$ $\{0,1\}$. Thus, either $\delta=0$, i.e. $\lambda=u .\left(x_{1}-x_{3}\right) \bmod p-1$ or $\delta=1$, i.e. $\lambda=u .\left(x_{1}-x_{3}\right)+q$ $\bmod p-1$, qed.
6. From previous questions, we have the following algorithm:

```
AlgoCalculLogBeta( }p,\alpha,\beta,;\mp@subsup{x}{1}{},\mp@subsup{x}{2}{},\mp@subsup{x}{3}{},\mp@subsup{x}{4}{})\mathrm{ {
    q=(p-1)/2;
    d= pgcd( (x4- x, p-1) ;
        if (d== 1) {
            u=(x4- x ( )
            \lambda=(x
    }
    else {// here d == 2
            u=(\mp@subsup{x}{4}{}-\mp@subsup{x}{2}{}\mp@subsup{)}{}{-1}\operatorname{mod}q;
            \lambda=( (x - x ) ).u mod p-1;
            if (ExpoMod}(\alpha,\lambda,p)== - \beta) \lambda=\lambda+q
        }
        return \lambda ;
    }
```

The cost is $O(1)$ arithmetic operations mod $p-1, p$ and q; thus $O\left(\log ^{1+\epsilon} p\right)$, which is small even for large values of p (eg 1024 bits). So, if a collision is known for h_{1}, Then we may easily compute the discrete logarithm β, which is in contradiction with the hypothesis that λ is very expensive to compute. Thus h_{1} is collision resistant.
II. Extension to a hash function: $\{0,1\}^{*} \longrightarrow\{0,1\}^{m}$
7.

$$
\begin{aligned}
h_{2}: & \left(\{0,1\}^{m}\right)^{4}
\end{aligned}>\{0,1\}^{m},
$$

8. Let $x \neq y$ be a collision for $h_{2}: h_{2}(x)=h_{2}(y)$. We distinguish two cases:

- either $h_{1}\left(x_{1}, x_{2}\right) \neq h_{1}\left(y_{1}, y_{2}\right)$ or $h_{1}\left(x_{3}, x_{4}\right) \neq h_{1}\left(y_{3}, y_{4}\right)$: thus, since $\left.h_{1}\left(x_{1}, x_{2}\right), h_{1}\left(x_{3}, x_{4}\right)\right)=$ $\left.h_{1}\left(y_{1}, y_{2}\right), h_{1}\left(y_{3}, y_{4}\right)\right)$ we found a collision on h_{1}.
- or, since $x \neq y$, we may by symmetry restrict to the case $\left(x_{1}, x_{2}\right) \neq\left(y_{1}, y_{2}\right)$. Then, since $h_{1}\left(x_{1}, x_{2}\right)=h_{1}\left(y_{1}, y_{2}\right)$, we have a collision on h_{1}.

All computations are performed in $O(m)$ time -comparisons here-, which is polynomial (linear here) in the input (x, y) size.
Since h_{1} is assumed collision resistant, we deduce by contradiction that h_{2} is collision resistant too.
9. By induction, we state that if h_{i} is collision resistant, then h_{i+1} is collision resistant too.

- Base case: for $i=1, h_{1}$ is assumed collision resistant.
- Induction: similarly to previous question, we prove that if h_{i+1} is not collision resistant, then h_{i} is not collision resistant; the proof is exactly the same, just replacing h_{1} by h_{i} and h_{2} by h_{i+1}.

Since h_{1} is collision resistant by hypothesis, then h_{i} is collision resistant for any $i \geq 2$.
10. Let $C(i)$ be the number of calls to h_{1} performed during computation of h_{i}. We have $C(i)=$ 2. $C(i-1)+1=2^{i} . C(0)+\sum_{k=0}^{i-1} 2^{k}=2^{i}-1$.

For a n bits sequence, we thus call n / m times h_{1}. The cost of h_{1} is $\left.\tilde{\Theta}(m)^{1+\epsilon}\right)$. Then the cost is then $O\left(n \cdot m^{\epsilon}\right)=O\left(n^{1+\epsilon}\right)=\tilde{O}(n)$.
11. Let A ne the message and n its number of bits. To compute $H(A)$, let i such that $2^{i} . m=n$ i.e. $i=\left\lceil\log _{2} \frac{n}{m}\right\rceil$. Then we compute $H(A)=h_{i}(A)$.

Using recursion, this algorithm may also be used on-line to hash an input bit stream (i.e. the size n of the message is discovered when EOF is met).
Another alternative is to use the Merkle-Damgard protocol (cf lecture).

III. HAIFA Extension scheme

12

13

14 \star M2R assignment

