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Chapter 7

AN INTRODUCTION TO THE
MATHEMATICS OF CODING
AND CRYPTOGRAPHY

7.1 Introduction

Shannon’s demonstration in 1948 by means of “random coding” arguments that there exist codes that
can provide reliable communications over any noisy channel at any rate less than its capacity touched
off an immediate and extensive search for specific such codes that continues unabated today. Our
purpose in this chapter is to introduce the mathematics, a mixture of number theory and algebra, that
has proved most useful in the construction of good channel codes. We shall see later that this same
mathematics is equally useful in cryptography (or “secrecy coding”). Channel coding and secrecy coding
are closely related. The goal in channel coding is to transmit a message in such a form “that it cannot
be misunderstood by the intended receiver”; the goal in secrecy coding includes the additional proviso

“but that it cannot be understood by anyone else”.

“Coding” in its most general sense refers to any transformation of information from one form to
another. Information theory deals with three quite distinct forms of coding: source coding (or “data
compression”), channel coding, and secrecy coding. It has become accepted terminology, however, to
use the term “coding” with no further qualifier to mean “channel coding”, and we have followed this

practice in the title of this chapter.

We assume that the reader is familiar with some elementary properties of the integers, but otherwise

this chapter is self-contained.

7.2 Euclid’s Division Theorem for the Integers

Here and hereafter, we will write Z to denote the set {...,—2,—1,0,1,2,...} of integers. It is doubtful
whether there is any result in mathematics that is more important or more useful than the division

theorem for Z that was stated some 2’300 years ago by Euclid.



Euclid’s Division Theorem for the Integers: Given any integers n (the “dividend”) and d (the
“divisor”) with d # 0, there exist unique integers ¢ (the “quotient”) and r (the “remainder”) such that

n=gqd+r (7.1)
and
0<r<]|d. (7.2)

Proof: We show first uniqueness. Suppose that both (¢,r) and (¢’,7’) satisfy (7.1) and (7.2). Then
q¢'d+r" = gd+r or, equivalently, (¢’ —q)d = r—r'. But (7.2) implies |r—7'| < |d|, whereas |(¢' —¢)d| > |d]
if ¢ # q. Hence we must have ¢’ = ¢ and thus also 7’/ = 7.

To show the existence of a pair (¢, r) that satisfy (7.1) and (7.2), we suppose without loss of essential
generality that n > 0 and d > 0 and consider the decreasing sequence n,n—d,n—2d,.... Let r =n—qd
be the last nonnegative term in this sequence so that » > 0 but n — (¢+ 1)d = r — d < 0 or, equivalently,
0 <r < d. We see now that (7.1) and (7.2) are satisfied; indeed we have described a (very inefficient)
algorithm to find ¢ and r. m]

Our primary interest hereafter will be in remainders. We will write R4(n) to denote the remainder
when n is divided by the non-zero integer d. Because |d| = | — d| and because qd +r = (—¢q)(—d) + r, it
follows from Euclid’s theorem that

Ra(n) = R_a(n) (7.3)

for any non-zero integer d. One sees from (7.3) that, with no essential loss of generality, one could restrict
one’s attention to positive divisors. Later, we shall avail ourselves of this fact. For the present, we will

merely adopt the convention, whenever we write Ry(-), that d is a non-zero integer.

7.3 Properties of Remainders in Z

We begin our study of remainders with a very simple but useful fact.

Fundamental Property of Remainders in Z: For any integers n and 1,
Ry(n +id) = Rq(n), (7.4)

i.e., adding any multiple of the divisor to the dividend does not alter the remainder.

Proof: Suppose g and r satisfy (7.1) and (7.2) so that r = R4(n). Then n+id = gd+r+id = (g+i)d+r
so that the new quotient is ¢ + ¢ but the remainder Ry(n + id) is still . m]

With the aid of this fundamental property of remainders, we can now easily prove the following two
properties that we call “algebraic properties” because of the crucial role that they play in the algebraic
systems that we shall soon consider.

Algebraic Properties of Remainders in Z: For any integers n; and no,
Rq(n1 +n2) = Ry(Ra(n1) + Ra(n2)), (7.5)
i.e., the remainder of a sum is the remainder of the sum of the remainders, and

Rg(ning) = Rq(R4(n1)Ra(nz)), (7.6)



i.e., the remainder of a product is the remainder of the product of the remainders.
Proof: Let g1 and r1 be the quotient and remainder, respectively, when n; is divided by d. Similarly let
g2 and ro be the quotient and remainder, respectively, when ns is divided by d. Then (7.1) gives
ni+ng = qd+11+ gad + 12
= (q1 + ¢2)d + (r1 +72).

It follows now from the fundamental property (7.4) that
Rd(nl + nz) = Rd(T'l + 7"2),
which is precisely the assertion of (7.5). Similarly,

ning = (qid + 71)(g2d + 12)
= (q1q2d + r1g2 + r2q1)d + r172.

The fundamental property (7.4) now gives

Ri(ning) = Ry(rira),

which is exactly the same as (7.6). O

7.4 Greatest Common Divisors in Z

One says that the non-zero integer d divides n just in case that Ry(n) = 0 or, equivalently, if there is an
integer ¢ such that n = gd. Note that n = 0 is divisible by every non-zero d, and note also that d =1
divides every n. If n # 0, then d = |n| is the largest integer that divides n, but n = 0 has no largest

divisor.

If ny and ny are integers not both 0, then their greatest common divisor, which is denoted by
ged(ng, ne), is the largest integer d that divides both n; and ne. We adopt the convention, when-
ever we write ged(ng, na), that ny and ny are integers not both 0. From what we said above, we know
that ged(ny,ns) must be at least 1, and can be at most min(|ny|, |ns|) if both ny and ns are non-zero.
We seek a simple way to find ged(ng, ng). The following fact will be helpful.

Fundamental Property of Greatest Common Divisors in Z: For any integer 1,
ged(ny + ing, ng) = ged(ny, na), (7.7)

i.e., adding a multiple of one integer to the other does not change their greatest common divisor.

Proof: We will show that every divisor of ni and ns is also a divisor of ny + ins and ns, and conversely;
hence the greatest common divisors of these two pairs of integers must coincide. Suppose first that d
divides ny and ng, i.e., that ny = ¢1d and ny = god. Then ny + ing = ¢1d + igad = (q1 + ig2)d so that d
also divides nq + iny (and of course ng). Conversely, suppose that d divides ny + iny and ng, i.e., that
ny + ing = qzd and ny = ¢ad. Then ny = g3d — ing = g3d — igad = (g3 — ig2)d so that d also divides ny

(and of course ng). O



If ns # 0, then we can choose ¢ in (7.7) as the negative of the quotient ¢ when n; is divided by d = na,
which gives ny 4+ ing = ny — qd = Rg(ny). Thus, we have proved the following recursion, which is the

basis for a fast algorithm for computing ged(n, ng).

Euclid’s Recursion for the Greatest Common Divisor in Z: If ny is not 0, then
ged(ng, ne) = ged(ng, Ry, (n1)). (7.8)
To complete an algorithm to obtain ged(ni,n2) based on this recursion, we need only observe that

ged(n, 0) = |n|. (7.9)

It is convenient to note that negative integers need not be considered when working with greatest

common divisors. Because d divides n if and only if d divides —n, it follows that
gcd(:l:nl, :‘:TL2) = ng(Tll, ’I’LQ), (710)

by which we mean that any of the four choices for the pair of signs on the left gives the same result.

We have thus proved the validity of Fuclid’s greatest common divisor algorithm, the flowchart of
which is given in Fig. 7.1, which computes ged(ng, ng) by iterative use of (7.8) until R,,,(n1) = 0 when
(7.9) then applies. This algorithm, one of the oldest in mathematics, is nonetheless very efficient and

still often used today.

Example 7.4.1 Find ged(132,108). The following table shows the computation made with the algo-
rithm of Fig. 7.1.

ni ‘ n2 ‘ r ‘ g
132 | 108 | 24 | -
108 | 24 |12 | -
24 12 0 |12

Thus, ged(132,108) = 12.

We come next to a non-obvious, but exceedingly important, property of the greatest common divisor,
namely that the greatest common divisor of two integers can always be written as an integer combination

of the same two integers.

Greatest Common Divisor Theorem for Z: For any integers n; and ng, not both 0, there exist
integers a and b such that
ged(ny, ne) = ang + bns. (7.11)

Remark: The integers a and b specified in this theorem are not unique. For instance, ged(15,10) =5
and 5 = (1)(15) + (—1)(10) = (11)(15) 4+ (—16)(10). [Note, however, that R19(1) = R19(11) = 1 and that
R15(—1) == R15(—16) == 14]

Proof: We prove the theorem by showing that the “extended” Fuclidean greatest common divisor algo-
rithm of Fig. 7.2 computes not only g = ged(ng, ng) but also a pair of integers a and b such that (7.11)
is satisfied. (Because of (7.10), there is no loss of essential generality in assuming that ns is positive, as
is done in Fig. 7.2.)



(Input)
n1, N2
(ng > 0 is assumed)

(Computation)
Compute the remainder r
when n; is divided by ns.

Yes
r=07 g <—ng

No
(Update) (Output)
ny <— no g
Ng <— T

Figure 7.1: Flowchart of Euclid’s algorithm for computing the greatest common divisor g of the integers
g g

n1 and ny with ng > 0.



We will write nq(i),n2(i),a1(%),b1(i),a2(i) and ba(i) to denote the values of the variables
n1, N2, a1,b1,as and by, respectively, just after the i-th execution of the “update” box in Fig. 7.2; the
values for ¢ = 0 are the initial values assigned to these variables. Thus, n1(0) = n1,n2(0) = n2,a1(0) =
1,61(0) = 0,a2(0) = 0 and b2(0) = 1. We claim that the equations

’I’Ll(Z) = a1 (Z)?’ll (O) + by (Z)TLQ(O) (7.12)

and

TLQ(Z) = a2(i)n1(0) + bQ(’L)TLQ(O) (713)
are satisfied for all ¢ > 0 until the algorithm halts. If so, because the final value of ns is ged(nq(0), n2(0)),
the final value of az and by will be the desired pair of integers a and b satisfying (7.11).

A trivial check shows that (7.12) and (7.13) indeed hold for i = 0. We assume now that they hold
up to a general ¢ and wish to show they hold also for i + 1. But ni(i + 1) = n2(i) so that the choices
a1(i+1) = az(3) and by (i +1) = ba(¢) made by the algorithm guarantee that (7.12) holds with ¢ increased
to i + 1. Letting ¢(¢) and r(¢) be the quotient and remainder, respectively, when n4(i) is divided by
na(i), we have

n1(i) = q(i)n2(i) + (7). (7.14)
But na(i + 1) = r(¢) and hence
na(i+1) = 1 (i) — q(@)na(2)
= [a1(4) — q(i)az(i)]n1(0) + [b1 (i) — q(i)b2(i)]n2(0),

where we have made use of (7.12) and (7.13). Thus, the choices a2(i + 1) = a1(i) — ¢q(i)az(i) and
ba(i+ 1) = b1(i) — q(i)b2 (i) made by the algorithm guarantee that (7.13) also holds with ¢ increased to
1+ 1. a

Example 7.4.2 Find ged(132,108) together with integers a and b such that ged(132,108) = a(132) +
b(108). The following table shows the computation made with the algorithm of Fig. 7.2.

Thus, g = ged(132,108) = 12 = a(132) + b(108) = (—4)(132) + (5)(108).

Particularly for applications in cryptography, it is important to determine the amount of computation
required by the (extended) Euclidean algorithm. Because the main computation in the algorithm is the
required integer division, we will count only the number of divisions used. To determine the worst-case
computation, we define m(d) to be the minimum value of n1 such that the algorithm uses d divisions for
some ny satisfying ny; > ny > 0. The following values of m(d) and the corresponding values of ng are

easily determined by inspection of the flowchart in Fig. 7.1 (or Fig. 7.2).

‘ ny = m(d) ‘ no

w N |



(Input)
ni, N2
(ng > 0 is assumed)

(Initialization)
ap <—1,b; <—0
ag <— 0, by <—1

(Computation)
Compute the quotient ¢

and the remainder r
when n, is divided by ns.

Yes g<—"n2
r=207? a<— a2
b <— by

No
(Update) (Output)
ny <— N2
Ng <— 71 g,a,b
t<— aq
a] <— az
az <—t—(q)(a2)
t<— b
by <— by
by <—t = (q)(b2)

Figure 7.2: Flowchart of the extended Euclidean algorithm for computing g = ged(n,ng) together with

a pair of integers a and b such that g = any + bns for integers ny and no with ny > 0.



Because n1(i + 1) = na(i) and nq(i + 2) = na(i + 1) = r(i), we see from (7.14) that
If nq(4) = m(d), then we must have ny(i+1) > m(d—1) and ny(i+2) > m(d—2) and hence [since we
will always have ¢(i) > 1 when we begin with ny > ny > 0] we must have m(d) > m(d — 1) + m(d — 2).

But in fact equality holds because equality will always give ¢(i) = 1. Thus, the worst-case computation

satisfies
m(d) =m(d—1)+m(d—2), (7.15)

which is just Fibonacci’s recursion, with the initial conditions

m(1) =2, m(2) = 3. (7.16)

Solving this recursion gives
d d
(d) = 3645\ [(1+v5)  (3V5-5) (1= (7.17)
Y=\ "0 2 10 2 ' '

A simple check shows that the second term on the right of (7.17) has a magnitude at most .106 for

d > 1. Thus, to a very good approximation,
d
3V5+5) (1+5
m(d) =
10 2

log,(m(d)) ~ .228 + .694d

or, equivalently,

or, again equivalently,
d =~ 1.441og,(m(d)) — .328.

We summarize these facts as follows.

Worst-Case Computation for the Euclidean Algorithm: When n; > ny > 0, the number d of

divisions used by the (extended) Euclidean algorithm to compute ged(ny, ng) satisfies
d < 1.441ogy(nq), (7.18)

with near equality when ny and ny are consecutive Fibonacci numbers.
Example 7.4.3 Suppose that n; is a number about 100 decimal digits long, i.e., n; ~ 1019 ~ 2332,
Then (7.18) shows that

d < (1.44)(332) ~ 478

divisions will be required to compute ged(ny, ne) by Euclid’s algorithm when ny > ny > 0. In other
words, the required number of divisions is at most 44% greater than the length of n; in binary digits,

which is the way that one should read inequality (7.18).

We have no real use for further properties of greatest common divisors, but it would be a shame not
to mention here that, after 23 centuries of computational supremacy, Euclid’s venerable algorithm was
dethroned in 1961 by an algorithm due to Stein. Stein’s approach, which is the essence of simplicity,

rests on the following facts:

Even/Odd Relationships for Greatest Common Divisors:



(i) If ny and ng are both even (and not both 0), then

ged(ny, ne) = 2ged(ny/2,n2/2). (7.19)
(ii) If ny is even and ng is odd, then
ged(ng, n2) = ged(ng /2, ng). (7.20)
(iii) If ny and ng are both odd, then
ged(ng, n2) = ged((ng — n2)/2,ng). (7.21)

Proof: The relationships (i) and (ii) are self-evident. To prove (iii), we suppose that n; and ng are both
odd. From the fundamental property (7.7), it follows that ged(ni,n2) = ged(ng — na,n2). But ny — ng
is even and ng is odd so that (ii) now implies (iii). O

The three even/odd relationships immediately lead to Stein’s greatest common divisor algorithm, the
flowchart of which is given in Fig. 7.3. One merely removes as many common factors of 2, say ¢, as
possible from both ny and ng according to relationship (i). One then exploits (ii) until the new n; and

no are both odd. One then applies (iii), returning again to (ii) if ny — ny # 0.

Example 7.4.4 Find gcd(132,108). The following table shows the computation made with the algo-
rithm of Fig. 7.3.

ni no C g
132 | 108 | 0 | -
66 | 54 | 1| -
33 | 27 | 2] -
3 ” ” -
27 3|7 -
12 7 7o
6 » L .
3 ” ” -
0 7 7|12

Note that only 3 subtractions (33 - 27, 27 - 3 and 3 - 3) were performed in computing g =
ged(132,108) = 12. Recall that computing ged(132,108) by Euclid’s algorithm in Example 7.4.1 re-
quired 3 divisions.

We now determine the worst-case computation for Stein’s algorithm. Note that a test for evenness
is just a test on the least significant bit of a number written in radix-two form, and that division of an
even number by 2 is just a right shift. Thus, the main computation in the algorithm is the required
integer subtraction of ny from n;. We define u(s) to be the minimum value of ny + ne such that Stein’s
algorithm uses s subtractions for integers ny and nqy satisfying n; > ny > 0. The following values of p(s)

and the corresponding values of n; and ny are easily determined by inspection of the flowchart in Fig.
7.3.



(Input)
ni,n2
(n1 > 0,n2 > 0,17 and ny not
both 0, are assumed)

|

c<—0
|
Yes 5
( ny and ny both even? > ny <—ny/
ng <— n2/2
No c<—c+1
Yes
( ng even? ny <—> ng
No ‘
Yes ‘
ny even? ny <— ny/2
No
(Computation)
Substract ng from n;
diff<— nq — ng
] Yes ne <— ny
diff < 07 diff <— — diff
No |
ny <— (diff)/2
No Yes (Output)
ny =07 g <— (2%)nq )

Figure 7.3: Flowchart of Stein’s algorithm for computing the greatest common divisor g of the nonneg-

ative integers n; and ns.

10



s | u(s) | np | na
1 2 1 1
2 4 3 1
3] 8 5] 3
4 16 11| 5

After applying relationship (iii), one sees that the new values ny = ny and nf = (nl — n2)/2 satisfy
ny +nby = (n1 —n2)/2+nz = (n1 +n2)/2,

i.e., the sum of n; and no is reduced by a factor of exactly two when a subtraction is performed. It
follows that

pu(s) =2° (7.22)

for all s > 1 or, equivalently, that log,(p(s)) = s. Thus, if ny > ny > 0, at most logy(ny + n2) <

log,(2n1) = logy(nl) + 1 subtractions are required in Stein’s algorithm.

Worst-Case Computation for Stein’s Algorithm: When n; > ny > 0, the number s of subtractions

used by Stein’s algorithm to compute ged(nq, ng) satisfies
s < logy(ny) + 1, (7.23)

with near equality when ny and n; are successive integers of the form (2171 — (—1)%)/3.
Proof: We have already proved everything except the claim about near equality. If we define

B 2i+1 _ (_1)2

& = , 7.24
3 (7.24)

then we find that (¢; —#;_1)/2 = t;_5 holds for all i > 3 and, moreover, that t; +;_; = 2. Thus, n; = t,
and ny = ts_; are indeed the worst-case values of ny and ny corresponding to ny + ny = u(s) =2%. O

Example 7.4.5 Suppose that n; is a number about 100 decimal digits long, i.e., n; ~ 1019 ~ 2332,
Then (7.23) shows that
§<332+4+1=333

subtractions will be required to compute ged(ny,ng) by Stein’s algorithm when ny > ng > 0.

Comparison of (7.18) and (7.23) shows that the (worst-case) number of subtractions required by
Stein’s algorithm is some 30% less than the (worst-case) number of divisions (a much more complex
operation!) required by Euclid’s algorithm. In fairness to Euclid, however, it must be remembered
that in the “worst case” for Euclid’s algorithm all quotients are 1 so that the divisions in fact are then
subtractions. Nonetheless, one sees that Stein’s algorithm is significantly faster than Euclid’s and would
always be preferred for machine computation. Euclid’s algorithm has a certain elegance and conceptual
simplicity that alone would justify its treatment here, but there is an even better reason for not entirely
abandoning Euclid. Euclid’s algorithm generalizes directly to polynomials, as we shall see later, whereas

Stein’s algorithm is limited to integers.

It should now hardly be surprising to the reader to hear that Stein’s greatest common divi-

sor algorithm for computing ged(ng,ns) can be “extended” to find also integers a and b such that

11



ged(ng,m2) = any +bng. An appropriate extension is given in the flowchart of Fig. 7.4. The basic “trick”
is the same as that used to extend Euclid’s algorithm. In this case, one ensures that

ny (Z) = al(i)N1 + by (Z)NQ (725)

and

)

are satisfied by the initialization and each subsequent updating, where N; and N; are “n,” and “ny”
after removal of as many common factors of 2 as possible and where, by choice, Ny is odd. [The “flag”
in the flowchart of Fig. 7.4 reflects this choice of Ny as odd.] The only non-obvious step in the updating
arises when n; (i) is even, and hence must be divided by 2, but a; (i) in (7.25) is odd and thus cannot be

divided by 2. This problem is resolved by rewriting (7.25) as
nl(z) = [al(i) + N2]N1 + [bl(l) F Nl}N2 (727)

where the choice of sign, which is optional, is made so as to keep a; and b; small in magnitude, which
is generally desired in an extended greatest common divisor algorithm. Because a;(7) & Ns is even, the
division by 2 can now be performed.

7.5 Semigroups and Monoids

We now begin our treatment of various algebraic systems. In general, an algebraic system consists of one
or more sets and one or more operations on elements of these sets, together with the axioms that these
operations must satisfy. Very often we will consider familiar sets, such as Z, and familiar operations,
such as + (addition of integers), where we may already know many additional rules that the operations
satisfy. The main task of algebra, when considering a particular type of algebraic system, is to determine
those properties that can be proved to be consequences only of the axioms. In this way, one establishes
properties that hold for every algebraic system of this type regardless of whether or not, in a given
system of this type, the operations also satisfy further rules that are not consequences of the axioms.
Algebra leads not only to a great economy of thought, but it also greatly deepens one’s insight into
familiar algebraic systems.

The most elementary algebraic system is the semigroup.

A semigroup is an algebraic system (S, *), where S is a non-empty set and * is an operation on pairs
of elements of S, such that

(A1) (aziom of closure) for every a and b in S, a % b is also in .S; and
(A2) (associative law) for every a,b and ¢ in S, a* (bxc) = (axb) * c.

The axiom of closure (A1) is sometimes only implicitly expressed in the definition of a semigroup by
saying that * is a function *: S x S — S and then writing a * b as the value of the function * when the

arguments are a and b. But it is perhaps not wise to bury the axiom of closure in this way; closure is

always the axiom that lies at the heart of the definition of an algebraic system.

Example 7.5.1 The system (S, *) where S is the set of all binary strings of positive and finite length

and where * denotes “string concatenation” (e.g., 10 % 001 = 10001), is a semigroup.
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(Input)
Ny, N2
(n1 > 0,n5 > 0,17 and ny not
both 0, are assumed)

l

c<—0, flag<—0 ny <—mny/2
ng <— n2/2
c<—c+1
Yes T
( n1 and ng both even? >
No
Yes ny <—>ny
? flag <— 1
(Initialize) a8
_ _ No
N <=, Ny <= o | (Minor Update)
ap <—1,b; <—0 9
ag <— 0, by <— 1 ny <—mny/
Yes a; <— a1/2
by <— b1/2

Yes No

ny even? a1 even?
Yes No
N =

; b(Ctomi)uta‘;lon) a1 <— ai + Ny a; <— ap — Ny
ubstract ny from n, by <— by — N, by <— b + N}
diff<— n; —no

| - |
.

Yes
dif < 0? )——— N2 <—m
a; <—> as
No by <—> by
diff <— —diff
(Major Update)
ny <— diff
a; <— a1 — ay
by <— b1 — by
7 <— (2)ma (Output)
Yes No a <—az g,a,b
flag = 17 b <— by

Yes J
ag <—> by

Figure 7.4: Flowchart of the extended Stein algorithm for computing g = ged(ny,ns2) together with
integers a and b such that g = any + bno.
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Example 7.5.2 The system (S, %), where S is the set of all binary strings of length 3 is not a semigroup
because axiom (A1) fails. For instance, 101 and 011 are in S, but 101 x 011 = 101011 is not in S.

Axiom (A2), the associative law, shows that parentheses are not needed to determine the meaning
of a * b * ¢; both possible interpretations give the same result. Most of the operations that we use in
engineering are associative — with one notable exception, the “vector cross product.”

Example 7.5.3 The system (S, x), where S is the set of all vectors in ordinary three-dimensional space
and x denotes the vector cross procuct (which is very useful in dynamics and in electromagnetic theory),
is not a semigroup because axiom (A2) fails. For example, if a,b and c are the vectors shown in Fig.
7.5, then (ax b) xc=0but a x (b x c) #0.

z

Figure 7.5: Example showing that the vector cross product does not obey the associative law.

A semigroup is almost too elementary an algebraic system to allow one to deduce interesting prop-

erties. But the situation is much different if we add one more axiom.

A monoid is an algebraic system (M, *) such that (M, ) is a semigroup and

(A3) (existence of a neutral element) there is an element e of M such that, for every a in M, axe =

exa=a.

Example 7.5.4 The system (Z, -), where - denotes ordinary integer multiplication, is a monoid whose

neutral element is e = 1.

The semigroup of Example 7.5.1 is not a monoid because axiom (A3) fails. [This can be remedied
by adding the “empty string” A of length 0 to S, in which case (S, %) becomes a monoid whose neutral

element is e = A.]

We now prove the most important property of monoids.
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Uniqueness of the Neutral Element: The neutral element e of a monoid is unique.
Proof: Suppose that e and € are both neutral elements for a monoid (M, x). Then
E=€xe=ce

where the first equality holds because e is a neutral element and the second equality holds because € is
a neutral element. a

An element ¢ of a monoid (M, ) is said to be invertible if there is an element ¢’ in M such that

cxc =c xc=e. The element ¢ is called an inverse of c.

Example 7.5.5 In the monoid (Z,-), the only invertible elements are e = 1 (where we note that the

neutral element e of a monoid is always invertible) and —1. Both of these elements are their own inverses.

Uniqueness of Inverses: If ¢ is an invertible element of the monoid (M, %), then its inverse ¢’ is unique.

Proof: Suppose that ¢’ and ¢ are both inverses of ¢. Then
d=cdxe=cx*(cxé)=(xc)xc=exC=¢,

where the first equality holds because e is the neutral element, the second holds because ¢ is an inverse

of ¢, the third holds because of the associative law (A2), the fourth holds because ¢’ is an inverse of ¢,

and the fifth holds because e is the neutral element. o
Here and hereafter we will write Z,, to denote the set {0,1,2,...,m — 1} of nonnegative integers less
than m, where we shall always assume that m is at least 2. Thus, Z,, = {0,1,...,m—1} always contains

the integers 0 and 1, regardless of the particular choice of m. We now define multiplication for the set
Zy, by the rule
a®b=R,(a-b) (7.28)

where the multiplication on the right is ordinary multiplication of integers. We will call m the modulus

used for multiplication and we will call the operation ® multiplication modulo m.
The algebraic system (Zy,, ®) is a monoid whose neutral element is e = 1.

Proof: Inequality (7.2) for remainders guarantees that, for every a and b in Z,,,a @b = R,,(a-b) is also
in Z,, and thus axiom (A1) is satisfied. For a,b and ¢ in Z,,, we have

where the first and second equalities hold because of the definition of ®, the third because ¢ satisfies

0 < ¢ < m, the fourth because of the algebraic property (7.6) of remainders, the fifth because the
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associative law holds for ordinary integer multiplication, the sixth again because of the algebraic property
(7.6) of remainders, the seventh because a satisfies 0 < a < m, and the eighth and ninth because of the
definition (7.28) of ®. Thus axiom (A2) holds in (Z,, ®) so that (Z,,,®) is a semigroup. But, for any
ainZmy,a®1=Ry(a-1) = Ry,(a) = a and similarly 1 ® @ = a. Thus 1 is a neutral element and hence
(Z,, ®) is indeed a monoid as claimed. d

We now answer the question as to which elements of the monoid (Z,,, ®) are invertible.

Invertible elements of (Z,,, ®): An element v in Z,, is an invertible element of the monoid (Z,, ®) if
and only if ged(m,u) = 1 (where of course u is treated as an ordinary integer in computing the greatest
common divisor.)

Proof: Suppose that g = ged(m, u) > 1. Then, for any b with 0 < b < m, we have
bOu=Rub-u)=b-u—qg-m

where ¢ is the quotient when b - v is divided by m. But b - u is divisible by g and so also is ¢ - m. Thus
b-u— q-m is divisible by g and hence cannot be 1. Thus, b ® u # 1 for all b in Z,,, and hence v cannot
be an invertible element of the monoid (Z,, ®).

Conversely, suppose that ged(m,u) = 1. By the greatest common divisor theorem for Z, there exist

integers a and b such that 1 = a-m + b - u. Taking remainders on both sides of this equation gives

and an entirely similar argument shows that u® R,,,(b) = 1. Thus v is indeed invertible and v’ = R, (b)
is the inverse of w. a

Our proof of the condition for invertibility has in fact shown us how to compute inverses in (Z,,, ®).

[Henceforth, because the operation ® is a kind of “multiplication”, we will write the inverse of u as u~*

rather than merely as u’.]

Computing Multiplicative Inverses in Z,,: To find the inverse v~ ! of an invertible element of
(Zy, ®), use an extended greatest common divisor algorithm to find the integers a and b such that
1 =ged(m,u) =a-m+b-u. Then u=! = R, (b).

7.6 FEuler’s Function and the Chinese Remainder Theorem

Euler’s totient function (or simply FEuler’s Function) o(+) is the function defined on the positive integers
in the manner that

e(n)=#{i:0<i<nand ged(n,i)=1}. (7.29)

Note that ¢(1) = 1 because ged(1,0) = 1 and note that n = 1 is the only positive integer for which
i = 0 contributes to the cardinality of the set on the right in (7.29). The following enumeration is an
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immediate consequence of definition (7.29) and of the necessary and sufficient condition for an element

u of Z,, to have a multiplicative inverse.

Count of Invertible Elements in (Z,,, ®): There are exactly ¢(m) invertible elements in the monoid
(Zn, ®).

For any prime p, it follows immediately from the definition (7.29) that

¢(p)=p—1. (7.30)

More generally, if p is a prime and e is a positive integer, then

o(°) = (1 - %) Pt =@p-1)-ph (7.31)

To see this, note that the elements of Z,. are precisely the integers ¢ that can be written asi = q-p+r
where 0 <7 < pand 0 < ¢ < p¢~!. Thus, ged(i,p®) = 1 if and only if r # 0. But there are p— 1 non-zero

values of r and there are p°~! choices for gq.

To determine ¢(m) when m has more than one prime factor, it is convenient to introduce the Chinese

Remainder Theorem, for which we will later find many other uses.

Let my, ma, ..., my be positive integers. Their least common multiple, denoted lem(my, ma, ..., my)
is the smallest positive integer divisible by each of these positive integers. If m; and msy are positive
integers, then lem(mq,msa) ged(my, ma) = myme, but this simple relationship does not hold for more

than two positive integers.

Fundamental Property of Least Common Multiples: Each of the positive integers m1, ms, ..., mg
divides an integer n if and only if lem(mq, ma, ..., my) divides n.
Proof: If lem(my, ma, ..., my) divides n, i.e., if n = ¢-lem(my, ma, ..., myg), then trivially m; also divides

nfori=1,2,..., k.

Conversely, suppose that m; divides n for i = 1,2,..., k. By Euclid’s division theorem for Z, we can

write n as
n=q-lem(my, ma,...,mg)+r (7.32)

where

0 <r <lem(my,ma,...,mg). (7.33)
But m; divides both n and lem(my, ma,...,my) and thus (7.32) implies that m; divides r for i =
1,2,...,k. Because (7.33) shows that r is nonnegative and less than lem(mq, ma, ..., my), the conclusion
must be that r is 0, i.e., that lem(mq,ma, ..., my) divides n. m]

Pairwise Relative Primeness and Least Common Multiples: If the positive integers

mi,Ma, ..., my are pairwise relatively prime (i.e., if ged(m;,m;) =1 for 1 <i < j < k), then

lem(my, ma, ..., mg) =my -mg ...  My. (7.34)

Proof: If p¢, where p is a prime and e is a positive integer, is a term in the prime factorization of my,
then this p cannot be a prime factor of m; for j # i because gcd(m;, m;) = 1. Hence p® must also be
a factor of lem(my, ma, ..., mg). Thus, lem(mq,ma, ..., my) cannot be smaller than the product on the

right of (7.34) and, since each m, divides this product, this product must be lem(mq,mo,...,mg). O
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Henceforth, we shall assume that m; > 2 for each 7 and we shall refer to the integers my,mo, ..., mg

as moduli.

Chinese Remainder Theorem: Suppose that my,mo,...,my are pairwise relatively prime moduli
and let m = mq - mg - ... - mg. Then, for any choice of integers rq1,73,...,7% such that 0 < r; < m; for
i=1,2,...,k, there is a unique n in Z,, such that

Ry, (n)=r; i=1,2,...,k (7.35)
[where, of course, n is treated as an ordinary integer in computing the remainder on the left in (7.35)].

Proof: We first show that (7.35) can be satisfied for at most one n in Z,,. For suppose that (7.35) is
satisfied for n and 7, both in Z,,, where n > n when n and 7 are considered as ordinary integers. Then

Rmi (n - ﬁ’) = Rmi (Rﬂ% (n) - Rmi (ﬁ‘)) = Rmi (’ri - 72%) =0

for : = 1,2,...,k, where for the second equality we used the algebraic properties of remainders. Thus
n — 0 is divisible by each of the moduli m; and hence (by the fundamental property of least com-
mon multiples) by lem(m,mg,...,my). But the pairwise relative primeness of the moduli implies
lem(my, ma,...,mg) = m. Thus n — 1 (where 0 < n — 7 < m by assumption) is divisible by m so that
n—n = 0 is the only possible conclusion. It follows that (7.35) is indeed satisfied by at most one n in Z,,
or , equivalently, that each n in Z,, has a unique corresponding list of remainders (r1,r2,...,r) with
0 < r; < m;. But there are m elements in Z,, and only mj - mso - ... - my = m possible choices of lists
(r1,7r2,...,7%) with 0 < r; < m;. It follows that every such list must correspond to exactly one element
of Zy,. O

The remainders r; in (7.35) are often called the residues of n with respect to the moduli m;. When the

moduli mq,ma, ..., my are pairwise relatively prime, the Chinese Remainder Theorem (CRT') specifies a
one-to-one transformation between elements n of Z,, (where m = mq-ma-...-my) and lists (11,72, ..., 7%)
of residues. We shall refer to the list (r1,72,...,7%) as the CRT-transform of n.

The following results are only a few illustrations of the often surprising utility of the Chinese Re-

mainder Theorem.

CRT characterization of Multiplication in (Z,,, ®): Suppose that the integers my, mo, ..., my are
pairwise-relatively-prime moduli, that m = mq - ms - ... - my, and that n and 7 are elements of Z,, with
CRT-transforms (11, ra, ..., ) and (71,79, . .., 7), respectively. Then the CRT-transform of the product
nON N Ly, @) is (r1 ®1 71,72 @2 T, ..., Tx Ok 7t ), the componentwise product of the CRT-transforms
of n and 7, where the product r; ®; 7; is a product in (Z,,, ®).

Proof:

(
(n-n—q-m) (for some integer q)
(n-7)

i

(ri- 7 )

=7, O; T

where the first equality follows from the definition of multiplication in (Z,,, ®), the second from Euclid’s

division theorem for Z, the third from the fundamental property of remainders and the fact that m is a
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multiple of m;, the fourth from the algebraic property (7.6) of remainders, the fifth from the definitions

of the residues r; and 7;, and the sixth from the definition of multiplication in (Z,,,, ®). a
CRT Characterization of Invertible Elements of (Z,,, ®): Suppose that m1,ma, ..., my are pair-
wise relatively prime moduli, that n is an element of Z,, where m = mj - mso - ... mg, and that
(r1,7r9,...,7) is the CRT-transform of n. Then n is an invertible element of (Z,,, ®) if and only if r; is

an invertible element of (Z,,,,®) for i =1,2,... k.

Proof: We note first that the CRT-transform of 1 is just (1,1,...,1). Thus, by the CRT characterization
of multiplication in Z,,, n is invertible in (Z,,, ®) if and only if there is a CRT-transform (71,7, ..., 7)
such that r; ©; 7; = 1 in (Z,,,,®), for i = 1,2,... k. But such an (71,7, ...,7) exists if and only if r;
is invertible in (Z,,,,®) for i = 1,2,... k. m]

We can now easily evaluate Euler’s function in the general case.

Calculation of Euler’s Function: Suppose that pi,po,...,pr are the distinct prime factors of an

integer m, m > 2. Then

1 1 1
gp(m)—(l—>~(1—)~...~<1—)~m. (7.36)

P1 D2 Dk
Proof: Let m = pi* - p3® - ... - pi* be the prime factorization of m and define m; = p;* for i =1,2,... k.
Then the moduli my, ma,...,my are pairwise relatively prime. The CRT-transform (ry,rs,...,7%) cor-

responds to an invertible element of (Z,,, ®) if and only if each r; is an invertible element of (Z,,, ®).
But, by 7.31, it follows that there are exactly

1 1 1 1 1 1
(- L) (L) (1= L) = (1= 1) (1= 1) (1= )
P p2 Pk b1 D2 Pk

invertible elements of (Z,,, ®), and this number is ¢(m). O

7.7 Groups

The true richness of algebra first becomes apparent with the introduction of the next algebraic system,
the group.

A group is a monoid (G, *) such that
(A4) (existence of inverses) every element of G is invertible.

The order of a group (G, *) is the number of elements in G, #(G). A finite group is simply a group

whose order is finite.

Example 7.7.1 The monoid (Z,,,®) is not a group for any m because the element 0 in Z,, is not

invertible.

Example 7.7.2 Let G be the set of all 2 x2 nonsingular matrices with entries in the real numbers R and
let % denote matrix multiplication. Then (G, *) is an infinite group, i.e., a group of infinite order. That
axiom (A1) (closure) holds in (G, *) is a consequence of the fact that the determinant of the product of

two square matrices is always the product of their determinants; hence the product of two nonsingular
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matrices (i.e., matrices with non-zero determinants) is another nonsingular matrix. The reader is invited

to check for himself that axioms (A2), (A3) and (A4) also hold in (G, ).

An abelian group (or commutative group) is a group (G, x) such that (A5) (commutative law) for
every a and bin G,axb="bxa.

Example 7.7.3 The group (G, *) of example 7.7.2 is not abelian since the multiplication of 2 x 2 matrices

is not commutative. For instance, choosing

11
a= and b = Lo ,
0 1 1 1
2 1 1 1
b: b = .
“ [1 1]# " L 2}

We now define addition for the set Z,, = {0,1,...,m — 1} by the rule

we find that

a®b=Ry(a+D) (7.37)

where the addition on the right is ordinary addition of integers. We will call the operation & addition

modulo m.

The algebraic system (L, ®) is an abelian group of order m whose neutral element is e = 0. The inverse
of the element a in this group, denoted Sa, is given by

0 ifa=0
Ga = (7.38)
m—a ifa#0.

Proof: The proof that (Z,,,®) is a monoid with neutral element e = 0 is entirely analogous to the proof,
given in section 7.5, that (Z,,, ®) is a monoid with neutral element 1. From the definition (7.37) of @, it
is easy to check that (7.38) indeed gives the inverse of any element a in Z,,. Finally, (A5) holds because
a®b= R, (a+b) =R, (b+a)=>bd a, where the second equality holds because addition of integers is

commutative. O

This is perhaps the place to mention some conventions that are used in algebra. If the group operation
is called addition (and denoted by some symbol such as + or @), then the neutral element is called zero
(and denoted by some symbol such as 0 or 0); the inverse of an element b is called minus b (and denoted
by some symbol such as —b or ©b). Subtraction is not a new operation, rather a — b (or a ©b) is just a
shorthand way to write a + (—b) [or a @ (6&b)]. The group operation is never called addition unless it is
commutative, i.e., unless axiom (A5) holds. If the group operation is called multiplication (and denoted
by some symbol such as - or ® or x), then the neutral element is called one, or the identity element
(and denoted by some symbol such as 1 or I). The inverse of an element b is called the reciprocal of b
(or simply “b inverse”) and is denoted by some symbol such as 1/b or b=1. Division in the group is not
a new operation; rather a/b is just a shorthand way to write a - (b=1) [or a - (1/b) or a ® (b™1), etc. |.
The group operation need not be commutative when it is called multiplication, as Examples 7.7.2 and
7.7.3 illustrate.

We have seen that (Z,,, ®) is not a group. However, the following result tells us how we can “extract”
a group from this monoid.
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The Group of Invertible Elements of a Monoid: If (M, «) is a monoid and M* is the subset of M
consisting of all the invertible elements of the monoid, then (M*, ) is a group.

Proof: The neutral element e of the monoid is always invertible (and is its own inverse) so that M* is

never empty. If a and b are any two elements of M* with inverses a’ and ¥’, respectively, then

(axb)* (b xa)

ax(bx (V' xa'))
ax((bxb)xa)

ax(exa)
=ax*a

267

where the first two equalities hold because of the associative law (A2), the third and fifth because b and
b’ are inverse elements as are ¢ and a’, and the fourth because e is the neutral element. Similarly, one
finds (b’ * a’) % (a xb) = e. Thus, a * b is indeed invertible [and its inverse is b’ * a'] so that axiom (A1)
(closure) holds in (M*, x). The reader is invited to check that axioms (A2), (A3) and (A4) hold also in
(M*, %), a

The following is an important special case of the above general result.

The Group of Invertible Elements of (Z,,, ®): The algebraic system (Z¥,, ®), where Z}, is the set
of invertible elements of the monoid (Z,,, ®), is an abelian group of order ¢(m).

Proof: We showed in the previous section that there are ¢(m) invertible elements in Z,,, i.e., that
#(Z:,) = o(m). That the group (ZX,,®) is abelian follows from the fact that a @ b = Ry,(a - b) =
Ry (b-a)=boa. O

What makes the group structure such a powerful one is the following, almost self-evident, property.

Unique Solvability in Groups: If (G, ) is a group and a and b are elements of G, then the equation

axx =0 (as well as the equation = * a = b) always has a unique solution in G for the unknown x.

Proof: Because a * (@’ xb) = (a*xa')xb = exb = b, we see that a’ b is indeed a solution in G for
2. Conversely, if ¢ is any solution for z in G, then a * ¢ = b so that a’ x (a * ¢) = o’ *x b and hence
(a/ xa) *c=e*xc=c=a *b; thus, a’ x b is the only solution for z in G. O

It is important to note that unique solvability does not hold in general in a monoid. For instance, in
the monoid (Z,,, ®), the equation 0 ©®x = 0 has all m elements of Z,, as a solution, whereas the equation
0 ® x = 1 has no solutions whatsoever in Z,,. Note that it is the unique solvability in a group (G, *)
that allows one to deduce from a *b = e that b = a’ (since a * x = e has the unique solution a’) and that

allows one to deduce from a * b = a that b = e (since a * z = a has the unique solution e).

The order of an element a of a group (G, %), denoted ord(a), is the least positive integer n such that
axaxa*---xa=ce

where there are n occurrences of a on the left — provided such positive integers n exist; otherwise, the
order of a is undefined. Note that ord(e) = 1 so that every group has at least one element of finite order.

Note also that the neutral element is the only element of order 1.

Example 7.7.4 Let G be the set of all 2 x 2 nonsingular diagonal matrices with entries in the real

numbers R and let x denote matrix multiplication. Then (G, ) is a group whose neutral element is the
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identity matrix

I:107
0 1

which has order 1. The matrix —I has order 2 since (—I) * (—I) = I. The matrix

=l

also has order 2 since J * J = I, as also does the matrix —J. The order of all other matrices in this
infinite group is undefined. It is interesting to note that the equation 2> = I has four solutions for the
unknown z in the group G, namely the matrices I, —I,J and —J. In other words, the matrix I has

exactly four square roots.

Hereafter in our discussion of the order of elements of a group, we will think of the group operation %

as a kind of “multiplication” and hence will write a * a = a?

1

,axaxa=a’, etc. . We will similarly write

the inverse of a as a~! and also write a ' *a ' =a"2,a ' xa ' xa"! = a3, etc. . This is justified

since, for instance,

a*>xa 2= (axa)x(a txat)
=ax(axa ) xa?
=ax*xa !

= €.

We see that it is also consistent to write the neutral element e as a”. The reader is asked to remember,
however, that we are actually considering arbitrary groups so that in fact * might be some form of
“addition”.

It is easy to see that every element of a finite group has a well-defined order. For suppose that a is in
a group (G, *) of order n. Then, for some integers i and j with 0 < i < j < n, it must hold that a’ = a’
and hence that /=% = e.

By the convention just described, if a is any element of the arbitrary “multiplicative” group (G, %),

then a’ is well defined for every ¢ in Z. Moreover, the usual rules of exponents hold, i.e.,
a'xal =a'ti (7.39)

and
(a") = a"J. (7.40)

Fundamental Property of the Order of a Group Element: If a has order n in the “multiplicative”

1 2 n—1

group (G, *), then the n elements a° = e,a' = a,a?,...,a are all distinct. Moreover, for every i in Z,

at = afn (), (7.41)

Proof: Suppose that a' = o/ where 0 < i < j < n. Then, multiplying both sides of this equation by
a~" gives e = /=% where 0 < j —i < n. By the definition of ord(a), it follows that j = i, and hence

n—1

that a® = e,a' =a,d?,...,a are all distinct as claimed. Euclid’s division theorem states that every

integer 7 can be written as ¢ = g - n + 7, where r = R, (7). Thus, ¢’ = a?""" = a?" xa" = (a™)?xa" =
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elxa” = exa” = a” where the second equality follows from (7.39), the third from (7.40), the fourth from
the fact that n = ord(a), and the remaining equalities are obvious. But » = R, (), so we have proved
(7.41). O

The simplest, but one of the most interesting, groups is the cyclic group, which is defined as follows.
The cyclic group of order n is a “multiplicative” group (G, %) that contains an element of order n so that
G ={a’ =e,a,a?,...,a" }. Any element of order n in G is said to be a generator of the cyclic group.

Because
al k@ = 't = qFn (1) = i@

where @ denotes addition modulo n [and where the first equality follows from (7.39), the second from
(7.41), and the third from the definition (7.37)], it follows that the cyclic group of order n is essentially
the same as the group (Z,,®), which is why one speaks of the cyclic group of order n. Note that the
cyclic group is always an abelian group. The main features of the cyclic group are summarized in the

following statement.

Properties of the Cyclic Group: If a is a generator of the cyclic group of order n, then the element
b= a', where 0 < i < n, has order n/gcd(n, ). In particular, b is also a generator of the cyclic group of

order n if and only if ged(n, i) = 1 so that the cyclic group of order n contains exactly ¢(n) generators.

Proof: Because b* = a** and because a’* = e if and only if n divides i - k, it follows that the order k
of b is the smallest positive integer k such that i - k is divisible by n (as well of course as by i), i.e.,

i -k =lem(n,i). But then k =lem(n,d)/i = n/ged(n, i), as was to be shown. a

Example 7.7.5 Consider the group (Z},, ®) of invertible elements of the monoid (Z,,, ®). Because 7
is a prime, Z3 = {1,2,3,4,5,6}. Note that 3! = 3,32 = 2,33 = 6,3* = 4,3° = 5,35 = 1. Hence
(Z%,0) is the cyclic group of order 6 and 3 is a generator of this cyclic group. This cyclic group has
©(6) = ¢(3-2) =2-1 =2 generators. The other generator is 3° = 5. because ged(6,2) = ged(6,4) = 2,
the elements 32 = 2 and 3* = 4 both have order 6/2 = 3. Because gcd(6,3) = 3, the element 3% = 6 has
order 6/3 = 2. The element 3° = 1 has of course order 1.

Uniqueness of the Cyclic Group of Order n: The cyclic group of order n is essentially the group
(Z,, @), i.e., if (G, *) is the cyclic group of order n then there is an invertible function f : G — Z,, such

that f(ax 8) = f(a) @ f(5).

7.8 Subgroups, Cosets and the Theorems of Lagrange, Fermat

and Euler

If (G, *) is a group and H is a subset of G such that (H, *) is also a group, then (H, x) is called a subgroup
of the group (G, ). The subsets H = {e} and H = G always and trivially give subgroups, and these
two trivial subgroups are always different unless G = {e}. The following simple, but important result,

should be self-evident and its proof is left to the reader.

Subgroups Generated by Elements of Finite Order: If (G, %) is a group and a is an element of G
with order n, then (H, ), where H = {a® = e,a,a?,...,a" '}, is a subgroup of (G, *); moreover, this
subgroup is the cyclic group of order n generated by a, and hence is abelian regardless of whether or not
(G, ) is abelian.
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If (G, ) is a group, S is any subset of G, and g any element of G, then one writes g x S to mean the
set {g*s:sin S} and S * g is similarly defined. Note that the associative law (A2) implies that

g1 (g2 %5) = (g1 % g2) * S (7.42)
holds for all g; and g5 in G.

If (H,«) is a subgroup of (G, x) and g is any element of GG, then the set g * H is called a right coset
of the group (G,x*) relative to the subgroup (H,«). Similarly, H % g is called a left coset of the group
(G, =) relative to the subgroup (H,x*). If (G,*) is abelian, then of course g * H = H * g, but in general
g+ H # H * g. However, if h is an element of H, then

hxH=Hxh=H, (7.43)

as follows easily from unique solvability in groups. Hereafter, for convenience, we will consider only right

cosets, but it should be clear that all results stated apply also to left cosets mutatis mutandis.

Fundamental Properties of Cosets: If (H, *) is a subgroup of (G, *) and ¢ is any element of G, then

#(g+ H) = #(H),

i.e., all right cosets have the same cardinality as the subgroup to which they are relative. Moreover, if

g1 and go are any elements of GG, then
either g1 *H=go«H or (g1*xH)N(g2*xH) =2,

i.e., two right cosets are either identical or disjoint.

Proof: The mapping f(h) = g * h is an invertible mapping (or bijection) from H to the coset g x H, as
follows by unique solvability in groups. Thus, #(g*H) = #(H). Suppose next that (g1xH)N(ge*xH) # &,
i.e., that these two right cosets are not disjoint. Then there exist hy and hs in H such that g;xh; = goxhs.
But then go = g1 * hs, where hs :hl*hz_l and hence go * H = (g1 xhg)« H =gy« (hg« H) = g1 « H
[where the second equality holds because of (7.42) and the third because of (7.43)]. Thus these two right
cosets are identical. m|

If (H,«) is a subgroup of (G, *), then the neutral element e of G must also be in H, and hence the
element g of G must lie in the coset g * H. Thus, one can speak unambiguously of the right coset that

contains g.
We are now in position to prove one of the most beautiful and most important results in algebra.

Lagrange’s Theorem: If (H, %) is a subgroup of the finite group (G, *), then #(H) divides #(G), i.e.,
the order of a subgroup of a finite group always divides the order of the group.

Proof: Choose g1 = e and let C; = g1 * H = H. If G\ C} is not empty (where \ denotes set subtraction,
i.e., A\ B is the set of those elements of A that are not also elements of B), choose g2 as any element
of G\ C; and let Cy = g5 * H. Continue in this manner by choosing ¢;+1 to be any element of
G\ (CLUCyU---UC;) as long as this set is nonempty, and letting C;11 = g;4+1* H. When this procedure
terminates [which it must since G is finite], say after g, is chosen, the cosets C1, Cs, ..., C, thus obtained
satisfy G = C;UCy U --- U Cy. But, by the fundamental properties of cosets, these g cosets are pairwise
disjoint and each contains exactly #(H) elements. Thus, it must be true that #(G) = q - #(H), i.e.,
that #(H) divides #(G). O
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Corollary to Lagrange’s Theorem: The order of every element of a finite group divides the order of
the group.

Proof: If a has order n in the group (G, «), then a generates the cyclic group of order n, which is a

subgroup of (G, x) . Thus n divides #(G) by Lagrange’s theorem. o
Two special cases of this corollary are of great interest in cryptography.
Euler’s Theorem: If b is any invertible element in (Z,,, ®), then be(m) = 1.

Proof: By hypothesis, b is an element in the abelian group (Z,,, ®), which has order ¢(m). Hence the
order n of b divides p(m), i.e., o(m) =mn-q. Thus,

pP(m) = pra — (pn)9 =19 = 1.

O

As we will later see, Euler’s Theorem is the foundation for the Rivest-Shamir-Adleman (RSA) public-
key cryptosystem, which is widely regarded as the best of the presently known public-key cryptosystems.

Fermat’s Theorem: If p is a prime and b is any non-zero element of Z,, then b= =1,

Proof: This is just a special case of Euler’s Theorem since, for a prime p, ¢(p) = p—1 and every non-zero

element of Z, is invertible. O

Fermat’s Theorem is the foundation for primality testing. Suppose that m is any modulus and b is
any non-zero element of Z,,. If we calculate ™1 in (Z,,,®) and find that the result is not 1, then
Fermat’s Theorem assures us that m is not a prime. Such reasoning will prove to be very useful when
we seek the large (about 100 decimal digits) randomly-chosen primes required for the RSA public-key
cryptosystem.

We have seen that Fermat’s Theorem is a special case of Euler’s Theorem, which in turn is a special
case of Lagrange’s Theorem. Why Fermat and Euler are nonetheless given credit will be apparent to
the reader when one considers the life spans of Fermat (1601-1665), Euler (1707-1783) and Lagrange
(1736-1813).

7.9 Rings

We now consider an algebraic system with two operations.

A ring is an algebraic system (R, ®, ®) such that

(i) (R,®) is an abelian group, whose neutral element is denoted 0;
(ii) (R,®) is a monoid whose neutral element, which is denoted by 1, is different from 0; and
(iii) (distributive laws) for every a,b and ¢ in R,
a®(b®c)=(@0b)@(adc) (7.44)

bdc)0a=00a)® (cOa). (7.45)
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A commutative ring is a ring (R, ®, ®) such that ® is commutative, i.e., such that, for every a and b
in R, a®b=>b® a. For a commutative ring, of course, only one of the two distributive laws is required,

since either one then implies the other.

The units of a ring are the invertible elements of the monoid (R, ®). The set of units is denoted R*

and we recall that (R*,®) is a group.

Example 7.9.1 (Z,+,-), where + and - denote ordinary integer addition and multiplicaton, respectively,
is a commutative ring whose units are the elements 1 and -1, i.e., Z* = {—1, 1}. This ring is called simply

the ring of integers.

Example 7.9.2 (Z,,,®,®) , where ® and ® denote addition modulo m and multiplication modulo m,
respectively, is a commutative ring and is called the ring of integers modulo m. The set of units is
Z:, ={u:uisin Z,, and ged(m,u) =1}.

We have already proved all the claims of this example except to prove that part (iii) (the distributive

laws) of the definition of a ring is satisfied. To prove this, suppose that a,b and ¢ are in Z,,, then
a® (b®dc)=Rp(Rn(a) R,(bdc))
= Ry (R (a)  Ry(b+¢))
=Rp(a-(b+0¢))

where the first and third equalities follow from the algebraic property (7.6) of remainders and the second
from the definition (7.37) of @. Similarly,

(@ob)®(@oc) =

where the first and third equalities follow from the algebraic property (7.5) of remainders, the second
from the definition of ®, and the last from the fact that the distributive law holds in (Z,+,-). Thus
a®(bdc) =(a®b)® (a®c). Because ® is commutative, there is no need to prove the other distributive

law. O

The ring of integers modulo m is by far the most important algebraic system used in contemporary
cryptography!
Many “standard” rules of algebraic manipulation are valid in all rings.

Multiplication by 0 and Rules of Signs: If (R, @, ®) is a ring and if a and b are elements of R, then

aG0=00a=0 (7.46)
S(a®b)=(Ga) ©b=a® (Oh) (7.47)
(Ga)® (eb) =a®b. (7.48)

Proof: Because 0 = 0@ 0, the distributive law (7.44) gives ¢ © 0 = (a © 0) ® (¢ ©® 0). Unique solvability
in the group (R, ®) thus implies a ©® 0 = 0, the proof that 0 ® @ = 0 is similar. Next, we note that
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((Ba) ©b)® (a®b) = (Ba®a) ©b =06 b =0 where the first equality follows from the distributive law
(7.44). By unique solvability in the group (R, ®), it follows that (©a) ® b = S(a ©® b). The proof that
a® (6b) = 6(a ®b) is similar. Finally, we note that (7.47) implies

(6a) ® (8b) =6(a® (b)) =(8(a®b) =a®b.

7.10 Fields

A field is an algebraic system (F,+,-) such that (F,+,-) is a commutative ring and every non-zero

element of the ring is a unit.

An alternative, but fully equivalent, definition (as the reader should have no difficulty verifying) of a

field is the following one.

A field is an algebraic system (F, +,-) such that

(i) (F,+) is an abelian group (whose neutral element is denoted by 0);
(ii) (F'\ {0},-) is an abelian group (whose neutral element is denoted by 1); and

(iii) for every a,b and ¢ in F, the distributive law
a-(b+c)=(a-b)+(a-c) (7.49)
holds, and multiplication by 0 obeys the rule

a-0=0-a=0. (7.50)

In this alternative definition of a field, it is necessary to define multiplication by 0 with the axiom
(7.50) because multiplication by 0 is not defined in part (ii). The first definition of a field does not

require this, as the fact that (F,-) is a monoid means that multiplication by 0 is well defined.

The reader is certainly already acquainted with several fields, namely

(1) the field (Q,4+,-) of rational numbers;
(2) the field (R,+,-) of real numbers; and
(3) the field (C,+,-) of complex numbers.

If (F,+,-) is a field and if F is a subset of E such that (F,+,) is a field, then (F,+,-) is called a
subfield of (E,+,-), and (E,+,-) is called an extension field of (F,+,-). We see that the rational field
is a subfield of the real field and that the complex field is an extension field of the real field. Of course

the rational field is also a subfield of the complex field, and the complex field is also an extension field
of the rational field.

The reason that we have used the “standard” signs for addition and multiplication in a field is to

stress the fact that all the standard rules (the associative, commutative and distributive laws) apply to
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addition, subtraction, multiplication and division (by non-zero numbers). Thus, sets of linear equations
are solved the same way in any field; in particular, determinants and matrices are defined in the same
way and have the same properties (e.g., the determinant of the product of square matrices is the product
of the determinants) in any field. We assume that the reader is familiar with the elementary properties

of such determinants and matrices.

A field (F,+,-) for which F is a finite set is called a finite field or a Galois field. The finite fields
are by far the most important algebraic systems used in contemporary coding theory! We already know
how to construct some finite fields.

Prime Field Theorem: The commutative ring (Z,,, ®, ®) is a field if and only if m is a prime.

Proof: We saw in Section 7.5 that every non-zero element of the monoid (Z,,, ®) is invertible if and only
if m is a prime. O

We will denote the finite field (Z,, ®, ®) where p is a prime by the symbol GF(p) to give due honor
to their discoverer, Evariste Galois (1811-1832). Galois, in his unfortunately short lifetime, managed to
find all the finite fields. We shall also write @ and ® simply by + and - (or simply by juxtaposition of
elements), respectively, in GF(p). The modern trend seems to be to denote GF(p) as Fp, but this is a

trend that admirers of Galois (such as this writer) believe should be resisted.

The characteristic of a field is the order of 1 in the additive group (F,+) of the field provided that
this order is defined, and is said to be 0 [beware, some writers say oo] otherwise. The characteristic of

GF(p) is p. The characteristic of the rational, real and complex fields is 0 [or, if you prefer, oo].
The characteristic of a field is either 0 [or, if you prefer, o] or a prime p.

Proof: Suppose the order of 1 in the additive group (F,+) is a composite integer m, i.e., m = my - mo
where my > 2 and mgy > 2. Writing ¢ to denote the sum of ¢ 1’s in the field (F, +, -}, we see that m; and
my are non-zero elements of the field, but m; - my = 0, contradicting the fact that (F'\ {0}, -) is a group.

O

We will see later that there exists a finite field with g elements if and only if ¢ is a power of a prime,
i.e., if and only if ¢ = p™ where p is a prime and m is a positive integer, and that this field is essentially
unique. We will denote this field by GF(q) or GF(p™). ( We will also see that there are infinite fields

whose characteristic is a prime p.)

7.11 Vector Spaces

We now consider an algebraic system with two sets of elements and four operations.

A wvector space is an algebraic system (V, 4, F,+,-) such that

(i) (F,+,) is a field;
(ii) (V,4) is an abelian group; (whose neutral element we denote by 0); and

(iii) - is an operation on pairs consisting of an element of F' and an element of V such that, for all ¢1, co
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in F and all vi,vsy in V,

1) (closure) c1+vy isin V,

1) (

(2) (scaling by 1) 1-vy = vy,

(3) (associativity) c1+(covy) = (¢1 - ¢2)+vy, and

(4) (distributivity) (c1 4 c2)vy1 = (c1-v1)+(ca+vy) (7.51)

Cl'(V1—|—V2) = (Cl'V1)+(Cl'V2). (752)

It should be noticed that the “associativity” defined in (iii)(3) is essentially different from the axiom
(A2) of the associative law in that, for the former, the first operation on the left is different from the
first operation on the right. Similarly, the addition operation on the left in the “distributivity” equation
(7.51) is different from the addition operation on the right.

In a vector space (V, 4, -, F, 4, ), the elements of V are called vectors and the elements of F" are called
scalars. Note that axiom (iii)(1) specifies that V must be closed under multiplication of its elements
by scalars. Axiom (iii)(2) may seem redundant to the reader, but in fact one can construct algebraic

systems that do not satisfy (iii)(2) but do satisfy all the other axioms of a vector space.
We now show that certain “natural” rules hold in all vector spaces.

Scaling by 0 and by the Negatives of Scalars: If ¢ is any scalar and v is any vector in a vector
space (V,+,-, F,+, ), then
0-v=0 (7.53)

and
(—c)v=—(cv). (7.54)

Proof: We note first that (0 + 0)-v = 0-v. By the distributivity relation (7.51), it follows that
(0-v)4(0-v) = 0-v. Unique solvability in the group (V,+) now implies that 0-v = 0.

We note next that c-v4+(—c¢)-v = (¢ —¢)-v = 0-v = 0 where the first equality follows from (7.51).
Unique solvability in the group (V,4) now implies that — (¢-v) = (—¢)-v. ad

Scaling the Zero Vector: For every scalar ¢ in a vector space (V, 4+, F,+,-)

c0=0. (7.55)

Proof: We note first that ¢-(04-0) = ¢-0. By the distributivity relation (7.54), it follows that ¢-04c-0 =
¢-0. Unique solvability in the group (V,+) now implies that ¢-0 = 0. o

Hereafter, we will often write c-v simply as cv, but the reader should always remember that the
implied multiplication in cv is the multiplication of a vector by a scalar, not the multiplication of two
scalars. Similarly, we will often write ¢; - co simply as ¢jcq, but the reader should always remember that
the implied multiplication in c¢jco is multiplication of two scalars. From the context, it will always be

clear which type of multiplication is understood.

If n is a positive integer and if ¢, cs, ..., ¢, are scalars, then the vector
civitceavet - v

is called a linear combination of the vectors vi,va,...,v,. Note that if ¢; = ¢ = --- = ¢,, = 0, then the

above linear combination is the vector 0 regardless of the values of vi,vsy, ..., v,.
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The vectors vy, Vs, ..., Vv, are said to be linearly independent if the only linear combination of these
vectors that gives 0 is that with ¢; = ¢o = -+ = ¢, = 0; otherwise they are said to be linearly dependent.
Note that the zero vector 0 is by itself linearly dependent because 1-0 = 0; but every non-zero vector v is
by itself linearly independent because, for any non-zero scalar ¢, c-v = 0 would imply ¢~ +(c-v) = ¢~1-0
and thus (¢7!-¢)-v=1-v =v = ¢~ 1.0 = 0 contradicting the fact that v # 0.

If (V,4,-, F,+,-) is a vector space and if U is a subset of V such that (U, 4, F,+,-) is also a
vector space, then (U, +,-, F,+,-) is called a subspace of the vector space (V,+,-, F,+,-). Hereafter,
we will generally follow customary, but imprecise terminology and speak simply of the “vector space V”
or the “subspace U” and we will refer to the field (F,+,-) as simply the “scalar field F”.

Test for a Subspace: A non-empty subset U of a vector space V is a subspace if and only if (1) for all
u; and uy in U, u;4us is also in U, and (2) for every c in the scalar field F' and every u in U, c-u is also

in U [i.e., if and only if U is closed under vector addition and closed under multiplication by scalars.]

Proof: 1f U is a subspace of V, then (1) and (2) hold trivially. Suppose conversely that (1) and (2)
hold for a non-empty subset U of V. Let u be any vector in U. Then (2) implies that Ou = 0 and
(=1)u = —u are in U. Closure of + holds in U because of (1), and the associative law holds in U
because it holds in the larger set V. Morever, the operation + is commutative. It follows that axioms
(A1) - (A4) hold in (U, +), which is thus an abelian group. Axiom (iii) of a vector space holds for U
because of (2). The remaining parts of Axiom (iii) also hold in U because they hold in the larger set V.

Thus, U is indeed a vector space. g

It follows from the subspace test that the subset U = {0} is trivially a subspace of every vector
space. If n is a positive integer and vi,vso,..., v, are any vectors in a vector space V, then the set
{e1vitcava+ -+ +epvy i c1,0,. .., ¢, are in the scalar field F'} of all linear combinations of the vectors
Vi,Va,...,V, is a subspace of V, as follows easily from the subspace test. This subspace is called the

subspace spanned by vi,va,...,v, and will be denoted S(vi,va,...,v,).

If vq,vo,..., v, are linearly independent and V = S(vy,va,...,v,), then vq,va, ..., v, are called a
basis for V; moreover, every choice of n linearly independent vectors in V is then a basis for V. The
dimension of a vector space V, denoted dim(V), is the maximum number of linearly independent vectors
that can be chosen from V. It follows that dim({0}) = 0 and that the dimension of a finite-dimensional

vector space is equal to the number of vectors n in a basis.

We now consider the vector space of greatest importance in coding theory. For a field F', we write
FY to denote the set of N-tuples (or “row vectors”) [by, b, ...,by] whose components are elements of
F. We define addition of N-tuples and multiplication of N-tuples by a scalar (i.e., by an element of F)
by the rules

[b1,b2,. .., bn]H[b], by, ... bN] = [b1 + b, ba + by, ... by + bly] (7.56)
and
c[by,ba, ..., bn] = [cb1, cba, ..., cby], (7.57)

respectively.

Vector Space of N-Tuples: For any positive integer IV, the set F'V is an N-dimensional vector space
with 0 = [0,0,...,0]. The vectors [1,0,...,0],[0,1,...,0],...,[0,0,...,1] containing a single non-zero
component equal to 1 are a basis (called the canonical basis) for FN.

Proof: The reader is invited to make the simple check that F' indeed satisfies the axioms of a vector space
and that 0 = [0,0,...,0]. Because ¢1[1,0,...,0]4c2[0,1,...,0]4+ - 4+¢n[0,0,...,1] = [c1,¢2,...,¢n], it
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follows that this linear combination is 0 = [0,0,...,0] if and only if ¢ = ¢c3 = --- = ¢y = 0 so that these
N vectors are linearly independent, and it follows further that these N vectors span F. Thus, they are
indeed a basis for FV. a

If V is any vector space with 0 < n < oo (i.e., any non-trivial finite-dimensional vector space) with
the scalar field F' and if v, ve,..., v, is any basis for V, then every vector v in V can be written uniquely

as a linear combination of the basis vectors,
v =c1vitceovet - Fe, vy, (7.58)

as follows from the fact that if two such linear combinations were equal then their difference would be a
non-trivial linear combination equal to 0, which would contradict the linear independence of the vectors
in a basis. If we now associate the vector v in V with the n-tuple [c1, ca, ..., ¢,], then we have created
an invertible mapping (or bijection) between V and F™. Moreover, addition in 'V and multiplication of
vectors in 'V by scalars can equivalently be carried out on their “transforms” in F™. It follows that every
n-dimensional vector space over the scalar field F' is essentially the same as the vector space F™ (the
technical term in algebra is that V is isomorphic to F™). We shall not be interested in isomorphisms
of vector spaces; the interesting applications of vector spaces in coding and cryptography rely on the

specific basis-dependent properties of the spaces, not on their “abstract equivalence” to F™.

7.12 Formal Power Series and Polynomials

A formal power series over the field F in the indeterminate X is a “sum” A(X) of the form
A(X) :a0+a1X+a2X2+~~

where the order of the terms in this “sum” is arbitrary and where the coefficient a; is in F' for 0 < i < co.

One often writes simply

AX) = i a; X"
i=0

The equality A(X) = B(X) of two such formal power series means just that the coefficient of X in
each is the same for all ¢, i.e., that a; = b; for 0 < i < co. The sum C(X) = A(X)+ B(X) of two formal
power series is defined by ¢; = a; + b; for 0 <7 < co. The product of two formal series is defined by

%
C; = Zajbi_j, 0<i< 0. (759)
j=0

Note that ¢; is a sum of finitely many elements of F' and hence is a well-defined element of F' for

every 1,0 < ¢ < oo.

A polynomial over the field F' in the indeterminate X is a formal power series in which only a finite
number (perhaps none) of the coefficients are non-zero. The polynomial with all-zero coefficients is
written simply as 0. The degree of a polynomial A(X), A(X) # 0, is the greatest ¢ such that a; # 0;
the degree of the polynomial 0 is, by way of convention, taken to be —oo. The following property is an

immediate consequence of (7.59).

Degree Property of Polynomials: if A(X) and B(X) are polynomials over the field F, then

deg[A(X)B(X)] = deg[A(X)] + deg[B(X)]
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where deg[-] denotes the degree of the enclosed polynomial.

One writes F[X] to denote the set of all polynomials over the field F' in the indeterminate X. The
following theorem can be proved entirely analogously to Euclid’s Division Theorem for the Integers in
Section 7.2.

The Division Theorem for F[X]: Given polynomials N(X) (the “dividend”) and D(X) (the “divisor”)
with D(X) # 0, there exist unique polynomials Q(X) (the “quotient”) and R(X) (the “remainder”) such
that

N(X)=QX)D(X)+ R(X) (7.60)

and
deg[R(X)] < deg[D(X)]. (7.61)

We write Rp(x)[N(X)] to denote the remainder when N(X) is divided by D(X), assuming that
D(X) # 0 when we use this notation. Remainders in F[X] satisfy much the same properties as remainders
in Z, which were discussed in Section 7.2. The reader is invited to make simple proofs of the following

properties and theorems.

Fundamental Properties on Remainders in F[X]: For any polynomials N(X) and I(X),

Rp(x)[N(X) + I(X)D(X)] = Rp(x)[N(X)]. (7.62)

Algebraic Properties of Remainders in F[X]: For any polynomials A(X) and B(X),
Rpx)[A(X) + B(X)] = Rpx)[A(X)] + Rp(x)[B(X)] (7.63)

and
Rpx)[A(X)B(X)] = Rpx)[Rpx)[AX)]Rpx)[B(X)]]. (7.64)

Remark: Note that we need not take the remainder of the sum on the right in (7.63) because the degree
of this sum is already less than deg[D(X)] and hence this sum is its own remainder when divided by
D(X).

The leading coefficient of a non-zero polynomial A(X) is the coefficient of X¢ in this polynomial
where d = deg[A(X)]. (The polynomial 0 has no leading coefficient.) A polynomial is said to be monic

if its leading coefficient is 1.

One says that the non-zero polynomial D(X) divides the polynomial N(X) just in case that
Rp(x)[N(X)] = 0 or, equivalently, if there is a polynomial Q(X) such that N(X) = Q(X)D(X). Note
that the polynomial 0 is divisible by every monic polynomial and that the monic polynomial D(X) =1
divides every polynomial. If N(X) # 0, then d = deg[N(X)] is the maximum degree of the monic
polynomials that divide N(X). (Of course, if N(X) = 0, there is no maximum such degree.)

If N1(X) and N3(X) are polynomials in F[X] and not both 0, then their greatest common divisor,
which is denoted by ged[N;(X), No(X)], is the monic polynomial of greatest degree that divides both
N;(X) and N2(X). We will tacitly assume that N;(X) and N2(X) are not both 0 whenever we write
ged[N1(X), Na(X)].

Fundamental Property of Greatest Common Divisors in F[X]: For any polynomial I(X),

ged[N1(X) 4+ I(X)No(X), No(X)] = ged[N1(X), Nao(X)], (7.65)
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i.e., adding a multiple of one polynomial to another does not change their greatest common divisor.
It is then a simple step to a “Euclidian” recursion.

Recursion of the Greatest Common Divisor in F[X]: If Ny(X) # 0, then

ged[N1(X), No(X)] = ged[N2(X), Ry, (x) [N1(X)]]. (7.66)

From this recursion, one can easily design the “Euclidian” algorithm for computing
ged[N1(X), No(X)] and one can then “extend” this algorithm to an algorithm that also finds the poly-
nomials A(X) and B(X) in the following theorem.

Greatest Common Divisor Theorem for F[X]: For any polynomials N;(X) and N3(X), not both
0, there exist polynomials A(X) and B(X) such that

ged[N1 (X)), Na(X)] = A(X) N1 (X) + B(X)Na(X). (7.67)

Remark: The polynomials A(X) and B(X) specified in this theorem are not unique.

The reader might now suspect that one can make a ring of polynomials modulo a given polynomial
and that, under certain conditions on the modulus, the ring will be a field. This is indeed the case and

will be carried out in the exercises.
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Chapter 8

RUDIMENTS OF ALGEBRAIC
CODING THEORY

8.1 Introduction

Shannon’s statement and proof of the Noisy Coding Theorem in 1948 immediately touched off a search for
specific “good codes” that continues unabated today. Before long, a theory of codes began to develop that
focused attention more and more on the algebraic structure of codes and less and less on the role of codes
in the Noisy Coding Theorem. Within two decades after Shannon’s work appeared, “algebraic coding
theory” had already established itself as a scientific field in its own right. The results and techniques of
this field soon began to find applications to many problems beyond channel coding; indeed, the relevance
of many algebraic coding techniques to actual channel coding problems is at best tenuous.

Our goal in this chapter is to introduce the main ideas of algebraic coding theory in such a way that
the interested reader will be well positioned to explore these ideas further in the rather vast literature
of this field.

8.2 Block Codes, Dimensionless Rate and Encoders

We will confine our attention in this chapter to codes in which the code digits take values in a finite field
GF(q), which is the most important case both theoretically and practically, although some of the results

that we derive are valid when the code digits take values in an arbitrary finite alphabet.

By a g-ary block code of length N, we will mean any non-empty subset of the vector space of N-
tuples (“row vectors”) GF(q)". It is important to note that a block code, as defined in algebraic coding
theory, is a set (and not a list as was the case when we considered the Noisy Coding Theorem), i.e., the
codewords must all be different. Thus, the number M of codewords in a g-ary block code of length N

must satisfy

1< M <q". (8.1)

35



By the dimensionless rate of a g-ary block code of length N, we will mean the number

log, M
R = gj‘i/, , (8.2)

where M is the number of codewords [and not (log, M)/N, which is the “dimensioned rate” in bits/use
that we considered for the Noisy Coding Theorem)]. It follows from (8.1) and (8.2) that the dimensionless
rate R (which we will hereafter often refer to simply as the rate) of a g-ary block of length N satisfies

0<R<IL. (8.3)

In most cases (and always for the case of linear codes), RN will be a positive integer that we will
denote by K and will call the number of information digits. [Note that the code rate is then R = K/N.]
The reason for this terminology is that we can consider the ¢ K-tuples in GF(q)¥ as the information
sequences that are mapped by an encoder onto the M = ¢V% = ¢ codewords. Thus, when RN is a
positive integer K, we will consider an encoder for a g-ary block code of length N and rate R to be an
invertible (or bijective) mapping from GF(q)¥X to the ¢® codewords in GF(q)". This is illustrated in
Fig. 8.1, where a = [ay,as,...,ak] is the information sequence in GF(q)®X and b = [b1,bs,...,by] is
the codeword in GF(q)". It is important to note that the same code has many encoders. In fact, if we
order the ¢ codewords in some way, there are ¢’ choices for the information sequence assigned to the
first codeword, g% — 1 choices then for the information sequence assigned to the second codeword, etc.
Thus, there are exactly (¢¥)! different encoders for a given g-ary block code of length N and rate R
when K = RN is a positive integer.

b = [b1,ba,...,bn] ~—— Encoder «—— a=la,as,...,ax]

Figure 8.1: An encoder for a g-ary block code of length N with dimensionless rate K/N.

8.3 Hamming Weight and Distance

The Hamming distance, d(x,y), between N-tuples x and y with components in an arbitrary non-empty
set is defined as the number of coordinates in which x and y differ. It is easy to see that Hamming
distance is a metric for the set of N-tuples over any non-empty set, i.e., that it satisfies the following

three axioms for any three N-tuples x,y and z with components in this set:

(M1) d(x,y) > 0 with equality if and only if x =y (positive definiteness);
(M2) d(x,y) = d(y,x) (symmetry); and
(M3) d(x,2z) + d(z,y) > d(x,y) (triangle inequality).

That (M3) holds for Hamming distance follows from the fact that in any coordinate where x and y
differ it must be true that either x and z differ or that z and y differ (or both).

The Hamming weight, w(x), of a vector x in F'V is defined to be the number of coordinates in which

x is non-zero. It follows that
d(X, Y) = ’LU(y - X)a (84)
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since x and y will differ in some coordinate if and only if y — x is non-zero in that coordinate. The
following three properties of Hamming weight are the direct analogs of the axioms (M1), (M2) and (M3)

of a metric. For any x and y in FV,

(W1) w(x) > 0 with equality if and only if x = 0;
(W2) w(x) = w(—x);and

(W3) w(x) +w(y) = w(x+y).

The Hamming sphere of radius r [where r is an integer satisfying 0 < r < N| centered at some x in
GF(q)" is the set S,.(x) of all y in GF(q)" such that d(x,y) < r. The volume of the sphere S,.(x) is the
number of N-tuples in S, (x), #5,(x). From the fact that there are (]j) ways to choose the i coordinates
in which y differs from x and ¢ — 1 ways to choose a component for y different from the component of
x in each of these ¢ coordinates, it follows that the volume V. of the Hamming sphere S,(x) does not

depend on x and is given by

v, = g (- (5.5)

8.4 FError Correction and Detection

Suppose that a codeword b in a g-ary block code B of length N and rate R is transmitted via some
“noisy channel” and that r is the received word. The usual assumption of algebraic coding theory, and
the one that we shall make here, is that r is also an N-tuple in GF(¢q)". Then the error pattern, e, that
occurred in this transmission is defined as

e=r—b. (8.6)

Each component of r that is different from the corresponding component of b represents an “error”
in transmission. Thus, the number of errors that occur is defined as d(b,r) or, equivalently, as w(e).

By a decoder for a g-ary block code B of length N and rate R, we will mean a mapping f(-) from
GF(q)N to B. The interpretation is that f(r) is the decoder’s decision for the transmitted codeword

when r is the received word.

We will say that the code B can correct all the error patterns in a set E (which is a non-empty subset
of GF(q)") if there is a decoding function f(-) for B such that

f(b+e)=b allbe B, alle € E. (8.7)

The interpretation of (8.7) is that the decoding decision made by the decoder f(-) will always be

corrected when a codeword of B is transmitted and an error pattern in F occurs.

The minimum distance of a g-ary block code of length N and rate R, denoted dyiy, is defined when
R > 0 as the smallest Hamming distance between two distinct codewords; when R = 0 so that there is

only M = ¢N® =1 codeword, one says by way of convention that dyi, = 0o.

Error-Correcting Capability of a Code: A g-ary block code of length N and minimum distance

dmin can correct all patterns of ¢ or fewer errors (where ¢ is an integer 0 < ¢ < N) if and only if

dmin > 2t.
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Proof: Suppose the code cannot correct all patterns of ¢ or fewer errors. Then, because (8.7) cannot
be satisfied for all codewords, there must be distinct codewords b and b’ together with error patterns
e and €, both of Hamming weight ¢ or less, such that b+e = b’4+e€’. Thus b—b’ = € — e and hence
d(b';b) = w(b—b') = w(e' —e) < w(e) +w(—e) = w(e') + w(e) < 2t, where we have made use of
(W3) and (W2). Tt follows that dpyin, < 2t.

Conversely, suppose dpin < 2t. Then there exist distinct codewords b and b’ with d(b,b’) = dpin, =
w(b —Db’") < 2t. But any vector b — b’ of Hamming weight at most 2¢ can be written as the difference
e —e of two vectors each of Hamming weight at most ¢ [just assign the first non-zero component of
b — b’ to €, the second to —e, the third to €', etc.. Hence, b—b’ = € —e or b+e = b’+e’. It now
follows that (8.7) cannot be satisfied for both b and b’ when F is the set of all error patterns of weight
t or less. Thus, not all patterns of weight ¢ or less can be corrected. O

The previous result, although specifying the error-correcting capability of a code, does not quite tell

us how to build the corresponding decoder.

Correcting t or Fewer Errors: A decoder f(-) for a code with dp;, > 2t will correct all patterns of ¢
or fewer errors if and only if f(r) is the codeword nearest to r in Hamming distance for all r such that
the nearest codeword b satisfies d(b,r) < ¢.

Proof: If b is the transmitted codeword and r is the received word, then t or fewer errors have occurred
if and only if d(b,r) < ¢, i.e., if and only if r lies in the Hamming sphere S;(b) of radius ¢ centered
at b. Thus, a decoder that corrects all patterns of ¢ or fewer errors must decode every r in S;(b) to
b. But if r is in S;(b) and b’ is a codeword distinct from b, then the triangle inequality (M3) implies
d(b',r) > d(b,b") — d(r,b) > dyin — d(r,b) > din —t > 2¢t — t = t, where we have used the fact that,
because the code corrects all patterns of ¢ or fewer errors, dpy, > 2t. Thus, every r in S¢(b) is strictly

closer to b in Hamming distance than to any other codeword. a

Sometimes one is content to “detect” certain types of errors without trying to correct these errors.
This is often the case in various types of Automatic Repeat reQuest (ARQ) systems where the receiver
can request a retransmission of a codeword if it is unable to make a reliable decision. To describe this
situation, we define an incomplete decoder for a g-ary block code B of length N to be a mapping f(-)
from GF(q)™ to BU{?}. The interpretation of f(r) = ? is that the incomplete decoder has detected an
error but is unwilling to try to correct this error. We will say that the code B can correct all the error
patterns in a non-empty set Eq and detect all the error patterns in a set Ey, where E1 N Fy = &, if there

is an incomplete decoding function f for B such that

b allbe Bandalle € E;
f(b+e) = (8.8)
? allbe B and all e € Es.

If E; = {0}, then one says that the code is being used purely for error detection.

Error-Detecting and Correcting Capability of a Code: A g-ary block code of length N and
minimum distance d,i, can correct all patterns of ¢ or fewer errors and detect all patterns of ¢t + 1,¢ +
2,...,t+ s errors, where 0 <t <t+ s < N, if and only if

dmin > 2t + s.

Proof: Suppose that the code cannot correct and detect as specified. Then, because (8.8) cannot be

satisfied for all codewords, there must be distinct codewords b and b’, together with error patterns e
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and €’ satisfying w(e) < ¢t and w(e’) < t + s, such that b4+e = b’4e€’. Thus, d(b’,b) = w(b—Db') =
w(e' —e) <w(e)+w(—e) =w(e)+wle) <t+s+t=2t+s. It follows that dpyin < 2t + s.

Conversely, suppose that dmin < 2t +s. Then there exist distinct codewords b and b’ with d(b’,b) =
w(b —b') = dnin < 2t + 5. But any vector b — b’ of Hamming weight at most 2¢ + s can be written as
the difference €’ — e of error patterns e and €’ with w(e) < ¢ and w(e’) <t + s [just assign the first ¢
non-zero components of b’ —b to —e (or all components if w(b —b’) < t) and the remaining non-zero
components of b’ —b to €']. Then

b+e = b'+¢€’

where b and b’ are distinct codewords, e is a pattern of ¢ or fewer errors, and €’ is a pattern of t + s or
fewer errors. Thus (8.8) cannot be satisfied for both b and b’ since this would require f(b+e) to equal
b and at the same time f(b’+e€’) = f(b+e) to equal either b’ or ?. It follows that not all patterns of ¢

or fewer errors can be corrected and all patterns of t + 1,¢ 4+ 2,...,t + s errors detected. O

The above results about error correction and error correction-and-detection should make it clear why

the minimum distance d,;, of a code is of central importance in algebraic coding theory.

8.5 Linear Codes

We now define the class of codes that are of primary interest in algebraic coding theory. An (N, K) g-ary
linear code (or simply an (N, K) q-ary code) is a K-dimensional subspace of the vector space GF(q)N of
N tuples over GF(q).

If K >0 and if g1, 89, ...,8K are a basis for the (N, K) g-ary linear code V, then every codeword b

can be written uniquely as a linear combination

b = a1g1+asga+ - +argk (8.9)

where a1, as, ..., a; are elements of the scalar field GF(q); conversely, every such linear combination is

a codeword. It follows that there are exactly ¢® codewords and hence that the code rate is

=, 1
R N (8.10)
Note that (8.9) describes a linear encoding rule for encoding the information vector a =

[a1,az,...,ax] in GF(q)X to the codeword b in GF(q)N. We can write (8.9) more compactly as
b=aG (8.11)

where G is the matrix whose rows are g1,8go2,...,gx. We shall call any matrix G whose rows are a basis
for the linear code V an encoding matriz for V [but we warn the reader that the terminology generator
matriz for 'V is more usual in the literature]. If V is an (N, K) g-ary linear code with K > 0, then an
encoding matrix for V is a K x N matrix whose K-N entries are in GF'(¢q) and whose rows are K linearly

independent codewords.

An (N, K) g-ary linear code with K > 0 has many encoding matrices. Any of the ¢/ — 1 non-zero
codewords can be chosen as the first row g; of G. Any of the ¢® — ¢ codewords not in S(g;) can be

chosen as the second row gz of G. Any of the ¢% — ¢? codewords not in S(g;, gs) can be chosen as the
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third row gz of G. Etc. It follows that an (N, K) ¢g-ary linear code has exactly

K—1
IT " - )
i=0
distinct encoding matrices, i.e., distinct linear encoders. Although usually a vast number, the number

of linear encoders for V is nonetheless dwarfed by the number (¢)! of general encoders for V that we

determined in Section 8.2. The advantage of the linear encoders is that they are very easy to implement.

Example 8.5.1 The binary vectors [1,0,1],[0,1,1] are linearly independent and hence form a basis,

g1, 82, for a (3,2) binary code. The corresponding encoding matrix is
1 0 1
0 1 1|

The linear encoding equation (8.11) gives the codeword b = [by, by, b3] corresponding to the informa-

G:

tion vector a = [a1, as] as

b1=a1
b2=a2

b3 = aj + as.

Note that this encoder can be implemented with a single GF(2) adder, i.e., with a single exclusive-
OR (XOR) gate. [The reader should reflect why (K — 1)(IV) such XOR gates suffice to implement any
linear encoder for any (N, K) binary code with K > 0]. This (3,2) binary code is the vector space
Vv ={[0,0,0],[1,0,1],[0,1,1],[1,1,0]}. One sees that dmyin = 2. Thus this code could be used for “single

error detection”.

8.6 Weight and Distance Equivalence in Linear Codes

One of the principal advantages of linear codes is that for most purposes it suffices to consider the
Hamming weights of codewords where for general block codes one would have to consider Hamming
distance. In other words, in linear codes it suffices to look at the codewords one at a time rather than

in pairs.

The weight enumerator of an (N, K) g-ary linear code is the list (Ag, A1,..., Ax) where A; is the
number of codewords of Hamming weight i. Note that the A; must be nonnegative integers and that
Ag=1and Ag+ Ay + -+ + Ay = ¢¥. The minimum weight of an (N, K) g-ary linear code, denoted
Wmin, 18 the smallest Hamming weight of the non-zero codewords (and by way of convention is oo in case
K = 0 so that 0 is the only codeword.) Equivalently, wy, is the smallest positive integer ¢ such that
A; #0.

Weight and Distance Equivalence in Linear Codes: For every integer ¢,0 < ¢ < N, and every
choice of a codeword b in an (N, K) g-ary linear code V, the number of codewords at Hamming distance

i from b is equal to the number A; of codewords having Hamming weight 1.
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Proof: For every choice of a codeword b in V, we have

#{b': b’ € V and d(b,b’) =i} = #{b’: b’ € V and w(b’' —b) =i}
=#{b'—b:b' €V and w(b’' —b) =i}
=#{b":b" € V—->band w(b") =i}
=#{b": b’ € V and w(b') =i}
— A;
where we have used the fact that, because b is a codeword, i.e., a member of the additive group (V,+),
as is also — b, the coset V — b coincides with V. O
As an immediate corollary of this equivalence, we have the following very important property of linear

codes.

Equality of din and wpin: In an (N, K) g-ary linear code, duin = Wmin-

8.7 Orthogonality in FV

In this section, we consider certain general properties of FV for an arbitrary field F that we will apply
in the next section to linear codes.

Two vectors u = [ug,us, ..., uy] and v = [v1,vs,...,vx] in F¥ will be called orthogonal if their “dot
product” vanishes, i.e., if ue v = ujv; + usvs + - - - + uyvy = 0. Note that because we always consider
vectors in FN to be “row vectors” (i.e., 1 x N matrices), we can write the dot product conveniently
as uev = uv? , where the superscript T' denotes transpose. Thus, u and v are orthogonal just when
uv? =0.

Example 8.7.1 Taking ' = GF(2) and v = [1,1], we find that vv = 1 + 1 = 0, i.e., the non-zero
vector v is orthogonal to itself. In fact, if F = GF(2), any vector v of even Hamming weight is orthogonal
to itself. [This orthogonality of a non-zero vector to itself can never happen when F is the real field R.
Why not?]

If V is a subspace of F¥, then one writes V- to denote the set of vectors that are orthogonal to

every vector in V| i.e.,

vt ={v:v e FY and v/'vT =0 for all veV}.

If v/vl = 0 then (cv')vl = ¢(v'vT) = 0 holds for all ¢ € F. Similarly, if vivT = vovT = 0, then
(vi+v2)vT = 0. Tt follows from the test for a subspace that V= is also a subspace of FV. We will call
V1 the orthogonal subspace of V in FN.

If Aisan r x N matrix with entries in F', then by the row space of A, denoted R(A), one means the
subspace of FV spanned by the rows of A. The dimension of the subspace R(A) is of course at most r,

the number of rows of A, with equality if and only if the rows of A are linearly independent vectors in
FN.

Matrix Characterization of Orthogonal Subspaces: If V is a subspace of FV and if A is a matrix
with entries in I’ such that V = R(A), then a vector v/ in F'V lies in V1 if and only if v/ AT = 0.
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Proof: Let vi,va,...,v, be the rows of A and note that v'AT = v/[vl---vI] = [v/vl ... v/v

Suppose v’ lies in V4, then v’ is orthogonal to each row of A so that certainly v/A” = 0.

Conversely, suppose v' AT = 0. Then v'vl =0 for i = 1,2,...,r. But any vector v in V = R(A)
can be written as v = ¢;vi+cava+ -+, v,.. Hence v'vl = v/(c;vi4covli+- - 4c,.vl) = e;vivi +

cav'vE + .-+ ¢, v/'vl =0, so that v/ is indeed orthogonal to every vector in V. O

Fundamental Properties of Orthogonal Subspaces: If V is a K-dimensional subspace of F~ and

V1 is its orthogonal subspace, then
dim(V+) =N - K

and

(VHt =v.

Proof: Because FYN = {0}1 and {0} = (F")1, the claim is trivially true if K = 0 or K = N. Suppose
then that 1 < K < N. Let G be a K x N matrix whose rows vi,vs,..., Vg are a basis for V. Let
VK41, VK+2,---, VN be any vectors in FY such that vi,Vvs,..., vy are a basis for FV. [It suffices to pick
v; to be any vector in FN \ S(vi,va,...,v;_ 1) fori=K+1,K+2,...,N.] Let G be the (N —K) x N
matrix whose rows are Vg1, Vgy2,...,Vy. Then

M =

’ (8.12)

is an N x N matrix with linearly independent rows, i.e., an invertible matrix. Thus, there is a unique

inverse matrix

M= [AT AT (8.13)
where HT denotes the first K columns of M~!. Because

GHT GHT

MM '=|_" N
GHT GHT

where I,, denotes the n x n identity matrix, it follows that

GHT = Ig (8.14)
GHT =0 (8.15)
GHT =0 (8.16)
GHT = In_g. (8.17)

Because the rows of M are a basis for FV, every v € F can be written uniquely as v = [a,a] M,
i.e., as

vV = aG—+—é@.

But v is in R(G) precisely when v can be written as a G for some a, i.e., as aG+0 G. Thus, it follows

from the uniqueness of a and a that v € V = R(G) if and only if a = 0. But

vHT =aGH"+aGH" =a
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where we have made use of (8.15) and (8.17). Thus, by the matrix characterization of orthogonal
subspaces, v € R(H)* if and only if a = 0. Thus, we have proved that

R(G) = R(H)™. (8.18)

are linearly independent. Thus, every v € F'N can be written uniquely as
v=cH +cH.

It follows from the uniqueness of ¢ and ¢ that v € R(H) if and only if ¢ = 0. But for all v € FV,

¢cHGT+cHGT
e(GHT) T 4c(GHT)T

vGT

Il
o

where we have made use of (8.14) and (8.16). Thus, by the matrix characterization of orthogonal
subspaces, v € R(G)* if and only if ¢ = 0. Hence, we have proved that

R(G)* = R(H). (8.19)

Recalling that V = R(G) and that the N — K rows of H are linearly independent, it follows from (8.19)
that dim(V+) = dim(R(H)) = N — K. From (8.18), it follows further that V = (V+)+. O

8.8 Parity-Check Matrices and Dual Codes

A parity-check matriz for an (N, K) g-ary linear code V is any matrix H with elements in GF(q) such that
a vector v in GF(q)V is a codeword (i.e., v € V) just when v H” = 0. By the matrix characterization
of orthogonal subspaces, it follows that H is a parity-check matriz for V if and only if V. = R(H)>,
i.e., if and only if the code V is the orthogonal subspace of the row space of H. By the Fundamental
Properties of Orthogonal Subspaces, it follows further that R(H) = V+ and that dim(V+4) = N — K.
The codes V and V+ are called dual codes.

A parity-check matrix H for the code V will be called reduced if its rows form a basis for V*, i.e.,
if this parity-check matrix is an (N — K) x N matrix. A reduced parity-check matrix for the code V is
an encoding matrix for the dual code V+, and conversely. Our proof of the Fundamental Properties of

Orthogonal Subspaces actually shows how to construct a reduced parity-check matrix.

Construction of a Reduced Parity-Check Matrix: A reduced parity-check matrix H for an
(N, K) g-ary linear code with 1 < K < N having an encoding matrix G (whose rows we denote here by
V1,Va,..., V) can be constructed as follows:

(1) Choose v; as any vector in GF(q)N \ S(vi,va,...,v;_q) fori=K+1,K+2,...,N.

(2) Form the N x N matrix M whose rows are vi, Vs, ..., vy. Then compute the inverse matrix M ~1.
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(3) Take HT as the last N — K columns of the matrix M 1.

Example 8.8.1 Consider the (3,2) binary linear code of Example 8.5.1. The encoding matrix G given

there has rows vi = [1,0,1] and vy = [0,1,1]. Choosing v = [0,0, 1], we obtain the upper triangular
matrix
0 1
M=10 1 1
0 0 1

whose inverse is itself, i.e.,

1 01
M7t=10 11
0 0 1
Taking HT as the last column of M~ gives
H=[1,1,1].

Writing b = [by, by, bs] we see that b is a codeword, i.e., b HT = 0, if and only if
b1 + b2 + b3 =0.
In general, each row of a parity-check matrix H gives the coeflicients in a linear combination of digits

that must vanish for codewords, i.e., a “parity check” that must be satisfied. These parity checks are all

linearly independent if and only if H is a reduced parity-check matrix.

Let ¢f' el ... ck be the columns of H, ie., H =[cf,cl,... ck]. Then
C1
C2

bHY =b | | =bici+bsco+ - +bycy.
cN

Because b H” = 0 if b is a non-zero codeword, it follows that a codeword b of weight w determines
a vanishing linear combination with all coefficients non-zero of w columns of H (rows of HT), and
conversely. It follows that the minimum weight wp;, of the code equals the smallest such n, and hence

so also does dpin. Thus, we have proved the following useful result.

Determination of Minimum Distance from a Parity-Check Matrix: If H is any parity-check
matrix for an (N, K) g-ary linear code with 1 < K < N, then the minimum distance dy,i, of this code

equals the smallest positive integer n such that there are n columns of H that are linearly dependent.

Example 8.8.2 Consider the parity-check matrix
H=11,1,1]

found in Example 8.8.1 for the (3,2) binary linear code of Example 8.5.1. No single column of H is
linearly dependent (i.e., no column of H is the all-zero column). However, there is a pair of linearly
dependent columns (and, in fact, every pair of columns of H is linearly dependent for this special code).
Thus, dpin = 2.
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An (N, K) g-ary linear code is called systematic if it has an encoding matrix of the form G = [I[x P]
where P is some K x (N — K) matrix; if it exists, such an encoding matrix is easily seen to be unique
and is called the systematic encoding matriz. If the systematic encoding matrix is used for encoding,

then the information vector a gives the codeword

= [alk,aP]
= [aa aP]
in which a appears unchanged as the first K digits. This, in fact, is why the encoding is called “system-

atic”. Finding a parity-check matrix is especially easy when the code is systematic and one knows the
systematic encoding matrix.

Parity-Check Matrices for Systematic Codes: If V is a systematic (N, K) g-ary linear code with
1 <K <N and if G = [I[x P] is its systematic encoding matrix, then H = [-PT Iy_k] is a reduced
parity-check matrix for V.

Proof: We may choose the matrix M in our general construction of reduced parity-check matrices as the

upper triangular matrix

I P
M=%
0 In_k

The inverse matrix is the upper triangular matrix

et [ -p
0 In-x

as the reader can directly verify by multiplying M by M~!. The last N — K columns of M ! give HT,
the transpose of the desired reduced parity-check matrix. Thus, H = [-PT Iy_g] as claimed. ]

Suppose V is any (N, K) ¢g-ary linear code with K > 1. Then the subset of codewords of V that
have 0 as their first component is easily seen (by the subspace test) to be a subspace of V. Moreover, an
N-tuple b is a codeword in this subspace if and only if bH? = 0 and b [1,0,...,0]7 = 0 where H is any
parity-check matrix for V. Thus, this subspace of codewords is itself a linear code V1 with parity-check

matrix

H
H, = .
10 --- 0 1

Continuing in this manner,we see that

Hn =
I, O

is a parity-check matrix of the linear code V,, consisting of the codewords in V whose first n components
are all 0’s. If we take H to be a reduced parity-check matrix for V, then H, has exactly N — K +n
rows. Thus, dim(R(H,)) < N — K + n or, equivalently (since H,, is a parity-check matrix for V),
dim(V,) > K —n. It follows that V,, must contain non-zero codewords if n = K — 1. We have made the
argument for the first n components of codewords, but it should be obvious to the reader that it holds

for every choice of n components. We have proved the following interesting result.
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Zero-Components of Codewords: For any (N, K)g-ary linear code with K > 2 and any choice
of K — 1 among the N components, there exist non-zero codewords that contain only zeroes in these
components. In particular,

Win = Amin < N — K + 1. (820)

The upper bound (8.20) on minimum distance, which trivially holds also for K = 1, is called Single-
ton’s bound after its discoverer. An (N, K) g-ary linear code that meets this bound with equality is called
a mazimum-distance-separable (MDS) code. The (3, 2) binary linear code of Example 8.5.1 with dyi, = 2
is an MDS code, as indeed are all the (IV, K) g-ary codes with K = N — 1 and d,,;, = 2 constructed in
Problem 8.1. For any N and any ¢, the (N, 1) g-ary linear code with G = [1 1---1] has dyin = N and is
thus also an MDS code. More interestingly, the Reed-Solomon codes that we shall soon study are MDS
codes.

8.9 Cosets and Syndromes

We first give an algebraic characterization of the condition for a linear code to be able to correct all the
error patterns in a set F, as we considered in Section 8.4. Because an (N, K) g-ary linear code V is a
subgroup of the additive group of the vector space GF(q)", one can form the coset e+V of GF(q)"
relative to the subgroup V that contains a particular vector e. These are always the “cosets” that we

shall mean in this section.

Algebraic Condition for Error Correction: An (N, K)g-ary linear code V can correct all error

patterns in a set E if and only if these error patterns all lie in different cosets of GF(q)" relative to V.

Proof: Suppose that e and €’ are distinct error patterns in E but that e+V = €' +V. Then for any
codeword b there is a codeword b’ different from b such that b4+e = b’+e€’. Thus, (8.7) cannot be

satisfied, i.e., the code cannot correct all errors in F.

Conversely, suppose that all error patterns in F lie in different cosets relative to V. If e is the actual
error pattern and b the actual transmitted codeword, then the received word r = b+te lies in the coset
e+V. Thus, all error patterns in E can be corrected by a decoder f(-) that maps r into the codeword

r — & where & is the error pattern (if any) in E that lies in the coset r+V. O

If b is the transmitted codeword, e the actual error pattern and r = b+e the received word in an

(N, K) g-ary linear code V with parity-check matrix H, then
s=rH" (8.21)

is called the syndrome of r relative to the parity-check matriz H (or simply the syndrome of r for short).
Note that

s = (b+e)H”
=bH"+eH"
= O—i-eHT
—eHT,

which illustrates the important fact that the syndrome of the received word depends only on the actual

error pattern and not at all on the transmitted codeword.
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Equivalence of Syndromes and Cosets: The error patterns e and €’ lie in the same coset of GF(q)"
relative to V, an (N, K) linear code with parity-check matrix H, if and only if e and e’ have the same

syndrome relative to H.

Proof: Suppose e and e’ have the same syndrome, i.e., that e HT = e’ HT. Then (e —e')H”’ = 0 so that
e —e' is a codeword. Thus e —e'+V = V or, equivalently, e+V = e’+V so that e and €’ lie in the

same coset relative to V.

Conversely, suppose that e and €’ lie in the same coset, i.e., that e+V = €'4+V. Thene—e'+V =V
so that e — €’ is a codeword. Thus, (e —e’)HT = 0 or, equivalently, e HY = e’ H' so that e and e’ have

the same syndrome relative to H. O

Corollary to the Algebraic Condition for Error Correction: An (N, K) g-ary linear code with
parity-check matrix H can correct all error patterns in a set F if and only if the syndromes of these error

patterns relative to H are all different.

HT fu(:)

N
Figure 8.2: A syndrome decoder for a linear code with parity-check matrix H

This corollary suggests what is known as a syndrome decoder for a linear code and is shown in Fig. 8.2.
The received word r is first mapped to the syndrome s of r relative to H”. Then the function fg(-) [the
so-called error-pattern detector]| emits that error pattern & = fg(s) in the coset r+V = e+V that the
designer has chosen to correct, i.e., to take as his decision for the actual error patten e. The decision &
is then subtracted from r to obtain the decision b for the actual transmitted word b. It follows from the
above corollary that any set of error patterns that can be corrected by any decoder for a linear code V can
also be corrected by some syndrome decoder for V. Almost all decoders used in practice are syndrome

decoders.

8.10 Varshamov’s Bound

We now consider a very interesting construction for linear codes, due to Varshamov, which is the most
powerful general construction known. The idea is to build a parity-check matrix H for a g-ary linear
code with minimum distance dp,;, > d by ensuring that no column of H is a linear combination of d — 2

or fewer columns so that all choices of d — 1 or fewer columns of H are linearly independent.

Suppose that r = N — K is the desired redundancy of the g-ary linear code and that d is the desired
(lower bound on) minimum distance, where 2 < d < r + 1 [and where this upper bound on d is imposed
by Singleton’s bound (8.20)]. We can choose ¢y, where ¢! is the first column of H, to be any non-zero
vector in GF(q)". We continue then to pick further columns ¢, ¢l .. .[until we have chosen ¢k where

N is the desired blocklength] in such a manner that c; is not a linear combination of d — 2 or fewer of
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the vectors ci1,cs,...,c;—1. Suppose that c; has just been chosen. Because every linear combination of
d — 2 or fewer of the vectors c1,co, ..., c; is either the zero vector or a linear combination of exactly j of
these vectors in which all j coefficients are non-zero and 1 < j < d — 2, it follows that there are at most

(o)« (0= (e (L )unm v
(2)

distinct linear combinations of d — 2 of fewer of the vectors c1,co,...,c;, where we have written VdiQ
to denote the volume of the Hamming sphere of radius d — 2 in the i-dimensional vector space GF(q)°.
Thus, if V(i)2 < q", there will certainly exist a choice for c¢;;; that is not a linear combination of d — 2

or fewer of the vectors cy,co,...,c;. We have proved the following result.

Varshamov’s Theorem: For any GF(q) and any positive integers N, K and d with2 <d < N—K+1,
if
VINTD < gNE (8.22)

then there exists a g-ary (N, K) linear code with dyi, > d.

Example 8.10.1 For any GF(q), choose d = 3 and N — K = m where m > 2. By Varshamov’s
Theorem, there exists a g-ary (N, K = N —m) linear code with dy,;, > 3 provided

Y =1 (V== 1) < g7

or, equivalently, if N —1 < (¢™ —1)/(q — 1) or, again equivalently, if N < (¢"™ —1)/(¢ — 1). Thus, there
exists a g-ary (N = (¢"™ —1)/(¢—1), K = N —m) linear code with dp,i, > 3. In fact, these are precisely
the Hamming single-error correcting codes (see Problems 8.4, 8.5 and 8.6) and their minimum distance

is exactly 3.

In Problem 8.2, another general construction of linear codes is given that we have called there
“Gilbert’s bound” because the construction is so similar to that used earlier by Gilbert for (in gen-

eral) nonlinear codes. The construction in Problem 8.2 establishes the following result.

A Gilbert-like Theorem: For any GF'(q) and any positive integers N, K and d with 1 <d < N—K+1,
if

1
. V) < gV K, (8.23)

then there exists a g-ary (N, K) linear code with dyi, > d.

It is easy to see that (if we ignore the trivial case d = 1) the Gilbert-like Theorem is weaker than
Varshamov’s Theorem in the sense that any code guaranteed to exist by the former theorem is also
guaranteed to exist by the latter, but not conversely. [The reader can easily check that the Gilbert-like
Theorem does not suffice to establish the existence of the Hamming codes.] The reason for this is the
inequality

v < vy 20

that holds for all positive integers d and N with 2 < d < N. To see the truth of (8.24), it suffices to
note that every point x = [x1,22,...,2y-1] in the Hamming sphere of radius d — 2 centered at 0 in
GF(q)V~1, ie., every x in GF(q)N~! with w(x) < d — 2, can be associated uniquely with the ¢ points
{[r1,22,...,2x_1,9] : y € GF(q)} in the sphere of radius d — 1 centered at 0 in GF(q)", but that
there will be points in the latter sphere not associated to any point in the former (namely all the points

[l‘l,l‘g, .. .,Z‘N,l,O] with w(x) =d — 1).
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The weaker bound (8.23) is more convenient for asymptotic arguments than the stronger bound
(8.22). If we fix N and K, then, for the largest d such that (8.23) is satisfied, it will be true that

1
- Vd(N) Z quK,

or, equivalently, that
VN > gN-KHL (8.25)

Making use of the well-known bound
VIV < oNRA/IN) i g /N < 1/2 (8.26)

for ¢ = 2 where h(p) = —plogsp — (1 — p)logy(1 — p) is the binary entropy function, we obtain the
following bound from (8.25).

Asymptotic Varshamov-Gilbert Bound: For any N and any code rate R = K/N, there exists a
binary (N, K) linear code with
hdmin/N) >1— R. (8.27)

Example 8.10.2 For R = 1/2 and any even N, it follows from (8.27) that there exists an (N, K = N/2)
binary linear code with h(dmin/N) > 1/2 or, equivalently, with

dmin > 0.11N. (8.28)

For large N, the best “effective” constructions known for R = 1/2 codes have d,;, far less than the 11%
of N guaranteed by the Varshamov-Gilbert bound.

It is presently unknown whether, for very large N, there exist binary codes that can do better than
the bound (8.27). More precisely, it is unknown whether there exist binary codes of length N and rate R
(0 < R < 1) for arbitrarily large N such that h(dmin/N) > 1 — R — Ag where Ap is a positive number.
This question of the asymptotic tightness of the Varshamov-Gilbert bound for binary codes is one of the
most intriguing open questions in coding theory.

One can easily derive an asymptotic form of the Varshamov-Gilbert bound for ¢ > 2, but there is
no reason to believe that this non-binary asymptotic bound should be tight for large N. [There are
“hand-waving” arguments suggesting that the binary Varshamov-Gilbert bound might be tight for large
N.] In fact, for ¢ > 49, recent code constructions based on algebraic geometry give g-ary linear codes
for which din/N exceeds the asymptotic Varshamov-Gilbert bound for arbitrarily large N.

8.11 The Multiplicative Group of GF(q)

The non-zero elements F* of any field F' form an abelian group. In the case of the finite field GF(q),
this multiplicative group GF(q)* has order ¢ — 1. From the fact that every element of a finite group has
finite order and generates a cyclic group with this order and from the fact that the order of a subgroup
of a finite group divides the order of the group (Lagrange’s Theorem), it follows that every element of
GF(q)* is a root of the polynomial equation 9= = 1 or, equivalently, all ¢ — 1 non-zero elements of
GF(q) are zeroes of the polynomial 297! — 1. But a polynomial of degree d (d > 0) with coefficients in
a field F can have at most d zeroes in F or in any extension field E of F. Thus, 3 is a zero of z971 — 1

[or, equivalently, x — 3 is a divisor of 297! — 1] if and only if 3 is a non-zero element of GF(q).
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Factorization of 297! — 1 and z9 — z: The polynomial z9~! — 1 [where the coefficients 1 and —1 are

elements of GF(q)] factors completely into linear factors as follows:

2l -1= J[ @-8). (8.29)

BEGF (q)*

Similarly,

2l —x= H (z — B). (8.30)

BEGF(q)

The factorization (8.30) follows upon multiplication on both sides in (8.29) by x = = — 0.

Example 8.11.1 The reader is invited to check by direct multiplication on the right that, in GF(5),

2t —1=(z—1)(x —2)(z —3)(x —4).

Let n be the maximum (multiplicative) order of the elements of GF(¢)*. Because the order of every
element of an abelian group divides the order of the element of maximum order whenever this maximum
order is finite (see Problem 7.10), it follows that the (multiplicative) order of every element of GF(q)*
divides m. Thus, all ¢ — 1 elements of GF(q)* are zeroes of the polynomial " — 1. But n divides ¢ — 1 so
that certainly n < ¢—1. On the other hand, " —1 has at least ¢ — 1 distinct zeroes so that n > g—1. We
must conclude that n = ¢ — 1. Thus, GF(¢)* contains an element of order ¢ — 1 and hence is the cyclic
group of order ¢ — 1. Any generator of this cyclic group, i.e., any element of GF(q)* with (multiplicative)
order ¢ — 1, is called a primitive element of GF(q). From our knowledge (see Section 7.7) of the cyclic

group of order n, we can immediately make the following conclusions.

Fundamental Properties of the Multiplicative Group of GF(q): The multiplicative group of
GF(q) is the cyclic group of order ¢ — 1. This cyclic group has (g — 1) generators, i.e., there are exactly
©(q — 1) primitive elements in GF(q). If « is a primitive element of GF(q) and 3 = af, then 3 has
(multiplicative) order (¢ — 1)/ ged(q — 1,4). In particular, there are elements of (multiplicative) order N
in GF(q)* if and only if N is a positive integer that divides ¢ — 1.

Example 8.11.2 The elements 2 and 3 are the p(5—1) = ¢(4) = 2 primitive elements of GF(5) because
21 =92922=423=32"=1 and 3'=3,32=4,33=23"=1.

The elements 1 and 4 (= —1) have multiplicative orders 1 and 2, respectively.

8.12 Reed-Solomon Codes

We now consider the most important linear codes, both theoretically and practically, that have yet been
found, the so-called Reed-Solomon (RS) codes.

Let GF(q) be any finite field with ¢ > 3 elements and let N be a divisor of ¢ — 1 satisfying N > 2.
(The usual choice is N = g — 1 but sometimes one is interested in a smaller N.) Let a be an element

of (multiplicative) order N in GF(q) [and we note that, as explained in the previous section, such an «
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always exists.] Let m, be any integer satisfying 0 < m, < N; m, is a parameter of secondary importance
and is often chosen as either 0 or 1. Let d be an integer satisfying 2 < d < N. Then the Reed-Solomon
Code RS(q, N, a, m,, d) is the g-ary linear code of block length N for which

(Oémo)Nfl (amD)N72 L oMo 1_
(amoJrl)Nfl (amo+l)N72 . amo+1 1

- ' ' S (8.31)
_(am0+d72)N71 (amo+d72)N72 . amo+d72 1_

is a parity-check matrix.

We now determine the dimension K and the minimum distance dp,;, of the RS(q, N, a, m,, d) code.
Note that H in (8.31) has d — 1 rows. If we consider the square submatrix formed by selecting columns
N —iy,N—is,...,N—ig_1 of H (where N > i; >i5 > --->i4_1 > 0), we see that this matrix has the

form

(amo)il (amo)i2 - (amo)id—l
(amo+1)i1 (amoJrl)iz . (amo+1)id71
H =
(amoer*Z)il (amo+d72)l‘2 - (O[m°+d72)id_1

We now aim to prove that this square matrix is nonsingular, i.e., that it has linearly independent rows
(or, equivalently, linearly independent columns). We can factor (a™°)% [# 0] out of the j-th column
of this submatrix without altering whether the columns are linearly independent or linearly dependent.

Doing so, we obtain the new submatrix

all at? - atd—1
H =
(ail)d72 (aig)d72 - (aid_l)d72

that we now recognize as Vandermonde’s matrix of order d — 1 (see Problem 8.10). Because « has
multiplicative order N and 0 < ig_1 < --- < 49 < i1 < N, it follows that the elements a’t, a2, ..., a1
are all distinct and hence that Vandermonde’s matrix is nonsingular (see Problem 8.10). Thus, d — 1
columns selected from H are always linearly independent. But any d columns selected from H must be
linearly dependent since these columns have only d — 1 components. It follows that d;, = d for the
RS code. But our argument above also implies that the rows of H are linearly independent. Thus, the
dimension K of our RS code satisfies N — K = d — 1 or, equivalently, dyij, = N — K + 1, which shows
that our RS code is a maximum-distance-separable (MDS) code. We summarize our findings.

Parameters of Reed-Solomon Codes: The RS(q, N, a, m,, d) code is a g-ary linear (N, K) code
with minimum distance dni, = d and is MDS, i.e., dpin = N — K + 1.

We now wish to find an efficient decoding algorithm for RS codes. For this purpose, we will introduce
the discrete Fourier transform (DFT), which will also give us much better insight into the structure of
RS codes.
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8.13 The Discrete Fourier Transform
With any vector b = [by, ba, ...,by] € FV, we can identify the polynomial
N
D(X) =i XN+ XN b by X by = Y by XV (8.32)
n=1

of degree less than N with coefficients in the field F and we can talk interchangeably about the vector
b or the polynomial b(X). Suppose that there is an element « of (multiplicative) order N in F. Then
the discrete Fourier transform (DFT) of the “time-domain” vector b is the “frequency-domain” vector
B = [By, B, ..., By] € FV, defined by

B;=b(a") i=1,2,...,N. (8.33)

Making use of (8.32), we can write (8.33) explicitly in terms of the components of b as
N
Bim 3 b (@), (834
n=1
which, because o' = 1, reduces to
N
Bi =Y ba ™ i=12...,N, (8.35)
n=1

which the reader may find more familiar. [In digital signal processing of sequences (vectors) over the
complex field C, one often chooses o = eT72™/N as the element of (multiplicative) order N used to defined
the DFT.]

It is easy to see that the DFT is a true “transform”, i.e., that it is invertible. For suppose that b
and b are vectors with the same DFT, i.e., B = B. It follows then from (8.33) that o' is a zero of the

polynomial b(X) — b(X) for i = 1,2,...,N. But b(X) — b(X) has degree less than N and the zeroes

at,a? ..., a of this polynomial are all distinct; we must conclude that b(X) — B(X) is the polynomial

0, ie., b(X) = Z)(X) or, equivalently, that b = b. Thus, b can indeed be recovered from its DFT B.

To see how to recover b from its DFT B, we consider the polynomial
B(X)=B X" '+ B,XN24...4 By 1 X + By (8.36)
that can be identified with the vector B and evaluate this polynomial at a~" = oV ~". We obtain
N
B(Oé_n) — ZB’L . (a—7L)N—z
i=1
N N
S IR
i=1 j=1

or

Bla™) = Z b Z(a"_j )% (8.37)



For j = n, the second sum on the right of (8.37) is just the sum of N 1’s in the field, which we will
denote by ((N)). For 1 <n < Nand1<j < N, we have —N <n—j < N and hence a" 7 # 1 if
j # n. But in this case the second sum in (8.37) must be 0 as we now show. Let 8 = a7 # 1 and note
that 8~ = 1. Then the second sum S in (8.37) becomes

S=B+ 4+ Y =B+ B+ + BN

multiplying by 1 — 3 gives
1-p)S=p01-p")=0.
But 1 — 8 # 0 and hence S = 0 as claimed. Thus we have shown that (8.37) reduces to

B(a™") = ((N))by.
Thus, the inverse DFT is given by

by=——DB(a™™), n=12...,N. (8.38)

Making use of (8.36), we see that we can write (8.38) explicitly in terms of the components of B as

1 N

b,=——9Y Biat™ n=1,2... N 8.39
@) 2= (8:39)

which again may seem more familiar to the reader.

The point of this section is that the DFT can be used in any field. More precisely, if one can find an
element of (multiplicative) order N in a field F', then one can define a DFT of length N for that field. It
follows from the discussion in Section 8.11 that we can set up a DFT of length N for a finite field GF(q)
if and only if IV is a divisor of g — 1.

We make one final remark before leaving this section. Suppose we use (8.33) to define B; for all
integers i > 0, not just for 1 <i < N. In this case, we would have B;, y = b(a’t") = b(a?) = B; for all
i > 0, i.e., the frequency-domain sequence By, By, Ba, ... would be N-periodic (but its true period might
be a divisor of N). Similarly, if we use (8.38) to extend the definition of the time-domain sequence to all
n > 0, we would have b,y n = ﬁB(a’”*N) = ﬁB(a’”) = b,, and thus the extended time-domain
sequence by, b1, bs, ... would also be N-periodic. We will hereafter often find it convenient to assume

that we are dealing with these extended semi-infinite N-periodic time-domain and frequency-domain

sequences
b = [bo, b1, b2, . . ] (8.40)
and
B = [By, B1, Ba, .. ] (8.41)
defined from b and B by the relations
by, =bpin alln >0, (8.42)
Bi = Bi+N all ¢ Z 0. (843)
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Because of (8.42) and (8.43), it follows that we could let all our indices above run from 0 to N — 1
instead of from 1 to N with no other changes in any of our relations above in this section, and in fact

this is what is usually done in digital signal processing.

8.14 Reed-Solomon Codes and the DFT

From the parity-check matrix H of (8.31) that we used to define the RS(q,N,a, m,, d) code, one sees
that
bHT = [b(a™),b(a™ 1), ... bla™t972)]

where b(X) = by XNt 4+ by XV=2 ... 4+ by_1 X + by. From the definition (8.33) of the DFT, it follows
that
bHT = [B’mo’ B"Lo-‘rla DR B7rLo+d—2]~ (844)

Thus, an alternative definition of the RS(q,N,a, m,, d) code is as the set of time domain sequences b in

GF(q)" whose DFT vanishes in the band of frequencies from m, to m, + d — 2 inclusive.

8.15 Linear Feedback Shift Registers and Linear Complexity

A linear feedback shift register (LFSR) is a device, as shown in Fig. 8.3, composed of delay cells, constant
multipliers and adders. The LFSR is considered initially to be loaded with the digits sg,s1,...,S5-1
(where L is the length of the LFSR), which are elements of some specified field F. The multiplying
constants —cp, —ca, ..., —cp, are also elements of this same field F'. The LFSR, started at time instant

0, produces the semi-infinite output sequence
s = [so, 51, 82, . - -] (8.45)
of elements of F' according to the recursion
§j = —C18j_1 — Ca8j_o — - —crsj_,  j=LL+1,...
that we write more conveniently as
sj+ci18j-1+casjo+--+cpsj_pr =0 j=LL+1,.... (8.46)

We now seek a convenient algebraic description of this output sequence s.

We begin by identifying the sequence s with the formal power series

S(D) = sq+ 81D+ s3D* + -+, (8.47)

where our choice of D for the indeterminate is made partly to warn the reader that S(D) may not
be a polynomial (i.e., it might contain infinitely many non-zero coefficients) and partly because it is

convenient to think of D as the delay operator.

To describe the LFSR itself, we use first its connection polynomial that we define as

C(D)=1+¢D+cyD? +---+ ¢ DE. (8.48)
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Figure 8.3: A Linear Feedback Shift Register (LFSR)

Note that the degree of C'(D) is at most L, but can be smaller. Thus C(D) alone does not suffice to
describe the LFSR; we need also to specify the length explicitly. We will write (C'(D), L) to denote the
LFSR with connection polynomial C(D) and length L.

We now note that the recursion (8.46) specifies that there are no non-zero terms of degree L or greater
in the product of C(D) and S(D), i.e., that

C(D)S(D) = P(D) (8.49)
where P(D) is a polynomial of degree strictly less than L. Writing
P(D)=po+pD+--+p, D" (8.50)

and equating terms of degree i, i < L, on both sides of (8.49) gives the matrix equation

Do 1 0 () S0
P ¢ 10 %
Cr—2 . o0
| PL—1] -1 crL—2 -+ ¢ 1] [sp-1]
which shows that for every choice of P(D) there is a unique corresponding initial state [sg, S1,...,S5—1]

of the LFSR. We summarize our findings.

Description of LFSR Output Sequences: The LFSR (C(D), L) can produce the semi-infinite output

sequence s if and only if the power series S(D) can be written as

S(D) = —— (8.51)

where P(D) is a polynomial of degree strictly less than L.

The linear complexity of the semi-infinite sequence s, which we denote as L(s), is the smallest L
such that s can be produced by an LFSR of length L, and is oo if no such LFSR exists. By way of

convention, the all-zero sequence 0 = [0,0,0,...] is said to have linear complexity 0, i.e., L(0) = 0. It is
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also convenient to define linear complexity of finite sequences, say, of s = [sq, 51, .., 8,_1]. The linear
complexity of s(™ is defined as the smallest linear complexity of all semi-infinite sequences having s()
as a prefix. Equivalently, L(s(™) is the length of the shortest LFSR (C(D), L) that can produce s as
its first n output digits [where of course the initial state must be the first L digits of s(™)].

The following is an immediate consequence of our description (8.51) of LFSR output sequences and
our definition (8.48) of a connection polynomial C'(D) as a polynomial such that C(0) = 1.

Linear Complexity of Semi-Infinite Sequences: If the power series S(D) of a semi-infinite sequence

s can be written as
S(D) = ——

where P(D) and C(D) are relatively prime polynomials (i.e., they have no common factor of degree 1 or
greater) and C(0) = 1, then

L(s) = max{deg [C(D)]. 1 + deg [P(D)]}.

Moreover, C(D) is the connection polynomial of the unique LFSR of length L = L(s) that can

produce s.

In practice, one must deal of course only with finite sequences. Thus, the following result is of
considerable practical importance.
Linear Complexity of Finite Sequences: If L(s) = L > 0 and if s(™ denotes the first n digits of s,

then
Lis™)=L alln>2L. (8.52)

Moreover, the unique LESR of length L that can produce s is also the unique LFSR of length L that

can produce §(”) for every n > 2L.

Proof: Suppose that (Cy(D),L1) and (Cy(D), Ls), where L; < L and Ly < L, both produce s(™ for
some n > 2L. Equation (8.51) then determines polynomials P;(D) and P2(D), with degrees less than
Ly and Lo, respectively, such that

Pi(D)  P(D)

Ci(D)  Cy(D)

— D"A(D) (8.53)

where A(D) is some power series, as follows from the fact that the sequences produced by the two LFSR’s
have s(™) as a prefix and thus can differ at time n at the earliest. Multiplying by C (D) Co(D) in (8.53)
gives

Py(D) Cy(D) — Py(D) C1(D) = D"A(D) C1(D) Cs(D). (8.54)

The left side of (8.54) has degree less than L + Ly < 2L whereas the right side has no terms of degree
less than n. But n > 2L so that both sides must be 0 and hence
Pi(D) _ Py(D)
Ci(D)  Co(D)

It follows that both LFSR’s produce the same semi-infinite sequence. Thus, we have shown that all

LFSR’s of length L or less that produce §(”) produce the same semi-infinite sequence, which then must
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be the sequence s because we know that s is produced by some LFSR of length L. Thus, any LFSR of
length L or less that produces §(”) must be in fact the unique LFSR of length L that produces s, and
hence L(s™) = L. O

There is an efficient algorithm for finding (one of) the shortest LFSR(s) that produces a specified
sequence §(”) of length n. This LFSR synthesis algorithm (or Berlekamp-Massey algorithm as it is often
called) is given in flowchart form in Fig. 8.4. The interested reader may consult the Appendix of this
chapter for a proof that the algorithm does indeed solve the problem of finding (one of) the shortest
LFSR(s) that produces s(™).

8.16 Blahut’s Theorem — Linear Complexity and the DFT

We now show a very interesting connection between linear complexity and the discrete Fourier transform,

namely that Hamming weight in one domain equals linear complexity in the other.

Blahut’s Theorem: If B € FV isthe DFT of b € F'V and if B and b are the corresponding semi-infinite

sequences (8.40) and (8.41), then
L(B) = w(b) (8.55)

and
w(B) = L(b). (8.56)

Proof: If b = 0, the claim is trivial so we assume b # 0 and thus also B # 0. Making use of (8.35), we

can write the power series for B as

or

N 1
B(D)=>" =y (8.57)

Because a, which defines the DFT, has (multiplicative) order N, it follows that o= 1, a=2,... o=

are all distinct. Thus, the right side of (8.57) is a proper partial fraction with w(b) terms and hence

where P(D) and C(D) are relatively prime polynomials such that deg [P(D)] < deg [C'(D)] = w(b) and

N
coy= ][] @-aD). (8.58)
n=1 and b,,7#0
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Figure 8.4: LFSR Synthesis Algorithm (Berlekamp-Massey Algorithm) for finding (one of) the shortest

LFSR(s) that can generate the sequence sg, $1,...,SN—1.
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It follows from (8.58) that C(0) = 1 and thus that (C(D), L = w(b)) is the unique shortest LFSR that
produces B. In particular, we have shown that L(B)= w(b). The proof of (8.56) is entirely similar. O

8.17 Decoding the Reed-Solomon Codes

It is now a simple matter to formulate a decoding algorithm for this RS code that will correct all patterns
of t or fewer errors where 2t < d = dnin. Let b be the transmitted codeword and e the actual error
pattern so that

r = b+te (8.59)

is the received word. Taking the DFT gives
R, =B, +E; alli.
But B; =0 for i = my,,mo +1,...,my, +d — 2 so that
R, =FE; me <1< my+d—2. (8.60)

[The reader may notice here that [Ry,,, Rpm,+1, - - -, Bm,+d—2] is just the syndrome of r relative to the
parity-check matrix H of (8.31), i.e., computing the syndrome is just the operation of computing d — 1
terms of the DFT of r.] We see that we now know the first d — 1 terms of the semi-infinite sequence

/
E = [Emo7 E’I’I’La+17 ceey Emo+d727 Emoerfla Em0+da B ]

[where the “prime” on E’ reminds us that this is not quite the same as E whose first term is E,]. But
E is a periodic sequence and thus L(E') = L(E) since each of these semi-infinite periodic sequences
contains the other as a subsequence. Further Blahut’s Theorem tells us that L(E) = w(e) so that we
can now conclude that

L(E") = w(e).

From our results on the Linear Complexity of Finite Sequences, it follows that if
2w(e) <d—1 (8.61)

then we can find the shortest LFSR that produces E’ by applying the LFSR synthesis algorithm to the
known first d—1 terms of E’. We can then use this LFSR together with the known terms of E’ to produce
the N-tuple E’ which is just some cyclic shift of E. Knowing E, we can find e by the inverse DFT and
then recover the codeword b as r — e. If 2w(e) > d, however, this algorithm could give incorrect results;
we indicate this possiblity by placing “hats” on the computed quantities that are guaranteed to be correct
only when the actual error pattern has Hamming weight satisfying 2w(e) < d = dpin. We summarize
this efficient decoding algorithm.

Step 1: Compute E; for m, < i < m,+d— 2 by computing the DFT of the received word r over this
frequency band.

Step 2: Use the LFSR synthesis algorithm to find (one of) the shortest LFSR(s) (C(D), L) that
produces the finite sequence E,, , Em +1, ..., Em +d—2 . If 2L > d, stop and emit 7, i.e., announce a
detected error pattern.
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Step 3: Load the LFSR (C(D), L) with the last L digits of the sequence Ey,_, By 41, - - -y Em,+d—2 and

clock the LFSR N — (d — 1) times to produce E = [Em,, Emyt1s-- s Pmo+d—2, Emo+d_1, e Emo+1v—1]-
Step 4: Cyclically shift B/ appropriately (depending on the value m,) to obtain E = [Ey, Es, ..., Ex].
Step 5: Compute the inverse DFT & of E.

Step 6: Subtract & from r to obtain the decoding decision b for the transmitted codeword.
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Chapter 9

AN INTRODUCTION TO
CRYPTOGRAPHY

9.1 The Goals of Cryptography

The word “cryptography” evokes in the popular imagination images of spies furtively penning messages
in invisible ink, of banal phrases that hide within them some message of vital military or diplomatic
importance, of couriers carrying attaché cases handcuffed to their wrists and filled with secret keys, and
of mysterious people toiling in a Black Chamber to extract the message hidden deep in long sequences
of random-appearing numbers. Indeed, the history of cryptography spans several millenia and is replete
with real case histories whose drama equals that of the most imaginative espionage fiction. Only a few
decades ago, cryptography was still considered to the province of diplomats and generals. But the sudden
dawning of the Information Age in which we now live inevitably meant that cryptography would become
another standard tool of the communications engineer. Information can have enormous economic value or
can be of such an extremely sensitive nature that its unauthorized disclosure could be highly damaging to
some individual. Falsified information can wreak economic damage or can destroy an individual. When
such information is transmitted over easily accessible means of communications, prudence demands that

its confidentiality and its authenticity be assured. Cryptography can provide that assurance.

As its Greek roots that means “hidden writing” suggest, cryptography is concerned with the secrecy
of information; but it is equally concerned with the authenticity of information. The twin goals of
cryptography, secrecy and authenticity, are sometimes not so easy to distinguish. In fact, it is only recently
that cryptographers themselves have appreciated that these two goals are in fact quite independent.
Xuejia Lai has given perhaps the best rule for distinguishing between secrecy and authenticity. A
technique provides secrecy if it determines who can receive a message; it provides authenticity if it

determines who can have sent a message.
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9.2 Shannon’s Theory of Perfect Secrecy

In his 1949 paper, Communication Theory of Secrecy Systems, Claude Shannon provided the first truly
scientific treatement of secrecy. Shannon’s theory of secrecy is in fact a straightforward application of
the information theory that he had formulated in his celebrated 1948 paper, A Mathematical Theory of
Communication. The ingenuity of the 1949 paper lies not in the methods used therein but rathe