Exercises lecture 1/JL Roch - Entropy

1. Prove that the entropy H(S) is maximum when S is a discrete source with uniform probability distribution.

Hint : use the following Gibbs's lemma (note that $\forall t > 0 \log_e t \le (t-1)$).

Lemma 1.1 Gibb's lemma. Let (p_1, \ldots, p_n) and (q_1, \ldots, q_n) be two probability distributions on n elementary events. Then $\sum_i p_i \log \frac{1}{p_i} \leq \sum_i p_i \log \frac{1}{q_i}$.

2. When flipping C_i , the probability of obtaining a head is p_i , and a tail $(1 - p_i)$. Define the random variable X_i be the output of the coin tossing : *head* or *tail*. What is the information $I(X_i = \text{head})$? What is the entropy $H(X_i)$?

Complete the following table where $p_1 = \frac{1}{2}$, $p - 2 = \frac{1}{4}$; $p_3 = \frac{1}{2^{-10}}$.

i	p_i	$I(X_i = head)$	$I(X_i = \text{tail})$	$H(X_i)$
1	$\frac{1}{2}$			
2	$\frac{1}{4}$			
1	$\frac{1}{2^{10}}$			

3. Oscar is looking for a mysterious file on Professor John's computer disk; he has no information on it, so he is performing a uniform random search.

Oscar knows that there are N files on the computer disk.

- n_1 files are in the directory COURS;
- n_2 files are named exam.tex;
- n_3 files are named exam.tex in the directory COURS.

Give the amount of information brought by each of the following hint :

- (a) "The file is in the directory COURS".
- (b) "The file is named exam.tex".
- (c) "The file is named exam.tex and is in the directory COURS".

Application : N = 65536; $n_1 = 1024$; $n_2 = 256$; $n_3 = 16$. Compute the corresponding values. Verify that I(c) = I(a) + I(c|a) = I(b) + I(c|b).

4. Prove that, for any cryptosystem, $H(K|C) \ge H(P|C)$; i.e. the uncertainty on the key is at least as large as the entropy on the plaintext.

5. Home exercise. Proof of Shannon's theorem on perfect secrecy.

- 1. Let A, B, C be three random variables; (A, B) denotes the random variable of the couple A and B. Prove that :
 - (a) $H(A) \le H((A, B)) = H((B, A))$
 - (b) H((A,B)) = H(A) + H((B|A)) = H(B) + H(A|B).
 - (c) $H(A|C) \leq H((A,B)|C)$
 - (d) H((A,B)|C) = H(A|C) + H(B|(A,C)) = H(B|C) + H(A|(B,C))
 - (e) A and B are independent iff H((A, B)|C) = H(A|C) + H(B|C)
- 2. In a symmetric cryptosystem, let P, C, K denote respectively the discrete random variables corresponding to the plaintext source, the ciphertext and the secret key source. If the cryptosystem provides perfect secrecy (or unconditionnal security) i.e. H(P|C) = H(P) –, then prove that the entropy of the secret key source K is larger than the one of the plaintext source P. In other word, prove :

$$[H(P|C) = H(P)] \implies [H(K) \ge H(P)]$$

which is Shannon's theorem on perfect secrecy.

Hint : Note that $H(P) = H(P|C) \le H((P,K)|C)$ and conclude using previous properties on entropy.

6. Indistinguishability and perfect secrecy.

Let k be a key of length n uniformly chosen in $\{0,1\}^n$; let (E_k, D_k) be an encryption scheme for messages of length m:

$$\forall k \in \{0,1\}^n, \forall x \in \{0,1\}^m : D_k(E_k(x)) = x.$$

Besides, let U_n denote the uniform distribution over $\{0, 1\}^n$.

- 1. In this question only, n = m and $E_k = E_k^{OTP} : E_k^{OTP}(x) = x \oplus k$ where \oplus denotes the bitwise XOR. What is $D_k^{OTP}(x)$? For any $x, x' \in \{0, 1\}^m$, show that the distribution $E_{U_n}^{OTP}(x)$ is the same as $E_{U_n}^{OTP}(x')$.
- 2. For any (E_k, D_k) : if n < m, show that there exist two messages $x, x' \in \{0, 1\}^m$ such that $E_{U_n}(x)$ is not the same distribution as $E_{U_n}(x')$.
- 3. If $n \ge m$, we consider (E_k, D_k) such that $\forall x, x' : E_{U_n}(x)$ is the same distribution as $E_{U_n}(x')$. Show that E is then unconditionally secure *(hint : use Bayes theorem)*.
- 7. Additional exercises. CLRS, 2nd edition, Appendix C, Counting and probability.
 - Probability : C.2-2–9 p 1105–1106.
 - Discrete random variable : C.3-1 $-7~{\rm pp}$ 1110-1111.