Exercises lecture 1/JL Roch - Entropy

1. Prove that the entropy $H(S)$ is maximum when S is a discrete source with uniform probability distribution.
Hint : use the following Gibbs's lemma (note that $\forall t>0 \log _{e} t \leq(t-1)$).
Lemma 1.1 Gibb's lemma. Let $\left(p_{1}, \ldots, p_{n}\right)$ and $\left(q_{1}, \ldots, q_{n}\right)$ be two probability distributions on n elementary events. Then $\sum_{i} p_{i} \log \frac{1}{p_{i}} \leq \sum_{i} p_{i} \log \frac{1}{q_{i}}$.
2. When flipping C_{i}, the probability of obtaining a head is p_{i}, and a tail $\left(1-p_{i}\right)$. Define the random variable X_{i} be the output of the coin tossing : head or tail. What is the information $I\left(X_{i}=\right.$ head $)$? What is the entropy $H\left(X_{i}\right)$?
Complete the following table where $p_{1}=\frac{1}{2}, p-2=\frac{1}{4} ; p_{3}=\frac{1}{2^{-10}}$.

i	p_{i}	$I\left(X_{i}=\right.$ head $)$	$I\left(X_{i}=\right.$ tail $)$	$H\left(X_{i}\right)$
1	$\frac{1}{2}$			
2	$\frac{1}{4}$			
1	$\frac{1}{2^{10}}$			

3. Oscar is looking for a mysterious file on Professor John's computer disk; he has no information on it, so he is performing a uniform random search.
Oscar knows that there are N files on the computer disk.

- n_{1} files are in the directory COURS ;
- n_{2} files are named exam.tex;
- n_{3} files are named exam.tex in the directory COURS.

Give the amount of information brought by each of the following hint :

- (a) "The file is in the directory COURS".
- (b) "The file is named exam.tex".
- (c) "The file is named exam.tex and is in the directory COURS".

Application : $N=65536 ; n_{1}=1024 ; n_{2}=256 ; n_{3}=16$. Compute the corresponding values. Verify that $I(c)=I(a)+I(c \mid a)=I(b)+I(c \mid b)$.
4. Prove that, for any cryptosystem, $H(K \mid C) \geq H(P \mid C)$; i.e. the uncertainty on the key is at least as large as the entropy on the plaintext.

5. Home exercise. Proof of Shannon's theorem on perfect secrecy.

1. Let A, B, C be three random variables; (A, B) denotes the random variable of the couple A and B. Prove that:
(a) $H(A) \leq H((A, B))=H((B, A))$
(b) $H((A, B))=H(A)+H((B \mid A))=H(B)+H(A \mid B)$.
(c) $H(A \mid C) \leq H((A, B) \mid C)$
(d) $H((A, B) \mid C)=H(A \mid C)+H(B \mid(A, C))=H(B \mid C)+H(A \mid(B, C))$
(e) A and B are independent iff $H((A, B) \mid C)=H(A \mid C)+H(B \mid C)$
2. In a symmetric cryptosystem, let P, C, K denote respectively the discrete random variables corresponding to the plaintext source, the ciphertext and the secret key source. If the cryptosystem provides perfect secrecy (or unconditionnal security) - i.e. $H(P \mid C)=H(P)$-, then prove that the entropy of the secret key source K is larger than the one of the plaintext source P. In other word, prove :

$$
[H(P \mid C)=H(P)] \Longrightarrow[H(K) \geq H(P)]
$$

which is Shannon's theorem on perfect secrecy.
Hint : Note that $H(P)=H(P \mid C) \leq H((P, K) \mid C)$ and conclude using previous properties on entropy.

6. Indistinguishability and perfect secrecy.

Let k be a key of length n uniformly chosen in $\{0,1\}^{n}$; let (E_{k}, D_{k}) be an encryption scheme for messages of length m :

$$
\forall k \in\{0,1\}^{n}, \forall x \in\{0,1\}^{m}: \quad D_{k}\left(E_{k}(x)\right)=x .
$$

Besides, let U_{n} denote the uniform distribution over $\{0,1\}^{n}$.

1. In this question only, $n=m$ and $E_{k}=E_{k}^{O T P}: E_{k}^{O T P}(x)=x \oplus k$ where \oplus denotes the bitwise XOR. What is $D_{k}^{\text {OTP }}(x)$?
For any $x, x^{\prime} \in\{0,1\}^{m}$, show that the distribution $E_{U_{n}}^{O T P}(x)$ is the same as $E_{U_{n}}^{O T P}\left(x^{\prime}\right)$.
2. For any $\left(E_{k}, D_{k}\right)$: if $n<m$, show that there exist two messages $x, x^{\prime} \in\{0,1\}^{m}$ such that $E_{U_{n}}(x)$ is not the same distribution as $E_{U_{n}}\left(x^{\prime}\right)$.
3. If $n \geq m$, we consider $\left(E_{k}, D_{k}\right)$ such that $\forall x, x^{\prime}: E_{U_{n}}(x)$ is the same distribution as $E_{U_{n}}\left(x^{\prime}\right)$. Show that E is then unconditionally secure (hint : use Bayes theorem).
4. Additional exercises. CLRS, 2nd edition, Appendix C, Counting and probability.

- Probability : C.2-2-9 p 1105-1106.
- Discrete random variable : C.3-1 -7 pp 1110-1111.

