Security Models – Part Security proofs [J-L. Roch]

Important: Duration: 1h30..

- All exercises are independent.
- Your answers have to be short but clearly and cleanly argued or commented.
- All hand written documents and handouts are allowed.

Exercise 1 (Common for M2P SCCI and M2R SECR) Entropy and unconditional security (points: M2P SCCI 30% – M2R SECR 30%) Let k be a key of length n uniformly chosen in $\{0,1\}^n$; let (E_k, D_k) be an encryption scheme for messages of length m:

$$\forall k \in \{0, 1\}^n, \forall x \in \{0, 1\}^m : D_k(E_k(x)) = x.$$

Besides, let U_n denote the uniform distribution over $\{0, 1\}^n$.

- 1. In this question only, n = m and $E_k = E_k^{OTP}$: $E_k^{OTP}(x) = x \oplus k$ where \oplus denotes the bitwise XOR. What is $D_k^{OTP}(x)$? For any $x, x' \in \{0, 1\}^m$, show that the distribution $E_{U_n}^{OTP}(x)$ is the same as $E_{U_n}^{OTP}(x')$.
- 2. For any (E_k, D_k) : if n < m, show that there exist two messages $x, x' \in \{0, 1\}^m$ such that $E_{U_n}(x)$ is not the same distribution as $E_{U_n}(x')$.
- 3. If $n \ge m$, we consider (E_k, D_k) such that $\forall x, x' : E_{U_n}(x)$ is the same distribution as $E_{U_n}(x')$. Show that E is then unconditionally secure (*hint: use Bayes theorem*).

Exercise 2 (Only M2P SCCI)

Hashing and reduction (points: M2P SCCI 30%)

Let E_k be a symmetric block cipher algorithm: the key length is 2m bits and the block length is m bits. It is assumed impossible to compute $(k, x) \neq (k', x')$ such that $E_k(x) = E_{k'}(x')$.

Let $M = [M_1 || ... || M_n]$ a message where each block M_i has exactly m bits. The digest H(M) of M is defined by:

- $H_0 = IV$ a fixed initial value;
- for $i = 1 \dots n$: $H_i = E_{H_{i-1}||M_i}(H_{i-1});$
- then $H(M) = H_n$.

Questions:

- 1. Prove that H is resistant to collision.
- 2. Generalize to define the digest of a message M of arbitrary size (that may not be multiple of m).

Exercise 3 (Common for M2P SCCI and M2R SECR)

Zero-knowledge protocol (points: M2P SCCI 40% – M2R SECR 40%)

A Hamiltonian circuit (or Hamiltonian cycle) is a cycle in an undirected graph that visits each vertex exactly once and also returns to the starting vertex. Determining whether such a cycle exists in a graph is the Hamiltonian circuit problem, which is NP-complete. Consider the following interactive protocol (due to M. Blum) : initially the input graph G with n vertices is known by both the prover and the verifier.

The protocol uses a one-way function $f: \{0,1\}^n \to \{0,1\}^+$.

Moreover, the prover gets in secret an Hamiltonian cycle of G.

- Prover's first message. The prover chooses a random permutation π on the vertices of G. Let H be the graph G permuted by π and let M be the adjacency matrix of H: i.e. (i, j) is in edge in G iff (π(i), π(j)) is an edge in H, so M_{π(i),π(j)} = 1. For every 1 ≤ i, j ≤ n, the prover:
 - chooses two random vectors $x^{(i,j)}$ and $r^{(i,j)}$ in $\{0,1\}^n$;
 - computes the scalar product $s_{i,j}$ of $x^{(i,j)}$ and $r^{(i,j)}$, i.e. $s_{i,j} = \left(\sum_{k=1}^{n} x_k^{(i,j)} \cdot r_k^{(i,j)}\right) \mod 2;$
 - computes $y^{(i,j)} = f(x^{(i,j)})$ and $z_{i,j} = s_{i,j} \oplus M_{i,j}$;
 - and sends to the verifier: $r^{(i,j)}$, $y^{(i,j)}$ and $z_{i,j}$.
- Verifier's first message. The verifier chooses a random bit $b \in \{0, 1\}$ and sends b to the prover.
- Prover's second message.

If b = 0, the prover sends to the verifier π , M, and $x^{(i,j)}$ for $1 \le i, j \le n$.

If b = 1, the prover computes the permuted version C' of the cycle C: for every edge (i, j) in C, C' contains the edge $(\pi(i), \pi(j))$. The prover sends C' to the verifier; moreover, for every $(i, j) \in C'$, it sends $x^{(i,j)}$ to the verifier (but only for those $(i, j) \in C'$).

• Verifier's check.

If b = 0, the verifier checks that the two messages of the prover are consistent. If b = 1, the verifier checks that C' is an Hamiltonian cycle for H: it checks that the two messages of the prover are consistent, and that $M_{i,j} = 1$ for all $(i, j) \in C'$. The verifier accepts if and only if these checks succeed.

Questions:

- 1. Explicit briefly the operations performed by the verifier during the check.
- 2. Verify that this interactive protocol runs in polynomial time.
- 3. Prove the completeness of this protocol.
- 4. Prove the soundness of this protocol with error probability $\frac{1}{2}$.
- 5. Prove that this protocol is zero-knowledge.
- 6. Briefly define an authentication protocol with error probability $< 2^{-400}$ based on this protocol.

Exercise 4 (Only M2R SCCI)

One-way function (points: M2R SECR 30%)

Let $(M_i)_{i \in \mathbb{N}}$ denote the sequence of all deterministic Turing machines (or equivalently all deterministic algorithms). For $x \in \{0, 1\}^+$, we define $M_i^t(x)$ by:

- if M_i performs at most t computational steps on input x, then $M_i^t(x)$ is the output of M_i on input x;
- else $M_i^t(x) = 0^{|x|}$ (i.e. the bit O repeated |x| times).

The Levin's universal function $f_U: \{0,1\}^+ \to \{0,1\}^+$ is defined by:

- treat the *n* input bits as a list $x_1, \ldots, x_{\log n}$ of blocks of $n/\log n$ bits each;
- output the sequence of log *n* results: $M_1^{n^2}(x_1), \ldots, M_{\log n}^{n^2}(x_{\log n})$.

Questions:

- 1. Justify that f_U can be computed in polynomial time.
- 2. In this question, we assume that M_1 implements a one-way function. Moreover, we assume that, for any input of n bits, M_1 uses at most n^2 computational steps and outputs exactly n bits. Show that f_U is a one-way function (hint: explicit a reduction).
- 3. Assume there exists a function g resistant to pre-image such that, for an input x of n bits, g(x) is computed in time at most n^c (and thus has at most n^c bits). For x ∈ {0,1}ⁿ, let L_c(x) denote the [n^{1/c}] first bits of x and H_c(x) the remainder bits: x = L_c(x)||H_c(x). Define g'(x) = g(L_c(x)). Show that g' is resistant to pre-image and can be computed in time O(|x|).
- 4. Show that f_U is one-way if and only if there exists a one-way function.