Exercises lecture 3 - Part 2 /JL Roch - Provable security

1 Entropy and unconditional security

Let k be a key of length n uniformly chosen in $\{0,1\}^n$; let (E_k, D_k) be an encryption scheme for messages of length m:

$$\forall k \in \{0,1\}^n, \forall x \in \{0,1\}^m : D_k(E_k(x)) = x.$$

Besides, let U_n denote the uniform distribution over $\{0, 1\}^n$.

1. In this question only, n = m and $E_k = E_k^{OTP} : E_k^{OTP}(x) = x \oplus k$ where \oplus denotes the bitwise XOR. What is $D_k^{OTP}(x)$?

For any $x, x' \in \{0, 1\}^m$, show that the distribution $E_{U_n}^{OTP}(x)$ is the same as $E_{U_n}^{OTP}(x')$.

- 2. For any (E_k, D_k) : if n < m, show that there exist two messages $x, x' \in \{0, 1\}^m$ such that $E_{U_n}(x)$ is not the same distribution as $E_{U_n}(x')$.
- 3. If $n \ge m$, we consider (E_k, D_k) such that $\forall x, x' : E_{U_n}(x)$ is the same distribution as $E_{U_n}(x')$. Show that E is then unconditionally secure *(hint : use Bayes theorem)*.

2 Levin's universal one-way function

Let $(M_i)_{i \in \mathbb{N}}$ denote the sequence of all deterministic Turing machines (or equivalently all deterministic algorithms). For $x \in \{0, 1\}^+$, we define $M_i^t(x)$ by :

- if M_i performs at most t computational steps on input x, then $M_i^t(x)$ is the output of M_i on input x; - else $M_i^t(x) = 0^{|x|}$ (i.e. the bit O repeated |x| times).

The Levin's universal function $f_U: \{0,1\}^+ \to \{0,1\}^+$ is defined by :

- treat the *n* input bits as a list $x_1, \ldots, x_{\log n}$ of blocks of $n/\log n$ bits each;

- output the sequence of $\log n$ results : $M_1^{n^2}(x_1), \ldots, M_{\log n}^{n^2}(x_{\log n})$.

Questions :

- 1. Justify that f_U can be computed in polynomial time.
- 2. In this question, we assume that M_1 implements a one-way function. Moreover, we assume that, for any input of n bits, M_1 uses at most n^2 computational steps and outputs exactly n bits. Show that f_U is a one-way function (hint : explicit a reduction).
- 3. Assume there exists a function g resistant to pre-image such that, for an input x of n bits, g(x) is computed in time at most n^c (and thus has at most n^c bits). For $x \in \{0,1\}^n$, let $L_c(x)$ denote the $\lfloor n^{1/c} \rfloor$ first bits of x and $H_c(x)$ the remainder bits : $x = L_c(x) || H_c(x)$. Define $g'(x) = g(L_c(x))$. Show that g' is resistant to pre-image and can be computed in time O(|x|).
- 4. Show that f_U is one-way if and only if there exists a one-way function.