
Security Models-Provable security Master SCCI / Grenoble University (IPG-UJF)

Exercises lecture 2/JL Roch - Complexity

Exercise 1. Merkle-Hellman

1. size = n = 1000 bits.

2. Algorithm to build its secret integers ai and m :

(a) Choose a0 a random c bit number (c for instance 64). Let s0 = a0.

(b) for i = 1, . . . , n− 1 : let ai =rand({si−1 + 1, . . . , 2.si−1})
(c) let m =rand({sn, . . . , 2.sn})

3. We have ai ≤ 2
∑i−1

j=0 aj = 2.ai−1 + 2
∑i?2

j=0 aj ≤ 4ai−1 ≤ c.4i.

4. The size of the cipher text C is log2 m bits : but m ≤ 2
∑n?1

j=0 aj ≤ 2c4n

3 . Thus log2 m ≤ 2n + log2 c.
The size of the cipher text is about twice the size of the plain text.

5. Algorithm Encode(X[0..n[) {
for (S=0, i=0 ; i<n ; ++i) if (x[i]==1) S =(S+b[i]) mod m ;
return S ; }

Decode(S) {
S = u.S mod m ; // (since u = t−1 mod m)
for (i=n-1 ; i≤ 0 ; –i)
if (S ≥ a[i]) { x[i]= 1 ; S = S-a[i] ;} else x[i]=0 ;
if (S 6= 0) return ERROR-DECIPHERING else return (x[0, . . ., n[) ;
}
Cost analysis : coding = O(n2) and decoding = Õ(n2).

6. If SubSetSum(S, b0, . . ., bn−1) modulo m is assumed intractable, then DH(b0, . . . , bn−1,m) is provably
secure.
On a general point of view, the crypto system is theoretically founded on the SUBSET-SUM problem
which is NP-complete. But it exists bad choices of the bi that makes it weak.

Exercise 2. Primes, big factor and factorization

1. By definition, IS-COMPOSED(n)= not(IS-PRIME(n)). This gives the polynomial-time reduction :
AlgoReduction-IS-COMPOSED(n) { r := Oracle-IS-PRIME(n) ; return (not r) ; } that proves IS-
COMPOSED ≤P IS-PRIME.
Similarly, we obtain IS-PRIME ≤P IS-COMPOSED.

2. IS-COMPOSED(n) = YES iff there exists a divisor d of n, with 1 < d < n. Checking that d divides n
is performed in time Õ(log n), thus polynomial in the input size. So, IS-COMPOSED ∈ NP.

3. To what complexity class belongs IS-PRIME ? You have to give a proof of your answer. Since IS-PRIME
= not (IS-COMPOSED) and IS-COMPOSED ∈ NP, we clearly have IS-PRIME ∈ co-NP.

4. The AKS algorithm for IS-PRIME rune in time Õ(log6 n) ≤ logO(1) n so polynomial in the input size
log n ; yet PRIME ∈ P. Besides, from the first question, IS-COMPOSED ≤P IS-PRIME ; since P is
closed by ≤P , we have IS-COMPOSED ∈ P.

5. Let L(n) = (p1, . . . , pk) the list of prime factors of n such that n =
∏

i = 1kpi (the pi may not be
distinct). For any i : 2 ≤ pi ≤ n. Then k ≤ log2 n and the size of L(n) is O(log2 n). Thus it can
be checked in polynomial time logO(1) n that n =

∏
i = 1kpi and that each of the k integers pi is

prime (using AKS algorithm for IS-PRIME). Now, L(n) is provided as an input certificate to check
HAS-BIG-FACTOR(n, m) : once L(n) verified, we compute the maximum element pj in L(n) : if
pj ≥ m (resp. pj < m), then HAS-BIG-FACTOR(n, m)=YES (resp. NO) is proved in polynomial
time (log n + log m)O(1) ; this states that HAS-BIG-FACTOR is in NP (resp. co-NP). So, finally,
HAS-BIG-FACTOR ∈ NP ∩ co-NP.

6. By binary search in {2, . . . , n}, log2 n queries to Oracle HAS-BIG-FACTOR are sufficient to compute
the largest prime factor p1 of n. Then, this operation is performed recursively on n/p1 until n = 1.
Then at most log2 n prime factors of n are computed, each computed in Õ(log n). Thus FACTORIZE

1

≤P HAS-BIG-FACTOR.
Conversely, obviously, HAS-BIG-FACTOR ≤P FACTORIZE (by computing the largest prime factor
p1 of n from a call to Oracle-FACTORIZE and returning YES iff p1 ≥ m).
So, HAS-BIG-FACTOR =P FACTORIZE and HAS-BIG-FACTOR ∈ NP ∩ co-NP. If we have P=
NP ∩ co-NP, then a consequence would be a polynomial time algorithm for FACTORIZE, thus a proof
of the existence of a polynomial time algorithm for RSA.
Of course, this would have an impact on the provable security of RSA : however, the impact may be
limited by the cost of the algorithm. A polynomial time algorithm with complexity t100 in the input
size t would require for an instance of size larger than 10 more operations than the number of known
particles in the known universe.

Exercise 3. RSA Provable security ; Factorization of n from d

1. One knows that ϕ(n) divides ed− 1. There exists k ∈ Z, such that ed− 1 = kϕ(n). Besides : t = ed−1
2s .

Then, let us consider a ∈ Z coprime with n.
One has 1 = akϕ(n) =

(
at

)2s

(mod n). Hence, the order of at in Zn is necessarily in {2j ; 0 ≤ j ≤ s}.
In other words :

there exists i ∈ [0, s] / { a2i−1t 6= ±1 (mod n)a2it = 1 (mod n)

Sets u = a2i−1t. Therefore, one obtains u such that

{u2 − 1 = (u− 1)(u + 1) = 0 (mod n)(u− 1) 6= 0 (mod n)(u + 1) 6= 0 (mod n)

Hence, gcd(u− 1, n) = gcd(a2i−1t − 1, n) is a non trivial factor of n. One gets the second factor with
a simple division.
Require: (n, e, d).
Ensure: (p and q such that n = pq) or ERROR.

Let s and t such that ed− 1 = t2s (t odd)
Let a be a random number between 0 and n− 1.
α← at (mod n)
if α = 1 or α = n− 1 then

Return ERROR ;
end if
for i← 1 to s do

tmp = α2 (mod n)
if tmp = 1 (mod n) then

Return p = gcd(α, n) and q = n
p

end if
α←tmp

end for
Return ERROR ;

2. The average number of draws for a is 2 (the algorithm is immediate !) because if n is composite, at
least half of the invertible elements does not satisfy the given relation. The proof of this statement can
be divided into two parts. In the first part, one must show that there exists at least one value for a
which satisfies these conditions. Then, one must prove that it is also the case for at least half of the
invertible elements. Let us begin with the second part, which is easier.
Sets m = 2it. Let us assume that there exists a such that am = 1 and am/2 6= ±1. Let {b1, . . . , bk} be
the set of the bi such that b

m/2
i = ±1 and bm

i = 1. Then, necessarily, one has (bia)m/2 6= ±1. Therefore,
if there exists such value for a, there exists at least ϕ(n)

2 of them, hence one over two invertible element.
Now, one only has to prove that there exists at least one of them. This is not the case for any composite
number, but we shall see that this is true if n is the product of two distinct prime numbers. One recalls
that t is odd. Thus, (−1)t = −1 6= 1 (mod n). There exists one value for a (at worst, some power
of −1) which satisfies u = am/2 6= 1 (mod n) and am = 1 (mod n). According to the Chinese
Remainder theorem u2 = 1 (mod p) and u2 = 1 (mod q). Hence, u is congruent to 1 or -1 modulo
p and q. It can not be equal to 1 modulo the two prime numbers because it would also be congruent to
1 modulo n. Therefore, one may assume that it is congruent to −1 modulo p. Then, if u is congruent

2

to 1 modulo q, one has found a valid element.
Otherwise, u is congruent to −1 modulo n. But, in this case, one is able to build another element
which satisfies the relation since m/2 does not divide either p − 1, nor q − 1 (otherwise u would be
congruent to 1 modulo p or q).
Indeed, one has m

2 = ed−1
2s−i+1 = kϕ(n)

2s−i+1 . Since m/2 does not divide p−1, one is able to set m
2 = v p−1

2j with
v odd and j between 0 and s. Then, one considers g, a primitive root modulo p, and one sets α = g2j

(mod p) and β = a (mod q). Then αm/2 = 1 (mod p) (by construction) and βm/2 = am/2 = −1
(mod q). One only has to apply the Chinese Remainder theorem in order to recover the element γ
corresponding respectively to the remainders α and β modulo p and q. This element γ satisfies γm = 1
(mod n) as well as γm/2 6= ±1 (mod n). Since there exists at least one such element, at least of
invertible element over two also satisfies the property and breaking RSA can be performed with 2 draws
on the average.

Exercise 4. Discrete Log and highest significant bit Not given. Home exercise.

Exercise 5. El Gamal protocol. Let G a cyclic group of order p−1 generated by α. Let d be an integer,
and β = αd. In the following asymmetric protocol (El Gamal), α and β are public while d is kept secret and
known only by Bob.
The encoding function encodes x using a random integer k which is kept secret by the encoder. It is given
by :

Eα,β : G → G×G
x 7→ (αk, x.βk)

1. Bob receives a message (y1, y2). How will he decode it ?

2. Prove that a required condition for the protocol to be a one-way trap-door function is that the discrete
logarithm is computationally impossible.

Not given. Home exercise.

Exercise 6. Asymmetric decryption is in NP Consider an asymmetric crypto-system : the public
encryption method is denoted E ; the private decryption method is D. For any plain text p, the size of the
corresponding cipher text c = E(p) verifies : |p| ≤ |c| ≤ |p|+ O(1).
It is assumed that E is computed in deterministic polynomial (in practice almost linear) time.
Let "COMPUTE-D" be the following problem (note it is not a decision problem) :

– input : an arbitrary cipher text c ;
– output : the plain text p = D(c).

1. Prove that "COMPUTE-D" can be solved in non-deterministic polynomial time.

2. Formulate decision problems related to "COMPUTE-D".

3. How would you preferably choose "D" (w.r.t. previous questions) ?

Not given. Home exercise.

Exercise 7. Non-deterministic algorithm and certification algorithm Not given. Home exercise.

Additional exercises. Not given. Home exercise.

3

