
Security models Master INPG-UJF SCCI

TD 4 - Design of a provably secure hash function

I. Design of a hash function {0, 1}2m −→ {0, 1}m

1. p− 1 = 2q and q is prime; so, the divisors of p− 1 are {1, 2, q, 2q = p− 1}.
Since d is a divisor of p− 1, we have d ∈ {1, 2, q, p− 1}.

2. Since 0 ≤ x2, x4 ≤ q − 1: −(q − 1) ≤ x4 − x2 ≤ q − 1.
But q is prime; then (x4 − x2) is prime to q and lesser than q, so d 6= q; and, since p − 1 = 2q,
d 6= p− 1.

3. Obvious: αx1βx2 ≡ αx3βx4 mod p⇐⇒ α(x1−x3) ≡ β(x4−x2) mod p

4. If d = 1, let u = (x4 − x2)
−1 mod (p − 1) : u.(x4 − x2) = 1 + k.(p − 1) Then β(x4−x2).u

mod p ≡ β1+k(p−1) mod p ≡ β mod p (from Fermat’s little theorem).
Replacing in 3., we obtain : β = α(x1−x3).u mod p, i.e. λ = (x1 − x3).u mod p− 1, qed.

5. 5.a. Since d = 2 and p− 1 = 2.q, we have x4 − x2 prime to q; so u.(x4 − x2) = 1 + k.q.
Then β(x4−x2).u mod p ≡ β1+kq mod p ≡ β.(βq)k mod p.
But q = p−1

2
and β is a primitive elements mod p. Thus, βp−1 = 1 mod p and βq = β

p−1
2 = −1

mod p. Finally, β(x4−x2).u = (−1)k.β mod p, qed.
5.b. Replacing in 3., we have : β = ±α(x1−x3).u mod p ie β = α(x1−x3).u+δ.q mod p with δ ∈
{0, 1}. Thus, either δ = 0, i.e. λ = u.(x1 − x3) mod p − 1 or δ = 1, i.e. λ = u.(x1 − x3) + q
mod p− 1, qed.

6. From previous questions, we have the following algorithm:
AlgoCalculLogBeta(p, α, β, ;x1, x2, x3, x4) {
q = (p− 1)/2;
d = pgcd(x4 − x2, p− 1) ;
if (d == 1) {

u = (x4 − x2)−1 mod (p− 1);
λ = (x1 − x3).u mod p− 1;

}
else {// here d == 2

u = (x4 − x2)−1 mod q;
λ = (x1 − x3).u mod p− 1;
if (ExpoMod(α, λ, p) == −β) λ = λ+ q ;

}
return λ ;

}
The cost is O(1) arithmetic operations mod p− 1, p and q; thus O(log1+ε p), which is small even
for large values of p (eg 1024 bits). So, if a collision is known for h1, Then we may easily compute
the discrete logarithm β, which is in contradiction with the hypothesis that λ is very expensive to
compute. Thus h1 is collision resistant.

1

II. Extension to a hash function: {0, 1}∗ −→ {0, 1}m

7.
h2 : ({0, 1}m)4 → {0, 1}m

(x1, x2, x3, x4) 7→ h1(h1(x1, x2), h1(x3, x4))

8. Let x 6= y be a collision for h2 : h2(x) = h2(y). We distinguish two cases:

• either h1(x1, x2) 6= h1(y1, y2) or h1(x3, x4) 6= h1(y3, y4) : thus, since h1(x1, x2), h1(x3, x4)) =
h1(y1, y2), h1(y3, y4)) we found a collision on h1.

• or, since x 6= y, we may by symmetry restrict to the case (x1, x2) 6= (y1, y2). Then, since
h1(x1, x2) = h1(y1, y2), we have a collision on h1.

All computations are performed in O(m) time –comparisons here-, which is polynomial (linear
here) in the input (x, y) size.
Since h1 is assumed collision resistant, we deduce by contradiction that h2 is collision resistant
too.

9. By induction, we state that if hi is collision resistant, then hi+1 is collision resistant too.

• Base case: for i = 1, h1 is assumed collision resistant.

• Induction: similarly to previous question, we prove that if hi+1 is not collision resistant, then
hi is not collision resistant; the proof is exactly the same, just replacing h1 by hi and h2 by
hi+1.

Since h1 is collision resistant by hypothesis, then hi is collision resistant for any i ≥ 2.

10. Let C(i) be the number of calls to h1 performed during computation of hi. We have C(i) =
2.C(i− 1) + 1 = 2i.C(0) +

∑i−1
k=0 2k = 2i − 1.

For a n bits sequence, we thus call n/m times h1. The cost of h1 is Θ̃(m)1+ε). Then the cost is
then O(n.mε) = O (n1+ε) = Õ(n).

11. Let A ne the message and n its number of bits. To compute H(A), let i such that 2i.m = n
i.e. i = dlog2 nme. Then we compute H(A) = hi(A).
Using recursion, this algorithm may also be used on-line to hash an input bit stream (i.e. the size
n of the message is discovered when EOF is met).
Another alternative is to use the Merkle-Damgard protocol (cf lecture).

III. HAIFA Extension scheme

12

13

14? M2R assignment

2

