
Lecture Notes

Applied Digital Information Theory

II

James L. Massey

This script was used for a lecture hold by Prof. Dr. James L. Massey from 1981 until 1997 at the ETH
Zurich.

The copyright lies with the author. This copy is only for personal use. Any reproduction,
publication or further distribution requires the agreement of the author.

Contents

7 AN INTRODUCTION TO THE MATHEMATICS OF CODING AND CRYPTOG-
RAPHY 1

7.1 Introduction . 1

7.2 Euclid’s Division Theorem for the Integers . 1

7.3 Properties of Remainders in Z . 2

7.4 Greatest Common Divisors in Z . 3

7.5 Semigroups and Monoids . 12

7.6 Euler’s Function and the Chinese Remainder Theorem . 16

7.7 Groups . 19

7.8 Subgroups, Cosets and the Theorems of Lagrange, Fermat and Euler 23

7.9 Rings . 25

7.10 Fields . 27

7.11 Vector Spaces . 28

7.12 Formal Power Series and Polynomials . 31

8 RUDIMENTS OF ALGEBRAIC CODING THEORY 35

8.1 Introduction . 35

8.2 Block Codes, Dimensionless Rate and Encoders . 35

8.3 Hamming Weight and Distance . 36

8.4 Error Correction and Detection . 37

8.5 Linear Codes . 39

8.6 Weight and Distance Equivalence in Linear Codes . 40

8.7 Orthogonality in FN . 41

8.8 Parity-Check Matrices and Dual Codes . 43

8.9 Cosets and Syndromes . 46

8.10 Varshamov’s Bound . 47

8.11 The Multiplicative Group of GF (q) . 49

8.12 Reed-Solomon Codes . 50

8.13 The Discrete Fourier Transform . 52

8.14 Reed-Solomon Codes and the DFT . 54

8.15 Linear Feedback Shift Registers and Linear Complexity 54

8.16 Blahut’s Theorem – Linear Complexity and the DFT . 57

8.17 Decoding the Reed-Solomon Codes . 59

i

9 AN INTRODUCTION TO CRYPTOGRAPHY 61
9.1 The Goals of Cryptography . 61
9.2 Shannon’s Theory of Perfect Secrecy . 62
9.3 Kerckhoffs’ Hypothesis . 65
9.4 Imperfect Secrecy and Unicity Distance . 65
9.5 Simmons’ Theory of Authenticity . 68
9.6 Unconditional Security and Computational Security . 71
9.7 Public-key Cryptography . 72
9.8 One-Way Functions . 73
9.9 Discrete Exponentiation and the Diffie-Hellman-Pohlig (Conjectured) One-Way Function . 74
9.10 The Diffie-Hellman Public Key-Distribution System . 75
9.11 Trapdoor One-Way Functions, Public-Key Cryptosystems and Digital Signatures 75
9.12 The Rivest-Shamir-Adleman (RSA) (Conjectured) Trapdoor One-Way Function 76
9.13 Finding Large Primes . 79

Bibliography 83

ii

List of Figures

7.1 Flowchart of Euclid’s algorithm for computing the greatest common divisor g of the inte-
gers n1 and n2 with n2 > 0. 5

7.2 Flowchart of the extended Euclidean algorithm for computing g = gcd(n1, n2) together
with a pair of integers a and b such that g = an1 + bn2 for integers n1 and n2 with n2 > 0. 7

7.3 Flowchart of Stein’s algorithm for computing the greatest common divisor g of the non-
negative integers n1 and n2. 10

7.4 Flowchart of the extended Stein algorithm for computing g = gcd(n1, n2) together with
integers a and b such that g = an1 + bn2. 13

7.5 Example showing that the vector cross product does not obey the associative law. 14

8.1 An encoder for a q-ary block code of length N with dimensionless rate K/N 36

8.2 A syndrome decoder for a linear code with parity-check matrix H 47

8.3 A Linear Feedback Shift Register (LFSR) . 55

8.4 LFSR Synthesis Algorithm (Berlekamp-Massey Algorithm) for finding (one of) the shortest
LFSR(s) that can generate the sequence s0, s1, . . . , sN−1. 58

9.1 General model of a secret-key cryptosystem. 62

9.2 The binary Vernam cipher (or “one-time pad”). 65

9.3 The usual form of the key equivocation function for a secret-key cipher. 66

9.4 Model of an impersonation attack . 68

9.5 Shannon’s postulated work characteristic for a typical secret-key cipher (nu = unicity
distance; the dashed portion of the curve indicates that the value of the secret key is not
yet uniquely determined). 72

9.6 Flowchart of Miller’s Test. 81

iii

iv

Chapter 7

AN INTRODUCTION TO THE

MATHEMATICS OF CODING

AND CRYPTOGRAPHY

7.1 Introduction

Shannon’s demonstration in 1948 by means of “random coding” arguments that there exist codes that
can provide reliable communications over any noisy channel at any rate less than its capacity touched
off an immediate and extensive search for specific such codes that continues unabated today. Our
purpose in this chapter is to introduce the mathematics, a mixture of number theory and algebra, that
has proved most useful in the construction of good channel codes. We shall see later that this same
mathematics is equally useful in cryptography (or “secrecy coding”). Channel coding and secrecy coding
are closely related. The goal in channel coding is to transmit a message in such a form “that it cannot
be misunderstood by the intended receiver”; the goal in secrecy coding includes the additional proviso
“but that it cannot be understood by anyone else”.

“Coding” in its most general sense refers to any transformation of information from one form to
another. Information theory deals with three quite distinct forms of coding: source coding (or “data
compression”), channel coding, and secrecy coding. It has become accepted terminology, however, to
use the term “coding” with no further qualifier to mean “channel coding”, and we have followed this
practice in the title of this chapter.

We assume that the reader is familiar with some elementary properties of the integers, but otherwise
this chapter is self-contained.

7.2 Euclid’s Division Theorem for the Integers

Here and hereafter, we will write Z to denote the set {. . . ,−2,−1, 0, 1, 2, . . .} of integers. It is doubtful
whether there is any result in mathematics that is more important or more useful than the division
theorem for Z that was stated some 2’300 years ago by Euclid.

1

Euclid’s Division Theorem for the Integers: Given any integers n (the “dividend”) and d (the
“divisor”) with d 6= 0, there exist unique integers q (the “quotient”) and r (the “remainder”) such that

n = qd + r (7.1)

and
0 ≤ r < |d|. (7.2)

Proof: We show first uniqueness. Suppose that both (q, r) and (q′, r′) satisfy (7.1) and (7.2). Then
q′d+r′ = qd+r or, equivalently, (q′−q)d = r−r′. But (7.2) implies |r−r′| < |d|, whereas |(q′−q)d| ≥ |d|
if q′ 6= q. Hence we must have q′ = q and thus also r′ = r.

To show the existence of a pair (q, r) that satisfy (7.1) and (7.2), we suppose without loss of essential
generality that n ≥ 0 and d > 0 and consider the decreasing sequence n, n−d, n−2d, Let r = n−qd

be the last nonnegative term in this sequence so that r ≥ 0 but n− (q +1)d = r− d < 0 or, equivalently,
0 ≤ r < d. We see now that (7.1) and (7.2) are satisfied; indeed we have described a (very inefficient)
algorithm to find q and r. 2

Our primary interest hereafter will be in remainders. We will write Rd(n) to denote the remainder
when n is divided by the non-zero integer d. Because |d| = | − d| and because qd + r = (−q)(−d) + r, it
follows from Euclid’s theorem that

Rd(n) = R−d(n) (7.3)

for any non-zero integer d. One sees from (7.3) that, with no essential loss of generality, one could restrict
one’s attention to positive divisors. Later, we shall avail ourselves of this fact. For the present, we will
merely adopt the convention, whenever we write Rd(·), that d is a non-zero integer.

7.3 Properties of Remainders in Z

We begin our study of remainders with a very simple but useful fact.

Fundamental Property of Remainders in Z: For any integers n and i,

Rd(n + id) = Rd(n), (7.4)

i.e., adding any multiple of the divisor to the dividend does not alter the remainder.

Proof: Suppose q and r satisfy (7.1) and (7.2) so that r = Rd(n). Then n+ id = qd+r+ id = (q+ i)d+r

so that the new quotient is q + i but the remainder Rd(n + id) is still r. 2

With the aid of this fundamental property of remainders, we can now easily prove the following two
properties that we call “algebraic properties” because of the crucial role that they play in the algebraic
systems that we shall soon consider.

Algebraic Properties of Remainders in Z: For any integers n1 and n2,

Rd(n1 + n2) = Rd(Rd(n1) + Rd(n2)), (7.5)

i.e., the remainder of a sum is the remainder of the sum of the remainders, and

Rd(n1n2) = Rd(Rd(n1)Rd(n2)), (7.6)

2

i.e., the remainder of a product is the remainder of the product of the remainders.

Proof: Let q1 and r1 be the quotient and remainder, respectively, when n1 is divided by d. Similarly let
q2 and r2 be the quotient and remainder, respectively, when n2 is divided by d. Then (7.1) gives

n1 + n2 = q1d + r1 + q2d + r2

= (q1 + q2)d + (r1 + r2).

It follows now from the fundamental property (7.4) that

Rd(n1 + n2) = Rd(r1 + r2),

which is precisely the assertion of (7.5). Similarly,

n1n2 = (q1d + r1)(q2d + r2)

= (q1q2d + r1q2 + r2q1)d + r1r2.

The fundamental property (7.4) now gives

Rd(n1n2) = Rd(r1r2),

which is exactly the same as (7.6). 2

7.4 Greatest Common Divisors in Z

One says that the non-zero integer d divides n just in case that Rd(n) = 0 or, equivalently, if there is an
integer q such that n = qd. Note that n = 0 is divisible by every non-zero d, and note also that d = 1
divides every n. If n 6= 0, then d = |n| is the largest integer that divides n, but n = 0 has no largest
divisor.

If n1 and n2 are integers not both 0, then their greatest common divisor, which is denoted by
gcd(n1, n2), is the largest integer d that divides both n1 and n2. We adopt the convention, when-
ever we write gcd(n1, n2), that n1 and n2 are integers not both 0. From what we said above, we know
that gcd(n1, n2) must be at least 1, and can be at most min(|n1|, |n2|) if both n1 and n2 are non-zero.
We seek a simple way to find gcd(n1, n2). The following fact will be helpful.

Fundamental Property of Greatest Common Divisors in Z: For any integer i,

gcd(n1 + in2, n2) = gcd(n1, n2), (7.7)

i.e., adding a multiple of one integer to the other does not change their greatest common divisor.

Proof: We will show that every divisor of n1 and n2 is also a divisor of n1 + in2 and n2, and conversely;
hence the greatest common divisors of these two pairs of integers must coincide. Suppose first that d

divides n1 and n2, i.e., that n1 = q1d and n2 = q2d. Then n1 + in2 = q1d + iq2d = (q1 + iq2)d so that d

also divides n1 + in2 (and of course n2). Conversely, suppose that d divides n1 + in2 and n2, i.e., that
n1 + in2 = q3d and n2 = q2d. Then n1 = q3d − in2 = q3d − iq2d = (q3 − iq2)d so that d also divides n1

(and of course n2). 2

3

If n2 6= 0, then we can choose i in (7.7) as the negative of the quotient q when n1 is divided by d = n2,
which gives n1 + in2 = n1 − qd = Rd(n1). Thus, we have proved the following recursion, which is the
basis for a fast algorithm for computing gcd(n1, n2).

Euclid’s Recursion for the Greatest Common Divisor in Z: If n2 is not 0, then

gcd(n1, n2) = gcd(n2, Rn2(n1)). (7.8)

To complete an algorithm to obtain gcd(n1, n2) based on this recursion, we need only observe that

gcd(n, 0) = |n|. (7.9)

It is convenient to note that negative integers need not be considered when working with greatest
common divisors. Because d divides n if and only if d divides −n, it follows that

gcd(±n1,±n2) = gcd(n1, n2), (7.10)

by which we mean that any of the four choices for the pair of signs on the left gives the same result.

We have thus proved the validity of Euclid’s greatest common divisor algorithm, the flowchart of
which is given in Fig. 7.1, which computes gcd(n1, n2) by iterative use of (7.8) until Rn2(n1) = 0 when
(7.9) then applies. This algorithm, one of the oldest in mathematics, is nonetheless very efficient and
still often used today.

Example 7.4.1 Find gcd(132, 108). The following table shows the computation made with the algo-
rithm of Fig. 7.1.

n1 n2 r g

132 108 24 -
108 24 12 -
24 12 0 12

Thus, gcd(132, 108) = 12.

We come next to a non-obvious, but exceedingly important, property of the greatest common divisor,
namely that the greatest common divisor of two integers can always be written as an integer combination
of the same two integers.

Greatest Common Divisor Theorem for Z: For any integers n1 and n2, not both 0, there exist
integers a and b such that

gcd(n1, n2) = an1 + bn2. (7.11)

Remark: The integers a and b specified in this theorem are not unique. For instance, gcd(15, 10) = 5
and 5 = (1)(15)+(−1)(10) = (11)(15)+(−16)(10). [Note, however, that R10(1) = R10(11) = 1 and that
R15(−1) = R15(−16) = 14.]

Proof: We prove the theorem by showing that the “extended” Euclidean greatest common divisor algo-
rithm of Fig. 7.2 computes not only g = gcd(n1, n2) but also a pair of integers a and b such that (7.11)
is satisfied. (Because of (7.10), there is no loss of essential generality in assuming that n2 is positive, as
is done in Fig. 7.2.)

4

Start

?

(Input)
n1, n2

(n2 > 0 is assumed)

?

?

(Computation)
Compute the remainder r
when n1 is divided by n2.

?

r = 0?

?
No

-Yes
g <— n2

?

(Output)
g

.....................
..

.............

?

Stop

(Update)
n1 <— n2
n2 <— r

-

Figure 7.1: Flowchart of Euclid’s algorithm for computing the greatest common divisor g of the integers
n1 and n2 with n2 > 0.

5

We will write n1(i), n2(i), a1(i), b1(i), a2(i) and b2(i) to denote the values of the variables
n1, n2, a1, b1, a2 and b2, respectively, just after the i-th execution of the “update” box in Fig. 7.2; the
values for i = 0 are the initial values assigned to these variables. Thus, n1(0) = n1, n2(0) = n2, a1(0) =
1, b1(0) = 0, a2(0) = 0 and b2(0) = 1. We claim that the equations

n1(i) = a1(i)n1(0) + b1(i)n2(0) (7.12)

and
n2(i) = a2(i)n1(0) + b2(i)n2(0) (7.13)

are satisfied for all i ≥ 0 until the algorithm halts. If so, because the final value of n2 is gcd(n1(0), n2(0)),
the final value of a2 and b2 will be the desired pair of integers a and b satisfying (7.11).

A trivial check shows that (7.12) and (7.13) indeed hold for i = 0. We assume now that they hold
up to a general i and wish to show they hold also for i + 1. But n1(i + 1) = n2(i) so that the choices
a1(i+1) = a2(i) and b1(i+1) = b2(i) made by the algorithm guarantee that (7.12) holds with i increased
to i + 1. Letting q(i) and r(i) be the quotient and remainder, respectively, when n1(i) is divided by
n2(i), we have

n1(i) = q(i)n2(i) + r(i). (7.14)

But n2(i + 1) = r(i) and hence

n2(i + 1) = n1(i) − q(i)n2(i)

= [a1(i) − q(i)a2(i)]n1(0) + [b1(i) − q(i)b2(i)]n2(0),

where we have made use of (7.12) and (7.13). Thus, the choices a2(i + 1) = a1(i) − q(i)a2(i) and
b2(i + 1) = b1(i) − q(i)b2(i) made by the algorithm guarantee that (7.13) also holds with i increased to
i + 1. 2

Example 7.4.2 Find gcd(132, 108) together with integers a and b such that gcd(132, 108) = a(132) +
b(108). The following table shows the computation made with the algorithm of Fig. 7.2.

n1 n2 a1 b1 a2 b2 q r g a b

132 108 1 0 0 1 1 24 - - -
108 24 0 1 1 -1 4 12 - - -
24 12 1 -1 -4 5 2 0 12 -4 5

Thus, g = gcd(132, 108) = 12 = a(132) + b(108) = (−4)(132) + (5)(108).

Particularly for applications in cryptography, it is important to determine the amount of computation
required by the (extended) Euclidean algorithm. Because the main computation in the algorithm is the
required integer division, we will count only the number of divisions used. To determine the worst-case
computation, we define m(d) to be the minimum value of n1 such that the algorithm uses d divisions for
some n2 satisfying n1 > n2 > 0. The following values of m(d) and the corresponding values of n2 are
easily determined by inspection of the flowchart in Fig. 7.1 (or Fig. 7.2).

d n1 = m(d) n2

1 2 1
2 3 2
3 5 3

6

Start

?

?

(Input)
n1, n2

(n2 > 0 is assumed)

(Initialization)
a1 <— 1, b1 <— 0
a2 <— 0, b2 <— 1

?

?

(Computation)
Compute the quotient q

and the remainder r
when n1 is divided by n2.

?

r = 0?

?
No

-Yes g <— n2

a <— a2

b <— b2

?

(Output)
g, a, b

.....................
..

.............

?

Stop

(Update)
n1 <— n2
n2 <— r

t <— a1
a1 <— a2

a2 <— t − (q)(a2)

t <— b1

b1 <— b2

b2 <— t − (q)(b2)

-

Figure 7.2: Flowchart of the extended Euclidean algorithm for computing g = gcd(n1, n2) together with
a pair of integers a and b such that g = an1 + bn2 for integers n1 and n2 with n2 > 0.

7

Because n1(i + 1) = n2(i) and n1(i + 2) = n2(i + 1) = r(i), we see from (7.14) that

n1(i) = q(i)n1(i + 1) + n1(i + 2).

If n1(i) = m(d), then we must have n1(i+1) ≥ m(d−1) and n1(i+2) ≥ m(d−2) and hence [since we
will always have q(i) ≥ 1 when we begin with n1 > n2 > 0] we must have m(d) ≥ m(d − 1) + m(d − 2).
But in fact equality holds because equality will always give q(i) = 1. Thus, the worst-case computation
satisfies

m(d) = m(d − 1) + m(d − 2), (7.15)

which is just Fibonacci’s recursion, with the initial conditions

m(1) = 2, m(2) = 3. (7.16)

Solving this recursion gives

m(d) =

(
3
√

5 + 5
10

)(
1 +

√
5

2

)d

−
(

3
√

5 − 5
10

)(
1 −√

5
2

)d

. (7.17)

A simple check shows that the second term on the right of (7.17) has a magnitude at most .106 for
d ≥ 1. Thus, to a very good approximation,

m(d) ≈
(

3
√

5 + 5
10

)(
1 +

√
5

2

)d

or, equivalently,
log2(m(d)) ≈ .228 + .694d

or, again equivalently,
d ≈ 1.44 log2(m(d)) − .328.

We summarize these facts as follows.

Worst-Case Computation for the Euclidean Algorithm: When n1 > n2 > 0, the number d of
divisions used by the (extended) Euclidean algorithm to compute gcd(n1, n2) satisfies

d < 1.44 log2(n1), (7.18)

with near equality when n2 and n1 are consecutive Fibonacci numbers.

Example 7.4.3 Suppose that n1 is a number about 100 decimal digits long, i.e., n1 ≈ 10100 ≈ 2332.
Then (7.18) shows that

d < (1.44)(332) ≈ 478

divisions will be required to compute gcd(n1, n2) by Euclid’s algorithm when n1 > n2 > 0. In other
words, the required number of divisions is at most 44% greater than the length of n1 in binary digits,
which is the way that one should read inequality (7.18).

We have no real use for further properties of greatest common divisors, but it would be a shame not
to mention here that, after 23 centuries of computational supremacy, Euclid’s venerable algorithm was
dethroned in 1961 by an algorithm due to Stein. Stein’s approach, which is the essence of simplicity,
rests on the following facts:

Even/Odd Relationships for Greatest Common Divisors:

8

(i) If n1 and n2 are both even (and not both 0), then

gcd(n1, n2) = 2 gcd(n1/2, n2/2). (7.19)

(ii) If n1 is even and n2 is odd, then

gcd(n1, n2) = gcd(n1/2, n2). (7.20)

(iii) If n1 and n2 are both odd, then

gcd(n1, n2) = gcd((n1 − n2)/2, n2). (7.21)

Proof: The relationships (i) and (ii) are self-evident. To prove (iii), we suppose that n1 and n2 are both
odd. From the fundamental property (7.7), it follows that gcd(n1, n2) = gcd(n1 − n2, n2). But n1 − n2

is even and n2 is odd so that (ii) now implies (iii). 2

The three even/odd relationships immediately lead to Stein’s greatest common divisor algorithm, the
flowchart of which is given in Fig. 7.3. One merely removes as many common factors of 2, say c, as
possible from both n1 and n2 according to relationship (i). One then exploits (ii) until the new n1 and
n2 are both odd. One then applies (iii), returning again to (ii) if n1 − n2 6= 0.

Example 7.4.4 Find gcd(132, 108). The following table shows the computation made with the algo-
rithm of Fig. 7.3.

n1 n2 c g

132 108 0 -
66 54 1 -
33 27 2 -
3 ” ” -
27 3 ” -
12 ” ” -
6 ” ” -
3 ” ” -
0 ” ” 12

Note that only 3 subtractions (33 - 27, 27 - 3 and 3 - 3) were performed in computing g =
gcd(132, 108) = 12. Recall that computing gcd(132, 108) by Euclid’s algorithm in Example 7.4.1 re-
quired 3 divisions.

We now determine the worst-case computation for Stein’s algorithm. Note that a test for evenness
is just a test on the least significant bit of a number written in radix-two form, and that division of an
even number by 2 is just a right shift. Thus, the main computation in the algorithm is the required
integer subtraction of n2 from n1. We define µ(s) to be the minimum value of n1 + n2 such that Stein’s
algorithm uses s subtractions for integers n1 and n2 satisfying n1 ≥ n2 > 0. The following values of µ(s)
and the corresponding values of n1 and n2 are easily determined by inspection of the flowchart in Fig.
7.3.

9

Start

?

(Input)
n1, n2

(n1 ≥ 0, n2 ≥ 0, n1 and n2 not
both 0, are assumed)

?
c <— 0

?

?

n1 and n2 both even?

?

No

Yes - n1 <— n1/2
n2 <— n2/2
c <— c + 1

�

n2 even?

No

Yes

?

?

?

- n1 <—> n2

�

n1 even?

?

-

No

Yes
n1 <— n1/2

�

(Computation)
Substract n2 from n1

diff<— n1 − n2

?
diff < 0?

?

?

-

No

Yes n2 <— n1

diff <— −diff

�

n1 <— (diff)/2

?

n1 = 0? -Yes
g <— (2c)n2

-No

-

(Output)
g

.....................
..

.............

6

Stop

Figure 7.3: Flowchart of Stein’s algorithm for computing the greatest common divisor g of the nonneg-
ative integers n1 and n2.

10

s µ(s) n1 n2

1 2 1 1
2 4 3 1
3 8 5 3
4 16 11 5

After applying relationship (iii), one sees that the new values n′
2 = n2 and n′

1 = (n1 − n2)/2 satisfy

n′
1 + n′

2 = (n1 − n2)/2 + n2 = (n1 + n2)/2,

i.e., the sum of n1 and n2 is reduced by a factor of exactly two when a subtraction is performed. It
follows that

µ(s) = 2s (7.22)

for all s ≥ 1 or, equivalently, that log2(µ(s)) = s. Thus, if n1 > n2 > 0, at most log2(n1 + n2) <

log2(2n1) = log2(n1) + 1 subtractions are required in Stein’s algorithm.

Worst-Case Computation for Stein’s Algorithm: When n1 > n2 > 0, the number s of subtractions
used by Stein’s algorithm to compute gcd(n1, n2) satisfies

s < log2(n1) + 1, (7.23)

with near equality when n2 and n1 are successive integers of the form (2i+1 − (−1)i)/3.

Proof: We have already proved everything except the claim about near equality. If we define

ti =
2i+1 − (−1)i

3
, (7.24)

then we find that (ti− ti−1)/2 = ti−2 holds for all i ≥ 3 and, moreover, that ti + ti−1 = 2i. Thus, n1 = ts

and n2 = ts−1 are indeed the worst-case values of n1 and n2 corresponding to n1 + n2 = µ(s) = 2s. 2

Example 7.4.5 Suppose that n1 is a number about 100 decimal digits long, i.e., n1 ≈ 10100 ≈ 2332.
Then (7.23) shows that

s < 332 + 1 = 333

subtractions will be required to compute gcd(n1, n2) by Stein’s algorithm when n1 > n2 > 0.

Comparison of (7.18) and (7.23) shows that the (worst-case) number of subtractions required by
Stein’s algorithm is some 30% less than the (worst-case) number of divisions (a much more complex
operation!) required by Euclid’s algorithm. In fairness to Euclid, however, it must be remembered
that in the “worst case” for Euclid’s algorithm all quotients are 1 so that the divisions in fact are then
subtractions. Nonetheless, one sees that Stein’s algorithm is significantly faster than Euclid’s and would
always be preferred for machine computation. Euclid’s algorithm has a certain elegance and conceptual
simplicity that alone would justify its treatment here, but there is an even better reason for not entirely
abandoning Euclid. Euclid’s algorithm generalizes directly to polynomials, as we shall see later, whereas
Stein’s algorithm is limited to integers.

It should now hardly be surprising to the reader to hear that Stein’s greatest common divi-
sor algorithm for computing gcd(n1, n2) can be “extended” to find also integers a and b such that

11

gcd(n1, n2) = an1 +bn2. An appropriate extension is given in the flowchart of Fig. 7.4. The basic “trick”
is the same as that used to extend Euclid’s algorithm. In this case, one ensures that

n1(i) = a1(i)N1 + b1(i)N2 (7.25)

and
n2(i) = a2(i)N1 + b2(i)N2 (7.26)

are satisfied by the initialization and each subsequent updating, where N1 and N2 are “n1” and “n2”
after removal of as many common factors of 2 as possible and where, by choice, N2 is odd. [The “flag”
in the flowchart of Fig. 7.4 reflects this choice of N2 as odd.] The only non-obvious step in the updating
arises when n1(i) is even, and hence must be divided by 2, but a1(i) in (7.25) is odd and thus cannot be
divided by 2. This problem is resolved by rewriting (7.25) as

n1(i) = [a1(i) ± N2]N1 + [b1(i) ∓ N1]N2 (7.27)

where the choice of sign, which is optional, is made so as to keep a1 and b1 small in magnitude, which
is generally desired in an extended greatest common divisor algorithm. Because a1(i) ± N2 is even, the
division by 2 can now be performed.

7.5 Semigroups and Monoids

We now begin our treatment of various algebraic systems. In general, an algebraic system consists of one
or more sets and one or more operations on elements of these sets, together with the axioms that these
operations must satisfy. Very often we will consider familiar sets, such as Z, and familiar operations,
such as + (addition of integers), where we may already know many additional rules that the operations
satisfy. The main task of algebra, when considering a particular type of algebraic system, is to determine
those properties that can be proved to be consequences only of the axioms. In this way, one establishes
properties that hold for every algebraic system of this type regardless of whether or not, in a given
system of this type, the operations also satisfy further rules that are not consequences of the axioms.
Algebra leads not only to a great economy of thought, but it also greatly deepens one’s insight into
familiar algebraic systems.

The most elementary algebraic system is the semigroup.

A semigroup is an algebraic system 〈S, ∗〉, where S is a non-empty set and ∗ is an operation on pairs
of elements of S, such that

(A1) (axiom of closure) for every a and b in S, a ∗ b is also in S; and

(A2) (associative law) for every a, b and c in S, a ∗ (b ∗ c) = (a ∗ b) ∗ c.

The axiom of closure (A1) is sometimes only implicitly expressed in the definition of a semigroup by
saying that ∗ is a function ∗: S × S → S and then writing a ∗ b as the value of the function ∗ when the
arguments are a and b. But it is perhaps not wise to bury the axiom of closure in this way; closure is
always the axiom that lies at the heart of the definition of an algebraic system.

Example 7.5.1 The system 〈S, ∗〉 where S is the set of all binary strings of positive and finite length
and where ∗ denotes “string concatenation” (e.g., 10 ∗ 001 = 10001), is a semigroup.

12

Start

?

(Input)
n1, n2

(n1 ≥ 0, n2 ≥ 0, n1 and n2 not
both 0, are assumed)

?
c <— 0, flag <— 0

?

?

n1 and n2 both even?

?

Yes

n1 <— n1/2
n2 <— n2/2
c <— c + 1

6

�

No

n2 even?

No

Yes

?

?

?

-

�

(Initialize)
N1 <— n1, N2 <— n2

a1 <— 1, b1 <— 0
a2 <— 0, b2 <— 1

n1 <—> n2

flag <— 1

�

n1 even?

?

-

No

Yes
a1 even?

(Minor Update)
n1 <— n1/2
a1 <— a1/2
b1 <— b1/2-Yes

?

No

a1 < 0?
?

No

?

Yes

�

a1 <— a1 + N2

b1 <— b1 − N1

a1 <— a1 − N2

b1 <— b1 + N1

-�

�

(Computation)
Substract n2 from n1

diff<— n1 − n2

?
diff < 0?

?

?

-

No

Yes
n2 <— n1
a1 <—> a2

b1 <—> b2

diff <— −diff
�

(Major Update)
n1 <— diff

a1 <— a1 − a2

b1 <— b1 − b2

?

n1 = 0? -YesNo

-

flag = 1? -No

-Yes
a2 <—> b2

6

g <— (2c)n2

a <— a2

b <— b2

- (Output)
g, a, b

.....................
..

.............

6

Stop

Figure 7.4: Flowchart of the extended Stein algorithm for computing g = gcd(n1, n2) together with
integers a and b such that g = an1 + bn2.

13

Example 7.5.2 The system 〈S, ∗〉, where S is the set of all binary strings of length 3 is not a semigroup
because axiom (A1) fails. For instance, 101 and 011 are in S, but 101 ∗ 011 = 101011 is not in S.

Axiom (A2), the associative law, shows that parentheses are not needed to determine the meaning
of a ∗ b ∗ c; both possible interpretations give the same result. Most of the operations that we use in
engineering are associative – with one notable exception, the “vector cross product.”

Example 7.5.3 The system 〈S,×〉, where S is the set of all vectors in ordinary three-dimensional space
and × denotes the vector cross procuct (which is very useful in dynamics and in electromagnetic theory),
is not a semigroup because axiom (A2) fails. For example, if a,b and c are the vectors shown in Fig.
7.5, then (a × b) × c = 0 but a× (b× c) 6= 0.

c

b

a
x

y

z

Figure 7.5: Example showing that the vector cross product does not obey the associative law.

A semigroup is almost too elementary an algebraic system to allow one to deduce interesting prop-
erties. But the situation is much different if we add one more axiom.

A monoid is an algebraic system 〈M, ∗〉 such that 〈M, ∗〉 is a semigroup and

(A3) (existence of a neutral element) there is an element e of M such that, for every a in M , a ∗ e =
e ∗ a = a.

Example 7.5.4 The system 〈Z, ·〉, where · denotes ordinary integer multiplication, is a monoid whose
neutral element is e = 1.

The semigroup of Example 7.5.1 is not a monoid because axiom (A3) fails. [This can be remedied
by adding the “empty string” Λ of length 0 to S, in which case 〈S, ∗〉 becomes a monoid whose neutral
element is e = Λ.]

We now prove the most important property of monoids.

14

Uniqueness of the Neutral Element: The neutral element e of a monoid is unique.

Proof: Suppose that e and ẽ are both neutral elements for a monoid 〈M, ∗〉. Then

ẽ = ẽ ∗ e = e

where the first equality holds because e is a neutral element and the second equality holds because ẽ is
a neutral element. 2

An element c of a monoid 〈M, ∗〉 is said to be invertible if there is an element c′ in M such that
c ∗ c′ = c′ ∗ c = e. The element c′ is called an inverse of c.

Example 7.5.5 In the monoid 〈Z, ·〉, the only invertible elements are e = 1 (where we note that the
neutral element e of a monoid is always invertible) and −1. Both of these elements are their own inverses.

Uniqueness of Inverses: If c is an invertible element of the monoid 〈M, ∗〉, then its inverse c′ is unique.

Proof: Suppose that c′ and c̃ are both inverses of c. Then

c′ = c′ ∗ e = c′ ∗ (c ∗ c̃) = (c′ ∗ c) ∗ c̃ = e ∗ c̃ = c̃,

where the first equality holds because e is the neutral element, the second holds because c̃ is an inverse
of c, the third holds because of the associative law (A2), the fourth holds because c′ is an inverse of c,
and the fifth holds because e is the neutral element. 2

Here and hereafter we will write Zm to denote the set {0, 1, 2, . . . , m− 1} of nonnegative integers less
than m, where we shall always assume that m is at least 2. Thus, Zm = {0, 1, . . . , m−1} always contains
the integers 0 and 1, regardless of the particular choice of m. We now define multiplication for the set
Zm by the rule

a � b = Rm(a · b) (7.28)

where the multiplication on the right is ordinary multiplication of integers. We will call m the modulus
used for multiplication and we will call the operation � multiplication modulo m.

The algebraic system 〈Zm,�〉 is a monoid whose neutral element is e = 1.

Proof: Inequality (7.2) for remainders guarantees that, for every a and b in Zm, a� b = Rm(a · b) is also
in Zm and thus axiom (A1) is satisfied. For a, b and c in Zm, we have

(a � b) � c = Rm((a � b) · c)
= Rm(Rm(a · b) · c)
= Rm(Rm(a · b) · Rm(c))

= Rm((a · b) · c)
= Rm(a · (b · c))
= Rm(Rm(a) · Rm(b · c))
= Rm(a · Rm(b · c))
= Rm(a · (b � c))

= a � (b � c)

where the first and second equalities hold because of the definition of �, the third because c satisfies
0 ≤ c < m, the fourth because of the algebraic property (7.6) of remainders, the fifth because the

15

associative law holds for ordinary integer multiplication, the sixth again because of the algebraic property
(7.6) of remainders, the seventh because a satisfies 0 ≤ a < m, and the eighth and ninth because of the
definition (7.28) of �. Thus axiom (A2) holds in 〈Zm,�〉 so that 〈Zm,�〉 is a semigroup. But, for any
a in Zm, a� 1 = Rm(a · 1) = Rm(a) = a and similarly 1� a = a. Thus 1 is a neutral element and hence
〈Zm,�〉 is indeed a monoid as claimed. 2

We now answer the question as to which elements of the monoid 〈Zm,�〉 are invertible.

Invertible elements of 〈Zm,�〉: An element u in Zm is an invertible element of the monoid 〈Zm,�〉 if
and only if gcd(m, u) = 1 (where of course u is treated as an ordinary integer in computing the greatest
common divisor.)

Proof: Suppose that g = gcd(m, u) > 1. Then, for any b with 0 ≤ b < m, we have

b � u = Rm(b · u) = b · u − q · m

where q is the quotient when b · u is divided by m. But b · u is divisible by g and so also is q · m. Thus
b · u− q ·m is divisible by g and hence cannot be 1. Thus, b� u 6= 1 for all b in Zm, and hence u cannot
be an invertible element of the monoid 〈Zm,�〉.

Conversely, suppose that gcd(m, u) = 1. By the greatest common divisor theorem for Z, there exist
integers a and b such that 1 = a · m + b · u. Taking remainders on both sides of this equation gives

1 = Rm(a · m + b · u)

= Rm(b · u)

= Rm(Rm(b) · Rm(u))

= Rm(Rm(b) · u)

= Rm(b) � u

and an entirely similar argument shows that u�Rm(b) = 1. Thus u is indeed invertible and u′ = Rm(b)
is the inverse of u. 2

Our proof of the condition for invertibility has in fact shown us how to compute inverses in 〈Zm,�〉.
[Henceforth, because the operation � is a kind of “multiplication”, we will write the inverse of u as u−1

rather than merely as u′.]

Computing Multiplicative Inverses in Zm: To find the inverse u−1 of an invertible element of
〈Zm,�〉, use an extended greatest common divisor algorithm to find the integers a and b such that
1 = gcd(m, u) = a · m + b · u. Then u−1 = Rm(b).

7.6 Euler’s Function and the Chinese Remainder Theorem

Euler’s totient function (or simply Euler’s Function) ϕ(·) is the function defined on the positive integers
in the manner that

ϕ(n) = #{i : 0 ≤ i < n and gcd(n, i) = 1}. (7.29)

Note that ϕ(1) = 1 because gcd(1, 0) = 1 and note that n = 1 is the only positive integer for which
i = 0 contributes to the cardinality of the set on the right in (7.29). The following enumeration is an

16

immediate consequence of definition (7.29) and of the necessary and sufficient condition for an element
u of Zm to have a multiplicative inverse.

Count of Invertible Elements in 〈Zm,�〉: There are exactly ϕ(m) invertible elements in the monoid
〈Zm,�〉.
For any prime p, it follows immediately from the definition (7.29) that

ϕ(p) = p − 1. (7.30)

More generally, if p is a prime and e is a positive integer, then

ϕ(pe) =
(

1 − 1
p

)
· pe = (p − 1) · pe−1. (7.31)

To see this, note that the elements of Zpe are precisely the integers i that can be written as i = q ·p+r

where 0 ≤ r < p and 0 ≤ q < pe−1. Thus, gcd(i, pe) = 1 if and only if r 6= 0. But there are p−1 non-zero
values of r and there are pe−1 choices for q.

To determine ϕ(m) when m has more than one prime factor, it is convenient to introduce the Chinese
Remainder Theorem, for which we will later find many other uses.

Let m1, m2, . . . , mk be positive integers. Their least common multiple, denoted lcm(m1, m2, . . . , mk)
is the smallest positive integer divisible by each of these positive integers. If m1 and m2 are positive
integers, then lcm(m1, m2) gcd(m1, m2) = m1m2, but this simple relationship does not hold for more
than two positive integers.

Fundamental Property of Least Common Multiples: Each of the positive integers m1, m2, . . . , mk

divides an integer n if and only if lcm(m1, m2, . . . , mk) divides n.

Proof: If lcm(m1, m2, . . . , mk) divides n, i.e., if n = q · lcm(m1, m2, . . . , mk), then trivially mi also divides
n for i = 1, 2, . . . , k.

Conversely, suppose that mi divides n for i = 1, 2, . . . , k. By Euclid’s division theorem for Z, we can
write n as

n = q · lcm(m1, m2, . . . , mk) + r (7.32)

where
0 ≤ r < lcm(m1, m2, . . . , mk). (7.33)

But mi divides both n and lcm(m1, m2, . . . , mk) and thus (7.32) implies that mi divides r for i =
1, 2, . . . , k. Because (7.33) shows that r is nonnegative and less than lcm(m1, m2, . . . , mk), the conclusion
must be that r is 0, i.e., that lcm(m1, m2, . . . , mk) divides n. 2

Pairwise Relative Primeness and Least Common Multiples: If the positive integers
m1, m2, . . . , mk are pairwise relatively prime (i.e., if gcd(mi, mj) = 1 for 1 ≤ i < j ≤ k), then

lcm(m1, m2, . . . , mk) = m1 · m2 · . . . · mk. (7.34)

Proof: If pe, where p is a prime and e is a positive integer, is a term in the prime factorization of mi,
then this p cannot be a prime factor of mj for j 6= i because gcd(mi, mj) = 1. Hence pe must also be
a factor of lcm(m1, m2, . . . , mk). Thus, lcm(m1, m2, . . . , mk) cannot be smaller than the product on the
right of (7.34) and, since each mi divides this product, this product must be lcm(m1, m2, . . . , mk). 2

17

Henceforth, we shall assume that mi ≥ 2 for each i and we shall refer to the integers m1, m2, . . . , mk

as moduli.

Chinese Remainder Theorem: Suppose that m1, m2, . . . , mk are pairwise relatively prime moduli
and let m = m1 · m2 · . . . · mk. Then, for any choice of integers r1, r2, . . . , rk such that 0 ≤ ri < mi for
i = 1, 2, . . . , k, there is a unique n in Zm such that

Rmi
(n) = ri, i = 1, 2, . . . , k (7.35)

[where, of course, n is treated as an ordinary integer in computing the remainder on the left in (7.35)].

Proof: We first show that (7.35) can be satisfied for at most one n in Zm. For suppose that (7.35) is
satisfied for n and ñ, both in Zm, where n ≥ ñ when n and ñ are considered as ordinary integers. Then

Rmi
(n − ñ) = Rmi

(Rmi
(n) − Rmi

(ñ)) = Rmi
(ri − r̃i) = 0

for i = 1, 2, . . . , k, where for the second equality we used the algebraic properties of remainders. Thus
n − ñ is divisible by each of the moduli mi and hence (by the fundamental property of least com-
mon multiples) by lcm(m1, m2, . . . , mk). But the pairwise relative primeness of the moduli implies
lcm(m1, m2, . . . , mk) = m. Thus n − ñ (where 0 ≤ n − ñ < m by assumption) is divisible by m so that
n− ñ = 0 is the only possible conclusion. It follows that (7.35) is indeed satisfied by at most one n in Zm

or , equivalently, that each n in Zm has a unique corresponding list of remainders (r1, r2, . . . , rk) with
0 ≤ ri < mi. But there are m elements in Zm and only m1 · m2 · . . . · mk = m possible choices of lists
(r1, r2, . . . , rk) with 0 ≤ ri < mi. It follows that every such list must correspond to exactly one element
of Zm. 2

The remainders ri in (7.35) are often called the residues of n with respect to the moduli mi. When the
moduli m1, m2, . . . , mk are pairwise relatively prime, the Chinese Remainder Theorem (CRT) specifies a
one-to-one transformation between elements n of Zm (where m = m1 ·m2 ·. . .·mk) and lists (r1, r2, . . . , rk)
of residues. We shall refer to the list (r1, r2, . . . , rk) as the CRT-transform of n.

The following results are only a few illustrations of the often surprising utility of the Chinese Re-
mainder Theorem.

CRT characterization of Multiplication in 〈Zm,�〉: Suppose that the integers m1, m2, . . . , mk are
pairwise-relatively-prime moduli, that m = m1 ·m2 · . . . ·mk, and that n and ñ are elements of Zm with
CRT-transforms (r1, r2, . . . , rk) and (r̃1, r̃2, . . . , r̃k), respectively. Then the CRT-transform of the product
n� ñ in 〈Zm,�〉 is (r1 �1 r̃1, r2 �2 r̃2, . . . , rk �k r̃k), the componentwise product of the CRT-transforms
of n and ñ, where the product ri �i r̃i is a product in 〈Zmi

,�〉.
Proof:

Rmi
(n � ñ) = Rmi

(Rm(n · ñ))

= Rmi
(n · ñ − q · m) (for some integer q)

= Rmi
(n · ñ)

= Rmi
(Rmi

(n) · Rmi
(ñ))

= Rmi
(ri · r̃i)

= ri �i r̃i

where the first equality follows from the definition of multiplication in 〈Zm,�〉, the second from Euclid’s
division theorem for Z, the third from the fundamental property of remainders and the fact that m is a

18

multiple of mi, the fourth from the algebraic property (7.6) of remainders, the fifth from the definitions
of the residues ri and r̃i, and the sixth from the definition of multiplication in 〈Zmi

,�〉. 2

CRT Characterization of Invertible Elements of 〈Zm,�〉: Suppose that m1, m2, . . . , mk are pair-
wise relatively prime moduli, that n is an element of Zm where m = m1 · m2 · . . . · mk, and that
(r1, r2, . . . , rk) is the CRT-transform of n. Then n is an invertible element of 〈Zm,�〉 if and only if ri is
an invertible element of 〈Zmi

,�〉 for i = 1, 2, . . . , k.

Proof: We note first that the CRT-transform of 1 is just (1, 1, . . . , 1). Thus, by the CRT characterization
of multiplication in Zm, n is invertible in 〈Zm,�〉 if and only if there is a CRT-transform (r̃1, r̃2, . . . , r̃k)
such that ri �i r̃i = 1 in 〈Zmi

,�〉, for i = 1, 2, . . . , k. But such an (r̃1, r̃2, . . . , r̃k) exists if and only if ri

is invertible in 〈Zmi
,�〉 for i = 1, 2, . . . , k. 2

We can now easily evaluate Euler’s function in the general case.

Calculation of Euler’s Function: Suppose that p1, p2, . . . , pk are the distinct prime factors of an
integer m, m ≥ 2. Then

ϕ(m) =
(

1 − 1
p1

)
·
(

1 − 1
p2

)
· . . . ·

(
1 − 1

pk

)
· m. (7.36)

Proof: Let m = pe1
1 · pe2

2 · . . . · pek

k be the prime factorization of m and define mi = pei
i for i = 1, 2, . . . , k.

Then the moduli m1, m2, . . . , mk are pairwise relatively prime. The CRT-transform (r1, r2, . . . , rk) cor-
responds to an invertible element of 〈Zm,�〉 if and only if each ri is an invertible element of 〈Zmi

,�〉.
But, by 7.31, it follows that there are exactly(

1 − 1
p1

)
· pe1

1 ·
(

1 − 1
p2

)
· pe2

2 · . . . ·
(

1 − 1
pk

)
· pek

k =
(

1 − 1
p1

)
·
(

1 − 1
p2

)
· . . . ·

(
1 − 1

pk

)
· m

invertible elements of 〈Zm,�〉, and this number is ϕ(m). 2

7.7 Groups

The true richness of algebra first becomes apparent with the introduction of the next algebraic system,
the group.

A group is a monoid 〈G, ∗〉 such that

(A4) (existence of inverses) every element of G is invertible.

The order of a group 〈G, ∗〉 is the number of elements in G, #(G). A finite group is simply a group
whose order is finite.

Example 7.7.1 The monoid 〈Zm,�〉 is not a group for any m because the element 0 in Zm is not
invertible.

Example 7.7.2 Let G be the set of all 2×2 nonsingular matrices with entries in the real numbers R and
let ∗ denote matrix multiplication. Then 〈G, ∗〉 is an infinite group, i.e., a group of infinite order. That
axiom (A1) (closure) holds in 〈G, ∗〉 is a consequence of the fact that the determinant of the product of
two square matrices is always the product of their determinants; hence the product of two nonsingular

19

matrices (i.e., matrices with non-zero determinants) is another nonsingular matrix. The reader is invited
to check for himself that axioms (A2), (A3) and (A4) also hold in 〈G, ∗〉.

An abelian group (or commutative group) is a group 〈G, ∗〉 such that (A5) (commutative law) for
every a and b in G, a ∗ b = b ∗ a.

Example 7.7.3 The group 〈G, ∗〉 of example 7.7.2 is not abelian since the multiplication of 2×2 matrices
is not commutative. For instance, choosing

a =

[
1 1
0 1

]
and b =

[
1 0
1 1

]
,

we find that

a ∗ b =

[
2 1
1 1

]
6= b ∗ a =

[
1 1
1 2

]
.

We now define addition for the set Zm = {0, 1, . . . , m − 1} by the rule

a ⊕ b = Rm(a + b) (7.37)

where the addition on the right is ordinary addition of integers. We will call the operation ⊕ addition
modulo m.

The algebraic system 〈Zm,⊕〉 is an abelian group of order m whose neutral element is e = 0. The inverse
of the element a in this group, denoted 	a, is given by

	a =

0 if a = 0

m − a if a 6= 0.
(7.38)

Proof: The proof that 〈Zm,⊕〉 is a monoid with neutral element e = 0 is entirely analogous to the proof,
given in section 7.5, that 〈Zm,�〉 is a monoid with neutral element 1. From the definition (7.37) of ⊕, it
is easy to check that (7.38) indeed gives the inverse of any element a in Zm. Finally, (A5) holds because
a ⊕ b = Rm(a + b) = Rm(b + a) = b ⊕ a, where the second equality holds because addition of integers is
commutative. 2

This is perhaps the place to mention some conventions that are used in algebra. If the group operation
is called addition (and denoted by some symbol such as + or ⊕), then the neutral element is called zero
(and denoted by some symbol such as 0 or 0); the inverse of an element b is called minus b (and denoted
by some symbol such as −b or 	b). Subtraction is not a new operation, rather a − b (or a 	 b) is just a
shorthand way to write a + (−b) [or a ⊕ (b)]. The group operation is never called addition unless it is
commutative, i.e., unless axiom (A5) holds. If the group operation is called multiplication (and denoted
by some symbol such as · or � or ×), then the neutral element is called one, or the identity element
(and denoted by some symbol such as 1 or I). The inverse of an element b is called the reciprocal of b

(or simply “b inverse”) and is denoted by some symbol such as 1/b or b−1. Division in the group is not
a new operation; rather a/b is just a shorthand way to write a · (b−1) [or a · (1/b) or a � (b−1), etc.].
The group operation need not be commutative when it is called multiplication, as Examples 7.7.2 and
7.7.3 illustrate.

We have seen that 〈Zm,�〉 is not a group. However, the following result tells us how we can “extract”
a group from this monoid.

20

The Group of Invertible Elements of a Monoid: If 〈M, ∗〉 is a monoid and M∗ is the subset of M

consisting of all the invertible elements of the monoid, then 〈M∗, ∗〉 is a group.

Proof: The neutral element e of the monoid is always invertible (and is its own inverse) so that M∗ is
never empty. If a and b are any two elements of M∗ with inverses a′ and b′, respectively, then

(a ∗ b) ∗ (b′ ∗ a′) = a ∗ (b ∗ (b′ ∗ a′))

= a ∗ ((b ∗ b′) ∗ a′)

= a ∗ (e ∗ a′)

= a ∗ a′

= e,

where the first two equalities hold because of the associative law (A2), the third and fifth because b and
b′ are inverse elements as are a and a′, and the fourth because e is the neutral element. Similarly, one
finds (b′ ∗ a′) ∗ (a ∗ b) = e. Thus, a ∗ b is indeed invertible [and its inverse is b′ ∗ a′] so that axiom (A1)
(closure) holds in 〈M∗, ∗〉. The reader is invited to check that axioms (A2), (A3) and (A4) hold also in
〈M∗, ∗〉. 2

The following is an important special case of the above general result.

The Group of Invertible Elements of 〈Zm,�〉: The algebraic system 〈Z∗
m,�〉, where Z∗

m is the set
of invertible elements of the monoid 〈Zm,�〉, is an abelian group of order ϕ(m).

Proof: We showed in the previous section that there are ϕ(m) invertible elements in Zm, i.e., that
#(Z∗

m) = ϕ(m). That the group 〈Z∗
m,�〉 is abelian follows from the fact that a � b = Rm(a · b) =

Rm(b · a) = b � a. 2

What makes the group structure such a powerful one is the following, almost self-evident, property.

Unique Solvability in Groups: If 〈G, ∗〉 is a group and a and b are elements of G, then the equation
a ∗ x = b (as well as the equation x ∗ a = b) always has a unique solution in G for the unknown x.

Proof: Because a ∗ (a′ ∗ b) = (a ∗ a′) ∗ b = e ∗ b = b, we see that a′ ∗ b is indeed a solution in G for
x. Conversely, if c is any solution for x in G, then a ∗ c = b so that a′ ∗ (a ∗ c) = a′ ∗ b and hence
(a′ ∗ a) ∗ c = e ∗ c = c = a′ ∗ b; thus, a′ ∗ b is the only solution for x in G. 2

It is important to note that unique solvability does not hold in general in a monoid. For instance, in
the monoid 〈Zm,�〉, the equation 0�x = 0 has all m elements of Zm as a solution, whereas the equation
0 � x = 1 has no solutions whatsoever in Zm. Note that it is the unique solvability in a group 〈G, ∗〉
that allows one to deduce from a ∗ b = e that b = a′ (since a ∗ x = e has the unique solution a′) and that
allows one to deduce from a ∗ b = a that b = e (since a ∗ x = a has the unique solution e).

The order of an element a of a group 〈G, ∗〉, denoted ord(a), is the least positive integer n such that

a ∗ a ∗ a ∗ · · · ∗ a = e

where there are n occurrences of a on the left – provided such positive integers n exist; otherwise, the
order of a is undefined. Note that ord(e) = 1 so that every group has at least one element of finite order.
Note also that the neutral element is the only element of order 1.

Example 7.7.4 Let G be the set of all 2 × 2 nonsingular diagonal matrices with entries in the real
numbers R and let ∗ denote matrix multiplication. Then 〈G, ∗〉 is a group whose neutral element is the

21

identity matrix

I =

[
1 0
0 1

]
,

which has order 1. The matrix −I has order 2 since (−I) ∗ (−I) = I. The matrix

J =

[
1 0
0 −1

]

also has order 2 since J ∗ J = I, as also does the matrix −J . The order of all other matrices in this
infinite group is undefined. It is interesting to note that the equation x2 = I has four solutions for the
unknown x in the group G, namely the matrices I,−I, J and −J . In other words, the matrix I has
exactly four square roots.

Hereafter in our discussion of the order of elements of a group, we will think of the group operation ∗
as a kind of “multiplication” and hence will write a ∗ a = a2, a ∗ a ∗ a = a3, etc. . We will similarly write
the inverse of a as a−1 and also write a−1 ∗ a−1 = a−2, a−1 ∗ a−1 ∗ a−1 = a−3, etc. . This is justified
since, for instance,

a2 ∗ a−2 = (a ∗ a) ∗ (a−1 ∗ a−1)

= a ∗ (a ∗ a−1) ∗ a−1

= a ∗ a−1

= e.

We see that it is also consistent to write the neutral element e as a0. The reader is asked to remember,
however, that we are actually considering arbitrary groups so that in fact ∗ might be some form of
“addition”.

It is easy to see that every element of a finite group has a well-defined order. For suppose that a is in
a group 〈G, ∗〉 of order n. Then, for some integers i and j with 0 ≤ i < j ≤ n, it must hold that ai = aj

and hence that aj−i = e.

By the convention just described, if a is any element of the arbitrary “multiplicative” group 〈G, ∗〉,
then ai is well defined for every i in Z. Moreover, the usual rules of exponents hold, i.e.,

ai ∗ aj = ai+j (7.39)

and
(ai)j = ai·j . (7.40)

Fundamental Property of the Order of a Group Element: If a has order n in the “multiplicative”
group 〈G, ∗〉, then the n elements a0 = e, a1 = a, a2, . . . , an−1 are all distinct. Moreover, for every i in Z,

ai = aRn(i). (7.41)

Proof: Suppose that ai = aj where 0 ≤ i ≤ j < n. Then, multiplying both sides of this equation by
a−i gives e = aj−i where 0 ≤ j − i < n. By the definition of ord(a), it follows that j = i, and hence
that a0 = e, a1 = a, a2, . . . , an−1 are all distinct as claimed. Euclid’s division theorem states that every
integer i can be written as i = q · n + r, where r = Rn(i). Thus, ai = aq·n+r = aq·n ∗ ar = (an)q ∗ ar =

22

eq ∗ar = e∗ar = ar where the second equality follows from (7.39), the third from (7.40), the fourth from
the fact that n = ord(a), and the remaining equalities are obvious. But r = Rn(i), so we have proved
(7.41). 2

The simplest, but one of the most interesting, groups is the cyclic group, which is defined as follows.
The cyclic group of order n is a “multiplicative” group 〈G, ∗〉 that contains an element of order n so that
G = {a0 = e, a, a2, . . . , an−1}. Any element of order n in G is said to be a generator of the cyclic group.
Because

ai ∗ aj = ai+j = aRn(i+j) = ai⊕j

where ⊕ denotes addition modulo n [and where the first equality follows from (7.39), the second from
(7.41), and the third from the definition (7.37)], it follows that the cyclic group of order n is essentially
the same as the group 〈Zn,⊕〉, which is why one speaks of the cyclic group of order n. Note that the
cyclic group is always an abelian group. The main features of the cyclic group are summarized in the
following statement.

Properties of the Cyclic Group: If a is a generator of the cyclic group of order n, then the element
b = ai, where 0 ≤ i < n, has order n/ gcd(n, i). In particular, b is also a generator of the cyclic group of
order n if and only if gcd(n, i) = 1 so that the cyclic group of order n contains exactly ϕ(n) generators.

Proof: Because bk = aik and because aik = e if and only if n divides i · k, it follows that the order k

of b is the smallest positive integer k such that i · k is divisible by n (as well of course as by i), i.e.,
i · k = lcm(n, i). But then k = lcm(n, i)/i = n/ gcd(n, i), as was to be shown. 2

Example 7.7.5 Consider the group 〈Z∗
m,�〉 of invertible elements of the monoid 〈Zm,�〉. Because 7

is a prime, Z∗
7 = {1, 2, 3, 4, 5, 6}. Note that 31 = 3, 32 = 2, 33 = 6, 34 = 4, 35 = 5, 36 = 1. Hence

〈Z∗
7,�〉 is the cyclic group of order 6 and 3 is a generator of this cyclic group. This cyclic group has

ϕ(6) = ϕ(3 · 2) = 2 · 1 = 2 generators. The other generator is 35 = 5. because gcd(6, 2) = gcd(6, 4) = 2,
the elements 32 = 2 and 34 = 4 both have order 6/2 = 3. Because gcd(6, 3) = 3, the element 33 = 6 has
order 6/3 = 2. The element 30 = 1 has of course order 1.

Uniqueness of the Cyclic Group of Order n: The cyclic group of order n is essentially the group
〈Zn,⊕〉, i.e., if 〈G, ∗〉 is the cyclic group of order n then there is an invertible function f : G → Zn such
that f(α ∗ β) = f(α) ⊕ f(β).

7.8 Subgroups, Cosets and the Theorems of Lagrange, Fermat

and Euler

If 〈G, ∗〉 is a group and H is a subset of G such that 〈H, ∗〉 is also a group, then 〈H, ∗〉 is called a subgroup
of the group 〈G, ∗〉. The subsets H = {e} and H = G always and trivially give subgroups, and these
two trivial subgroups are always different unless G = {e}. The following simple, but important result,
should be self-evident and its proof is left to the reader.

Subgroups Generated by Elements of Finite Order: If 〈G, ∗〉 is a group and a is an element of G

with order n, then 〈H, ∗〉, where H = {a0 = e, a, a2, . . . , an−1}, is a subgroup of 〈G, ∗〉; moreover, this
subgroup is the cyclic group of order n generated by a, and hence is abelian regardless of whether or not
〈G, ∗〉 is abelian.

23

If 〈G, ∗〉 is a group, S is any subset of G, and g any element of G, then one writes g ∗ S to mean the
set {g ∗ s : s in S} and S ∗ g is similarly defined. Note that the associative law (A2) implies that

g1 ∗ (g2 ∗ S) = (g1 ∗ g2) ∗ S (7.42)

holds for all g1 and g2 in G.

If 〈H, ∗〉 is a subgroup of 〈G, ∗〉 and g is any element of G, then the set g ∗ H is called a right coset
of the group 〈G, ∗〉 relative to the subgroup 〈H, ∗〉. Similarly, H ∗ g is called a left coset of the group
〈G, ∗〉 relative to the subgroup 〈H, ∗〉. If 〈G, ∗〉 is abelian, then of course g ∗ H = H ∗ g, but in general
g ∗ H 6= H ∗ g. However, if h is an element of H, then

h ∗ H = H ∗ h = H, (7.43)

as follows easily from unique solvability in groups. Hereafter, for convenience, we will consider only right
cosets, but it should be clear that all results stated apply also to left cosets mutatis mutandis.

Fundamental Properties of Cosets: If 〈H, ∗〉 is a subgroup of 〈G, ∗〉 and g is any element of G, then

#(g ∗ H) = #(H),

i.e., all right cosets have the same cardinality as the subgroup to which they are relative. Moreover, if
g1 and g2 are any elements of G, then

either g1 ∗ H = g2 ∗ H or (g1 ∗ H) ∩ (g2 ∗ H) = ∅,

i.e., two right cosets are either identical or disjoint.

Proof: The mapping f(h) = g ∗ h is an invertible mapping (or bijection) from H to the coset g ∗ H, as
follows by unique solvability in groups. Thus, #(g∗H) = #(H). Suppose next that (g1∗H)∩(g2∗H) 6= ∅,
i.e., that these two right cosets are not disjoint. Then there exist h1 and h2 in H such that g1∗h1 = g2∗h2.
But then g2 = g1 ∗ h3, where h3 = h1 ∗ h−1

2 and hence g2 ∗ H = (g1 ∗ h3) ∗ H = g1 ∗ (h3 ∗ H) = g1 ∗ H

[where the second equality holds because of (7.42) and the third because of (7.43)]. Thus these two right
cosets are identical. 2

If 〈H, ∗〉 is a subgroup of 〈G, ∗〉, then the neutral element e of G must also be in H, and hence the
element g of G must lie in the coset g ∗ H. Thus, one can speak unambiguously of the right coset that
contains g.

We are now in position to prove one of the most beautiful and most important results in algebra.

Lagrange’s Theorem: If 〈H, ∗〉 is a subgroup of the finite group 〈G, ∗〉, then #(H) divides #(G), i.e.,
the order of a subgroup of a finite group always divides the order of the group.

Proof: Choose g1 = e and let C1 = g1 ∗H = H. If G \C1 is not empty (where \ denotes set subtraction,
i.e., A \ B is the set of those elements of A that are not also elements of B), choose g2 as any element
of G \ C1 and let C2 = g2 ∗ H. Continue in this manner by choosing gi+1 to be any element of
G\ (C1∪C2∪· · ·∪Ci) as long as this set is nonempty, and letting Ci+1 = gi+1 ∗H. When this procedure
terminates [which it must since G is finite], say after gq is chosen, the cosets C1, C2, . . . , Cq thus obtained
satisfy G = C1 ∪C2 ∪ · · · ∪Cq. But, by the fundamental properties of cosets, these q cosets are pairwise
disjoint and each contains exactly #(H) elements. Thus, it must be true that #(G) = q · #(H), i.e.,
that #(H) divides #(G). 2

24

Corollary to Lagrange’s Theorem: The order of every element of a finite group divides the order of
the group.

Proof: If a has order n in the group 〈G, ∗〉, then a generates the cyclic group of order n, which is a
subgroup of 〈G, ∗〉 . Thus n divides #(G) by Lagrange’s theorem. 2

Two special cases of this corollary are of great interest in cryptography.

Euler’s Theorem: If b is any invertible element in 〈Zm,�〉, then bϕ(m) = 1.

Proof: By hypothesis, b is an element in the abelian group 〈Zm,�〉, which has order ϕ(m). Hence the
order n of b divides ϕ(m), i.e., ϕ(m) = n · q. Thus,

bϕ(m) = bn·q = (bn)q = 1q = 1.

2

As we will later see, Euler’s Theorem is the foundation for the Rivest-Shamir-Adleman (RSA) public-
key cryptosystem, which is widely regarded as the best of the presently known public-key cryptosystems.

Fermat’s Theorem: If p is a prime and b is any non-zero element of Zp, then b(p−1) = 1.

Proof: This is just a special case of Euler’s Theorem since, for a prime p, ϕ(p) = p−1 and every non-zero
element of Zp is invertible. 2

Fermat’s Theorem is the foundation for primality testing. Suppose that m is any modulus and b is
any non-zero element of Zm. If we calculate bm−1 in 〈Zm,�〉 and find that the result is not 1, then
Fermat’s Theorem assures us that m is not a prime. Such reasoning will prove to be very useful when
we seek the large (about 100 decimal digits) randomly-chosen primes required for the RSA public-key
cryptosystem.

We have seen that Fermat’s Theorem is a special case of Euler’s Theorem, which in turn is a special
case of Lagrange’s Theorem. Why Fermat and Euler are nonetheless given credit will be apparent to
the reader when one considers the life spans of Fermat (1601-1665), Euler (1707-1783) and Lagrange
(1736-1813).

7.9 Rings

We now consider an algebraic system with two operations.

A ring is an algebraic system 〈R,⊕,�〉 such that

(i) 〈R,⊕〉 is an abelian group, whose neutral element is denoted 0;

(ii) 〈R,�〉 is a monoid whose neutral element, which is denoted by 1, is different from 0; and

(iii) (distributive laws) for every a, b and c in R,

a � (b ⊕ c) = (a � b) ⊕ (a � c) (7.44)

(b ⊕ c) � a = (b � a) ⊕ (c � a). (7.45)

25

A commutative ring is a ring 〈R,⊕,�〉 such that � is commutative, i.e., such that, for every a and b

in R, a� b = b� a. For a commutative ring, of course, only one of the two distributive laws is required,
since either one then implies the other.

The units of a ring are the invertible elements of the monoid 〈R,�〉. The set of units is denoted R∗

and we recall that 〈R∗,�〉 is a group.

Example 7.9.1 〈Z, +, ·〉, where + and · denote ordinary integer addition and multiplicaton, respectively,
is a commutative ring whose units are the elements 1 and -1, i.e., Z∗ = {−1, 1}. This ring is called simply
the ring of integers.

Example 7.9.2 〈Zm,⊕,�〉 , where ⊕ and � denote addition modulo m and multiplication modulo m,
respectively, is a commutative ring and is called the ring of integers modulo m. The set of units is
Z∗

m = {u : u is in Zm and gcd(m, u) = 1}.

We have already proved all the claims of this example except to prove that part (iii) (the distributive
laws) of the definition of a ring is satisfied. To prove this, suppose that a, b and c are in Zm, then

a � (b ⊕ c) = Rm(Rm(a) · Rm(b ⊕ c))

= Rm(Rm(a) · Rm(b + c))

= Rm(a · (b + c))

where the first and third equalities follow from the algebraic property (7.6) of remainders and the second
from the definition (7.37) of ⊕. Similarly,

(a � b) ⊕ (a � c) = Rm(Rm(a � b) + Rm(a � c))

= Rm(Rm(a · b) + Rm(a · c))
= Rm(a · b + a · c)
= Rm(a · (b + c))

where the first and third equalities follow from the algebraic property (7.5) of remainders, the second
from the definition of �, and the last from the fact that the distributive law holds in 〈Z, +, ·〉. Thus
a� (b⊕ c) = (a� b)⊕ (a� c). Because � is commutative, there is no need to prove the other distributive
law. 2

The ring of integers modulo m is by far the most important algebraic system used in contemporary
cryptography!

Many “standard” rules of algebraic manipulation are valid in all rings.

Multiplication by 0 and Rules of Signs: If 〈R,⊕,�〉 is a ring and if a and b are elements of R, then

a � 0 = 0 � a = 0 (7.46)

	(a � b) = (a) � b = a � (b) (7.47)

(a) � (b) = a � b. (7.48)

Proof: Because 0 = 0 ⊕ 0, the distributive law (7.44) gives a � 0 = (a � 0) ⊕ (a � 0). Unique solvability
in the group 〈R,⊕〉 thus implies a � 0 = 0, the proof that 0 � a = 0 is similar. Next, we note that

26

((a)� b)⊕ (a� b) = (a⊕ a)� b = 0� b = 0 where the first equality follows from the distributive law
(7.44). By unique solvability in the group 〈R,⊕〉, it follows that (a) � b = 	(a � b). The proof that
a � (b) = 	(a � b) is similar. Finally, we note that (7.47) implies

(a) � (b) = 	(a � (b)) = 	((a � b)) = a � b.

2

7.10 Fields

A field is an algebraic system 〈F, +, ·〉 such that 〈F, +, ·〉 is a commutative ring and every non-zero
element of the ring is a unit.

An alternative, but fully equivalent, definition (as the reader should have no difficulty verifying) of a
field is the following one.

A field is an algebraic system 〈F, +, ·〉 such that

(i) 〈F, +〉 is an abelian group (whose neutral element is denoted by 0);

(ii) 〈F \ {0}, ·〉 is an abelian group (whose neutral element is denoted by 1); and

(iii) for every a, b and c in F , the distributive law

a · (b + c) = (a · b) + (a · c) (7.49)

holds, and multiplication by 0 obeys the rule

a · 0 = 0 · a = 0. (7.50)

In this alternative definition of a field, it is necessary to define multiplication by 0 with the axiom
(7.50) because multiplication by 0 is not defined in part (ii). The first definition of a field does not
require this, as the fact that 〈F, ·〉 is a monoid means that multiplication by 0 is well defined.

The reader is certainly already acquainted with several fields, namely

(1) the field 〈Q, +, ·〉 of rational numbers;

(2) the field 〈R, +, ·〉 of real numbers; and

(3) the field 〈C, +, ·〉 of complex numbers.

If 〈E, +, ·〉 is a field and if F is a subset of E such that 〈F, +, ·〉 is a field, then 〈F, +, ·〉 is called a
subfield of 〈E, +, ·〉, and 〈E, +, ·〉 is called an extension field of 〈F, +, ·〉. We see that the rational field
is a subfield of the real field and that the complex field is an extension field of the real field. Of course
the rational field is also a subfield of the complex field, and the complex field is also an extension field
of the rational field.

The reason that we have used the “standard” signs for addition and multiplication in a field is to
stress the fact that all the standard rules (the associative, commutative and distributive laws) apply to

27

addition, subtraction, multiplication and division (by non-zero numbers). Thus, sets of linear equations
are solved the same way in any field; in particular, determinants and matrices are defined in the same
way and have the same properties (e.g., the determinant of the product of square matrices is the product
of the determinants) in any field. We assume that the reader is familiar with the elementary properties
of such determinants and matrices.

A field 〈F, +, ·〉 for which F is a finite set is called a finite field or a Galois field. The finite fields
are by far the most important algebraic systems used in contemporary coding theory! We already know
how to construct some finite fields.

Prime Field Theorem: The commutative ring 〈Zm,⊕,�〉 is a field if and only if m is a prime.

Proof: We saw in Section 7.5 that every non-zero element of the monoid 〈Zm,�〉 is invertible if and only
if m is a prime. 2

We will denote the finite field 〈Zp,⊕,�〉 where p is a prime by the symbol GF (p) to give due honor
to their discoverer, Evariste Galois (1811-1832). Galois, in his unfortunately short lifetime, managed to
find all the finite fields. We shall also write ⊕ and � simply by + and · (or simply by juxtaposition of
elements), respectively, in GF (p). The modern trend seems to be to denote GF (p) as Fp, but this is a
trend that admirers of Galois (such as this writer) believe should be resisted.

The characteristic of a field is the order of 1 in the additive group 〈F, +〉 of the field provided that
this order is defined, and is said to be 0 [beware, some writers say ∞] otherwise. The characteristic of
GF (p) is p. The characteristic of the rational, real and complex fields is 0 [or, if you prefer, ∞].

The characteristic of a field is either 0 [or, if you prefer, ∞] or a prime p.

Proof: Suppose the order of 1 in the additive group 〈F, +〉 is a composite integer m, i.e., m = m1 · m2

where m1 ≥ 2 and m2 ≥ 2. Writing i to denote the sum of i 1’s in the field 〈F, +, ·〉, we see that m1 and
m2 are non-zero elements of the field, but m1 ·m2 = 0, contradicting the fact that 〈F \ {0}, ·〉 is a group.

2

We will see later that there exists a finite field with q elements if and only if q is a power of a prime,
i.e., if and only if q = pm where p is a prime and m is a positive integer, and that this field is essentially
unique. We will denote this field by GF (q) or GF (pm). (We will also see that there are infinite fields
whose characteristic is a prime p.)

7.11 Vector Spaces

We now consider an algebraic system with two sets of elements and four operations.

A vector space is an algebraic system 〈V,+, ·, F, +, ·〉 such that

(i) 〈F, +, ·〉 is a field;

(ii) 〈V,+〉 is an abelian group; (whose neutral element we denote by 0); and

(iii) · is an operation on pairs consisting of an element of F and an element of V such that, for all c1, c2

28

in F and all v1,v2 in V,

(1) (closure) c1·v1 is in V,

(2) (scaling by 1) 1·v1 = v1,

(3) (associativity) c1·(c2·v1) = (c1 · c2)·v1, and

(4) (distributivity) (c1 + c2)·v1 = (c1·v1)+(c2·v1) (7.51)

c1·(v1+v2) = (c1·v1)+(c1·v2). (7.52)

It should be noticed that the “associativity” defined in (iii)(3) is essentially different from the axiom
(A2) of the associative law in that, for the former, the first operation on the left is different from the
first operation on the right. Similarly, the addition operation on the left in the “distributivity” equation
(7.51) is different from the addition operation on the right.

In a vector space 〈V,+, ·, F, +, ·〉, the elements of V are called vectors and the elements of F are called
scalars. Note that axiom (iii)(1) specifies that V must be closed under multiplication of its elements
by scalars. Axiom (iii)(2) may seem redundant to the reader, but in fact one can construct algebraic
systems that do not satisfy (iii)(2) but do satisfy all the other axioms of a vector space.

We now show that certain “natural” rules hold in all vector spaces.

Scaling by 0 and by the Negatives of Scalars: If c is any scalar and v is any vector in a vector
space 〈V,+, ·, F, +, ·〉, then

0·v = 0 (7.53)

and
(− c)·v = − (c·v). (7.54)

Proof: We note first that (0 + 0)·v = 0·v. By the distributivity relation (7.51), it follows that
(0·v)+(0·v) = 0·v. Unique solvability in the group 〈V,+〉 now implies that 0·v = 0.

We note next that c·v+(− c)·v = (c − c)·v = 0·v = 0 where the first equality follows from (7.51).
Unique solvability in the group 〈V,+〉 now implies that − (c·v) = (− c)·v. 2

Scaling the Zero Vector: For every scalar c in a vector space 〈V,+, ·, F, +, ·〉

c·0 = 0. (7.55)

Proof: We note first that c·(0+0) = c·0. By the distributivity relation (7.54), it follows that c·0+c·0 =
c·0. Unique solvability in the group 〈V,+〉 now implies that c·0 = 0. 2

Hereafter, we will often write c·v simply as cv, but the reader should always remember that the
implied multiplication in cv is the multiplication of a vector by a scalar, not the multiplication of two
scalars. Similarly, we will often write c1 · c2 simply as c1c2, but the reader should always remember that
the implied multiplication in c1c2 is multiplication of two scalars. From the context, it will always be
clear which type of multiplication is understood.

If n is a positive integer and if c1, c2, . . . , cn are scalars, then the vector

c1v1+c2v2+ · · ·+cnvn

is called a linear combination of the vectors v1,v2, . . . ,vn. Note that if c1 = c2 = · · · = cn = 0, then the
above linear combination is the vector 0 regardless of the values of v1,v2, . . . ,vn.

29

The vectors v1,v2, . . . ,vn are said to be linearly independent if the only linear combination of these
vectors that gives 0 is that with c1 = c2 = · · · = cn = 0; otherwise they are said to be linearly dependent.
Note that the zero vector 0 is by itself linearly dependent because 1·0 = 0; but every non-zero vector v is
by itself linearly independent because, for any non-zero scalar c, c·v = 0 would imply c−1·(c·v) = c−1·0
and thus (c−1 · c)·v = 1 · v = v = c−1·0 = 0 contradicting the fact that v 6= 0.

If 〈V,+, ·, F, +, ·〉 is a vector space and if U is a subset of V such that 〈U,+, ·, F, +, ·〉 is also a
vector space, then 〈U,+, ·, F, +, ·〉 is called a subspace of the vector space 〈V,+, ·, F, +, ·〉. Hereafter,
we will generally follow customary, but imprecise terminology and speak simply of the “vector space V”
or the “subspace U” and we will refer to the field 〈F, +, ·〉 as simply the “scalar field F”.

Test for a Subspace: A non-empty subset U of a vector space V is a subspace if and only if (1) for all
u1 and u2 in U,u1+u2 is also in U, and (2) for every c in the scalar field F and every u in U, c·u is also
in U [i.e., if and only if U is closed under vector addition and closed under multiplication by scalars.]

Proof: If U is a subspace of V, then (1) and (2) hold trivially. Suppose conversely that (1) and (2)
hold for a non-empty subset U of V. Let u be any vector in U. Then (2) implies that 0u = 0 and
(−1)u = −u are in U. Closure of + holds in U because of (1), and the associative law holds in U
because it holds in the larger set V. Morever, the operation + is commutative. It follows that axioms
(A1) - (A4) hold in 〈U,+〉, which is thus an abelian group. Axiom (iii) of a vector space holds for U
because of (2). The remaining parts of Axiom (iii) also hold in U because they hold in the larger set V.
Thus, U is indeed a vector space. 2

It follows from the subspace test that the subset U = {0} is trivially a subspace of every vector
space. If n is a positive integer and v1,v2, . . . ,vn are any vectors in a vector space V, then the set
{c1v1+c2v2+ · · ·+cnvn : c1, c2, . . . , cn are in the scalar field F} of all linear combinations of the vectors
v1,v2, . . . ,vn is a subspace of V, as follows easily from the subspace test. This subspace is called the
subspace spanned by v1,v2, . . . ,vn and will be denoted S(v1,v2, . . . ,vn).

If v1,v2, . . . ,vn are linearly independent and V = S(v1,v2, . . . ,vn), then v1,v2, . . . ,vn are called a
basis for V; moreover, every choice of n linearly independent vectors in V is then a basis for V. The
dimension of a vector space V, denoted dim(V), is the maximum number of linearly independent vectors
that can be chosen from V. It follows that dim({0}) = 0 and that the dimension of a finite-dimensional
vector space is equal to the number of vectors n in a basis.

We now consider the vector space of greatest importance in coding theory. For a field F , we write
FN to denote the set of N -tuples (or “row vectors”) [b1, b2, . . . , bN] whose components are elements of
F . We define addition of N -tuples and multiplication of N -tuples by a scalar (i.e., by an element of F)
by the rules

[b1, b2, . . . , bN]+[b′1, b
′
2, . . . , b

′
N] = [b1 + b′1, b2 + b′2, . . . , bN + b′N] (7.56)

and
c·[b1, b2, . . . , bN] = [cb1, cb2, . . . , cbN], (7.57)

respectively.

Vector Space of N-Tuples: For any positive integer N , the set FN is an N -dimensional vector space
with 0 = [0, 0, . . . , 0]. The vectors [1, 0, . . . , 0], [0, 1, . . . , 0], . . . , [0, 0, . . . , 1] containing a single non-zero
component equal to 1 are a basis (called the canonical basis) for FN .

Proof: The reader is invited to make the simple check that FN indeed satisfies the axioms of a vector space
and that 0 = [0, 0, . . . , 0]. Because c1[1, 0, . . . , 0]+c2[0, 1, . . . , 0]+ · · ·+cN [0, 0, . . . , 1] = [c1, c2, . . . , cN], it

30

follows that this linear combination is 0 = [0, 0, . . . , 0] if and only if c1 = c2 = · · · = cN = 0 so that these
N vectors are linearly independent, and it follows further that these N vectors span FN . Thus, they are
indeed a basis for FN . 2

If V is any vector space with 0 < n < ∞ (i.e., any non-trivial finite-dimensional vector space) with
the scalar field F and if v1,v2, . . . ,vn is any basis for V, then every vector v in V can be written uniquely
as a linear combination of the basis vectors,

v = c1v1+c2v2+ · · ·+cnvn (7.58)

as follows from the fact that if two such linear combinations were equal then their difference would be a
non-trivial linear combination equal to 0, which would contradict the linear independence of the vectors
in a basis. If we now associate the vector v in V with the n-tuple [c1, c2, . . . , cn], then we have created
an invertible mapping (or bijection) between V and Fn. Moreover, addition in V and multiplication of
vectors in V by scalars can equivalently be carried out on their “transforms” in Fn. It follows that every
n-dimensional vector space over the scalar field F is essentially the same as the vector space Fn (the
technical term in algebra is that V is isomorphic to Fn). We shall not be interested in isomorphisms
of vector spaces; the interesting applications of vector spaces in coding and cryptography rely on the
specific basis-dependent properties of the spaces, not on their “abstract equivalence” to Fn.

7.12 Formal Power Series and Polynomials

A formal power series over the field F in the indeterminate X is a “sum” A(X) of the form

A(X) = a0 + a1X + a2X
2 + · · ·

where the order of the terms in this “sum” is arbitrary and where the coefficient ai is in F for 0 ≤ i < ∞.
One often writes simply

A(X) =
∞∑

i=0

aiX
i.

The equality A(X) = B(X) of two such formal power series means just that the coefficient of Xi in
each is the same for all i, i.e., that ai = bi for 0 ≤ i < ∞. The sum C(X) = A(X)+ B(X) of two formal
power series is defined by ci = ai + bi for 0 ≤ i < ∞. The product of two formal series is defined by

ci =
i∑

j=0

ajbi−j , 0 ≤ i < ∞. (7.59)

Note that ci is a sum of finitely many elements of F and hence is a well-defined element of F for
every i, 0 ≤ i < ∞.

A polynomial over the field F in the indeterminate X is a formal power series in which only a finite
number (perhaps none) of the coefficients are non-zero. The polynomial with all-zero coefficients is
written simply as 0. The degree of a polynomial A(X), A(X) 6= 0, is the greatest i such that ai 6= 0;
the degree of the polynomial 0 is, by way of convention, taken to be −∞. The following property is an
immediate consequence of (7.59).

Degree Property of Polynomials: if A(X) and B(X) are polynomials over the field F , then

deg[A(X)B(X)] = deg[A(X)] + deg[B(X)]

31

where deg[·] denotes the degree of the enclosed polynomial.

One writes F [X] to denote the set of all polynomials over the field F in the indeterminate X. The
following theorem can be proved entirely analogously to Euclid’s Division Theorem for the Integers in
Section 7.2.

The Division Theorem for F[X]: Given polynomials N(X) (the “dividend”) and D(X) (the “divisor”)
with D(X) 6= 0, there exist unique polynomials Q(X) (the “quotient”) and R(X) (the “remainder”) such
that

N(X) = Q(X)D(X) + R(X) (7.60)

and
deg[R(X)] < deg[D(X)]. (7.61)

We write RD(X)[N(X)] to denote the remainder when N(X) is divided by D(X), assuming that
D(X) 6= 0 when we use this notation. Remainders in F [X] satisfy much the same properties as remainders
in Z, which were discussed in Section 7.2. The reader is invited to make simple proofs of the following
properties and theorems.

Fundamental Properties on Remainders in F[X]: For any polynomials N(X) and I(X),

RD(X)[N(X) + I(X)D(X)] = RD(X)[N(X)]. (7.62)

Algebraic Properties of Remainders in F[X]: For any polynomials A(X) and B(X),

RD(X)[A(X) + B(X)] = RD(X)[A(X)] + RD(X)[B(X)] (7.63)

and
RD(X)[A(X)B(X)] = RD(X)[RD(X)[A(X)]RD(X)[B(X)]]. (7.64)

Remark: Note that we need not take the remainder of the sum on the right in (7.63) because the degree
of this sum is already less than deg[D(X)] and hence this sum is its own remainder when divided by
D(X).

The leading coefficient of a non-zero polynomial A(X) is the coefficient of Xd in this polynomial
where d = deg[A(X)]. (The polynomial 0 has no leading coefficient.) A polynomial is said to be monic
if its leading coefficient is 1.

One says that the non-zero polynomial D(X) divides the polynomial N(X) just in case that
RD(X)[N(X)] = 0 or, equivalently, if there is a polynomial Q(X) such that N(X) = Q(X)D(X). Note
that the polynomial 0 is divisible by every monic polynomial and that the monic polynomial D(X) = 1
divides every polynomial. If N(X) 6= 0, then d = deg[N(X)] is the maximum degree of the monic
polynomials that divide N(X). (Of course, if N(X) = 0, there is no maximum such degree.)

If N1(X) and N2(X) are polynomials in F [X] and not both 0, then their greatest common divisor,
which is denoted by gcd[N1(X), N2(X)], is the monic polynomial of greatest degree that divides both
N1(X) and N2(X). We will tacitly assume that N1(X) and N2(X) are not both 0 whenever we write
gcd[N1(X), N2(X)].

Fundamental Property of Greatest Common Divisors in F[X]: For any polynomial I(X),

gcd[N1(X) + I(X)N2(X), N2(X)] = gcd[N1(X), N2(X)], (7.65)

32

i.e., adding a multiple of one polynomial to another does not change their greatest common divisor.

It is then a simple step to a “Euclidian” recursion.

Recursion of the Greatest Common Divisor in F[X]: If N2(X) 6= 0, then

gcd[N1(X), N2(X)] = gcd[N2(X), RN2(X)[N1(X)]]. (7.66)

From this recursion, one can easily design the “Euclidian” algorithm for computing
gcd[N1(X), N2(X)] and one can then “extend” this algorithm to an algorithm that also finds the poly-
nomials A(X) and B(X) in the following theorem.

Greatest Common Divisor Theorem for F[X]: For any polynomials N1(X) and N2(X), not both
0, there exist polynomials A(X) and B(X) such that

gcd[N1(X), N2(X)] = A(X)N1(X) + B(X)N2(X). (7.67)

Remark: The polynomials A(X) and B(X) specified in this theorem are not unique.

The reader might now suspect that one can make a ring of polynomials modulo a given polynomial
and that, under certain conditions on the modulus, the ring will be a field. This is indeed the case and
will be carried out in the exercises.

33

34

Chapter 8

RUDIMENTS OF ALGEBRAIC

CODING THEORY

8.1 Introduction

Shannon’s statement and proof of the Noisy Coding Theorem in 1948 immediately touched off a search for
specific “good codes” that continues unabated today. Before long, a theory of codes began to develop that
focused attention more and more on the algebraic structure of codes and less and less on the role of codes
in the Noisy Coding Theorem. Within two decades after Shannon’s work appeared, “algebraic coding
theory” had already established itself as a scientific field in its own right. The results and techniques of
this field soon began to find applications to many problems beyond channel coding; indeed, the relevance
of many algebraic coding techniques to actual channel coding problems is at best tenuous.

Our goal in this chapter is to introduce the main ideas of algebraic coding theory in such a way that
the interested reader will be well positioned to explore these ideas further in the rather vast literature
of this field.

8.2 Block Codes, Dimensionless Rate and Encoders

We will confine our attention in this chapter to codes in which the code digits take values in a finite field
GF (q), which is the most important case both theoretically and practically, although some of the results
that we derive are valid when the code digits take values in an arbitrary finite alphabet.

By a q-ary block code of length N , we will mean any non-empty subset of the vector space of N -
tuples (“row vectors”) GF (q)N . It is important to note that a block code, as defined in algebraic coding
theory, is a set (and not a list as was the case when we considered the Noisy Coding Theorem), i.e., the
codewords must all be different. Thus, the number M of codewords in a q-ary block code of length N

must satisfy

1 ≤ M ≤ qN . (8.1)

35

By the dimensionless rate of a q-ary block code of length N , we will mean the number

R =
logq M

N
, (8.2)

where M is the number of codewords [and not (log2 M)/N , which is the “dimensioned rate” in bits/use
that we considered for the Noisy Coding Theorem]. It follows from (8.1) and (8.2) that the dimensionless
rate R (which we will hereafter often refer to simply as the rate) of a q-ary block of length N satisfies

0 ≤ R ≤ 1. (8.3)

In most cases (and always for the case of linear codes), RN will be a positive integer that we will
denote by K and will call the number of information digits. [Note that the code rate is then R = K/N .]
The reason for this terminology is that we can consider the qK K-tuples in GF (q)K as the information
sequences that are mapped by an encoder onto the M = qNR = qK codewords. Thus, when RN is a
positive integer K, we will consider an encoder for a q-ary block code of length N and rate R to be an
invertible (or bijective) mapping from GF (q)K to the qK codewords in GF (q)N . This is illustrated in
Fig. 8.1, where a = [a1, a2, . . . , aK] is the information sequence in GF (q)K and b = [b1, b2, . . . , bN] is
the codeword in GF (q)N . It is important to note that the same code has many encoders. In fact, if we
order the qK codewords in some way, there are qK choices for the information sequence assigned to the
first codeword, qK − 1 choices then for the information sequence assigned to the second codeword, etc.
Thus, there are exactly (qK)! different encoders for a given q-ary block code of length N and rate R

when K = RN is a positive integer.

Encoder� �b = [b1, b2, . . . , bN] a = [a1, a2, . . . , aK]

Figure 8.1: An encoder for a q-ary block code of length N with dimensionless rate K/N .

8.3 Hamming Weight and Distance

The Hamming distance, d(x,y), between N -tuples x and y with components in an arbitrary non-empty
set is defined as the number of coordinates in which x and y differ. It is easy to see that Hamming
distance is a metric for the set of N -tuples over any non-empty set, i.e., that it satisfies the following
three axioms for any three N -tuples x,y and z with components in this set:

(M1) d(x,y) ≥ 0 with equality if and only if x = y (positive definiteness);

(M2) d(x,y) = d(y,x) (symmetry); and

(M3) d(x, z) + d(z,y) ≥ d(x,y) (triangle inequality).

That (M3) holds for Hamming distance follows from the fact that in any coordinate where x and y
differ it must be true that either x and z differ or that z and y differ (or both).

The Hamming weight, w(x), of a vector x in FN is defined to be the number of coordinates in which
x is non-zero. It follows that

d(x,y) = w(y −x), (8.4)

36

since x and y will differ in some coordinate if and only if y −x is non-zero in that coordinate. The
following three properties of Hamming weight are the direct analogs of the axioms (M1), (M2) and (M3)
of a metric. For any x and y in FN ,

(W1) w(x) ≥ 0 with equality if and only if x = 0;

(W2) w(x) = w(−x); and

(W3) w(x) + w(y) ≥ w(x+y).

The Hamming sphere of radius r [where r is an integer satisfying 0 ≤ r ≤ N] centered at some x in
GF (q)N is the set Sr(x) of all y in GF (q)N such that d(x,y) ≤ r. The volume of the sphere Sr(x) is the
number of N -tuples in Sr(x), #Sr(x). From the fact that there are

(
N
i

)
ways to choose the i coordinates

in which y differs from x and q − 1 ways to choose a component for y different from the component of
x in each of these i coordinates, it follows that the volume Vr of the Hamming sphere Sr(x) does not
depend on x and is given by

Vr =
r∑

i=0

(
N

i

)
(q − 1)i. (8.5)

8.4 Error Correction and Detection

Suppose that a codeword b in a q-ary block code B of length N and rate R is transmitted via some
“noisy channel” and that r is the received word. The usual assumption of algebraic coding theory, and
the one that we shall make here, is that r is also an N -tuple in GF (q)N . Then the error pattern, e, that
occurred in this transmission is defined as

e = r−b. (8.6)

Each component of r that is different from the corresponding component of b represents an “error”
in transmission. Thus, the number of errors that occur is defined as d(b, r) or, equivalently, as w(e).

By a decoder for a q-ary block code B of length N and rate R, we will mean a mapping f(·) from
GF (q)N to B. The interpretation is that f(r) is the decoder’s decision for the transmitted codeword
when r is the received word.

We will say that the code B can correct all the error patterns in a set E (which is a non-empty subset
of GF (q)N) if there is a decoding function f(·) for B such that

f(b+e) = b all b ∈ B, all e ∈ E. (8.7)

The interpretation of (8.7) is that the decoding decision made by the decoder f(·) will always be
corrected when a codeword of B is transmitted and an error pattern in E occurs.

The minimum distance of a q-ary block code of length N and rate R, denoted dmin, is defined when
R > 0 as the smallest Hamming distance between two distinct codewords; when R = 0 so that there is
only M = qNR = 1 codeword, one says by way of convention that dmin = ∞.

Error-Correcting Capability of a Code: A q-ary block code of length N and minimum distance
dmin can correct all patterns of t or fewer errors (where t is an integer 0 ≤ t ≤ N) if and only if

dmin > 2t.

37

Proof: Suppose the code cannot correct all patterns of t or fewer errors. Then, because (8.7) cannot
be satisfied for all codewords, there must be distinct codewords b and b′ together with error patterns
e and e′, both of Hamming weight t or less, such that b+e = b′+e′. Thus b−b′ = e′ − e and hence
d(b′,b) = w(b−b′) = w(e′ − e) ≤ w(e′) + w(−e) = w(e′) + w(e) ≤ 2t, where we have made use of
(W3) and (W2). It follows that dmin ≤ 2t.

Conversely, suppose dmin ≤ 2t. Then there exist distinct codewords b and b′ with d(b,b′) = dmin =
w(b−b′) ≤ 2t. But any vector b−b′ of Hamming weight at most 2t can be written as the difference
e′ − e of two vectors each of Hamming weight at most t [just assign the first non-zero component of
b−b′ to e′, the second to −e, the third to e′, etc.. Hence, b−b′ = e′ − e or b+e = b′+e′. It now
follows that (8.7) cannot be satisfied for both b and b′ when E is the set of all error patterns of weight
t or less. Thus, not all patterns of weight t or less can be corrected. 2

The previous result, although specifying the error-correcting capability of a code, does not quite tell
us how to build the corresponding decoder.

Correcting t or Fewer Errors: A decoder f(·) for a code with dmin > 2t will correct all patterns of t

or fewer errors if and only if f(r) is the codeword nearest to r in Hamming distance for all r such that
the nearest codeword b satisfies d(b, r) ≤ t.

Proof: If b is the transmitted codeword and r is the received word, then t or fewer errors have occurred
if and only if d(b, r) ≤ t, i.e., if and only if r lies in the Hamming sphere St(b) of radius t centered
at b. Thus, a decoder that corrects all patterns of t or fewer errors must decode every r in St(b) to
b. But if r is in St(b) and b′ is a codeword distinct from b, then the triangle inequality (M3) implies
d(b′, r) ≥ d(b,b′) − d(r,b) ≥ dmin − d(r,b) ≥ dmin − t > 2t − t = t, where we have used the fact that,
because the code corrects all patterns of t or fewer errors, dmin > 2t. Thus, every r in St(b) is strictly
closer to b in Hamming distance than to any other codeword. 2

Sometimes one is content to “detect” certain types of errors without trying to correct these errors.
This is often the case in various types of Automatic Repeat reQuest (ARQ) systems where the receiver
can request a retransmission of a codeword if it is unable to make a reliable decision. To describe this
situation, we define an incomplete decoder for a q-ary block code B of length N to be a mapping f(·)
from GF (q)N to B ∪{?}. The interpretation of f(r) = ? is that the incomplete decoder has detected an
error but is unwilling to try to correct this error. We will say that the code B can correct all the error
patterns in a non-empty set E1 and detect all the error patterns in a set E2, where E1 ∩E2 = ∅, if there
is an incomplete decoding function f for B such that

f(b+e) =

b all b ∈ B and all e ∈ E1

? all b ∈ B and all e ∈ E2.
(8.8)

If E1 = {0}, then one says that the code is being used purely for error detection.

Error-Detecting and Correcting Capability of a Code: A q-ary block code of length N and
minimum distance dmin can correct all patterns of t or fewer errors and detect all patterns of t + 1, t +
2, . . . , t + s errors, where 0 ≤ t < t + s ≤ N , if and only if

dmin > 2t + s.

Proof: Suppose that the code cannot correct and detect as specified. Then, because (8.8) cannot be
satisfied for all codewords, there must be distinct codewords b and b′, together with error patterns e

38

and e′ satisfying w(e) ≤ t and w(e′) ≤ t + s, such that b+e = b′+e′. Thus, d(b′,b) = w(b−b′) =
w(e′ − e) ≤ w(e′) + w(−e) = w(e′) + w(e) ≤ t + s + t = 2t + s. It follows that dmin ≤ 2t + s.

Conversely, suppose that dmin ≤ 2t+s. Then there exist distinct codewords b and b′ with d(b′,b) =
w(b−b′) = dmin ≤ 2t + s. But any vector b−b′ of Hamming weight at most 2t + s can be written as
the difference e′ − e of error patterns e and e′ with w(e) ≤ t and w(e′) ≤ t + s [just assign the first t

non-zero components of b′ −b to −e (or all components if w(b−b′) < t) and the remaining non-zero
components of b′ −b to e′]. Then

b+e = b′+e′

where b and b′ are distinct codewords, e is a pattern of t or fewer errors, and e′ is a pattern of t + s or
fewer errors. Thus (8.8) cannot be satisfied for both b and b′ since this would require f(b+e) to equal
b and at the same time f(b′+e′) = f(b+e) to equal either b′ or ?. It follows that not all patterns of t

or fewer errors can be corrected and all patterns of t + 1, t + 2, . . . , t + s errors detected. 2

The above results about error correction and error correction-and-detection should make it clear why
the minimum distance dmin of a code is of central importance in algebraic coding theory.

8.5 Linear Codes

We now define the class of codes that are of primary interest in algebraic coding theory. An (N, K) q-ary
linear code (or simply an (N, K) q-ary code) is a K-dimensional subspace of the vector space GF (q)N of
N tuples over GF (q).

If K > 0 and if g1,g2, . . . ,gK are a basis for the (N, K) q-ary linear code V, then every codeword b
can be written uniquely as a linear combination

b = a1g1+a2g2+ · · ·+akgK (8.9)

where a1, a2, . . . , ak are elements of the scalar field GF (q); conversely, every such linear combination is
a codeword. It follows that there are exactly qK codewords and hence that the code rate is

R =
K

N
. (8.10)

Note that (8.9) describes a linear encoding rule for encoding the information vector a =
[a1, a2, . . . , aK] in GF (q)K to the codeword b in GF (q)N . We can write (8.9) more compactly as

b = aG (8.11)

where G is the matrix whose rows are g1,g2, . . . ,gK . We shall call any matrix G whose rows are a basis
for the linear code V an encoding matrix for V [but we warn the reader that the terminology generator
matrix for V is more usual in the literature]. If V is an (N, K) q-ary linear code with K > 0, then an
encoding matrix for V is a K×N matrix whose K·N entries are in GF (q) and whose rows are K linearly
independent codewords.

An (N, K) q-ary linear code with K > 0 has many encoding matrices. Any of the qK − 1 non-zero
codewords can be chosen as the first row g1 of G. Any of the qK − q codewords not in S(g1) can be
chosen as the second row g2 of G. Any of the qK − q2 codewords not in S(g1,g2) can be chosen as the

39

third row g3 of G. Etc. It follows that an (N, K) q-ary linear code has exactly

K−1∏
i=0

(qK − qi)

distinct encoding matrices, i.e., distinct linear encoders. Although usually a vast number, the number
of linear encoders for V is nonetheless dwarfed by the number (qK)! of general encoders for V that we
determined in Section 8.2. The advantage of the linear encoders is that they are very easy to implement.

Example 8.5.1 The binary vectors [1, 0, 1], [0, 1, 1] are linearly independent and hence form a basis,
g1,g2, for a (3, 2) binary code. The corresponding encoding matrix is

G =

[
1 0 1
0 1 1

]
.

The linear encoding equation (8.11) gives the codeword b = [b1, b2, b3] corresponding to the informa-
tion vector a = [a1, a2] as

b1 = a1

b2 = a2

b3 = a1 + a2.

Note that this encoder can be implemented with a single GF (2) adder, i.e., with a single exclusive-
OR (XOR) gate. [The reader should reflect why (K − 1)(N) such XOR gates suffice to implement any
linear encoder for any (N, K) binary code with K > 0]. This (3, 2) binary code is the vector space
V = {[0, 0, 0], [1, 0, 1], [0, 1, 1], [1, 1, 0]}. One sees that dmin = 2. Thus this code could be used for “single
error detection”.

8.6 Weight and Distance Equivalence in Linear Codes

One of the principal advantages of linear codes is that for most purposes it suffices to consider the
Hamming weights of codewords where for general block codes one would have to consider Hamming
distance. In other words, in linear codes it suffices to look at the codewords one at a time rather than
in pairs.

The weight enumerator of an (N, K) q-ary linear code is the list (A0, A1, . . . , AN) where Ai is the
number of codewords of Hamming weight i. Note that the Ai must be nonnegative integers and that
A0 = 1 and A0 + A1 + · · · + AN = qK . The minimum weight of an (N, K) q-ary linear code, denoted
wmin, is the smallest Hamming weight of the non-zero codewords (and by way of convention is ∞ in case
K = 0 so that 0 is the only codeword.) Equivalently, wmin is the smallest positive integer i such that
Ai 6= 0.

Weight and Distance Equivalence in Linear Codes: For every integer i, 0 ≤ i ≤ N , and every
choice of a codeword b in an (N, K) q-ary linear code V, the number of codewords at Hamming distance
i from b is equal to the number Ai of codewords having Hamming weight i.

40

Proof: For every choice of a codeword b in V, we have

#{b′ : b′ ∈ V and d(b,b′) = i} = #{b′ : b′ ∈ V and w(b′ −b) = i}
= #{b′ −b : b′ ∈ V and w(b′ −b) = i}
= #{b′′ : b′′ ∈ V −b and w(b′′) = i}
= #{b′ : b′ ∈ V and w(b′) = i}
= Ai

where we have used the fact that, because b is a codeword, i.e., a member of the additive group 〈V,+〉,
as is also −b, the coset V −b coincides with V. 2

As an immediate corollary of this equivalence, we have the following very important property of linear
codes.

Equality of dmin and wmin: In an (N, K) q-ary linear code, dmin = wmin.

8.7 Orthogonality in FN

In this section, we consider certain general properties of FN for an arbitrary field F that we will apply
in the next section to linear codes.

Two vectors u = [u1, u2, . . . , uN] and v = [v1, v2, . . . , vN] in FN will be called orthogonal if their “dot
product” vanishes, i.e., if u • v = u1v1 + u2v2 + · · · + uNvN = 0. Note that because we always consider
vectors in FN to be “row vectors” (i.e., 1 × N matrices), we can write the dot product conveniently
as u • v = uvT , where the superscript T denotes transpose. Thus, u and v are orthogonal just when
uvT = 0.

Example 8.7.1 Taking F = GF (2) and v = [1, 1], we find that vvT = 1 + 1 = 0, i.e., the non-zero
vector v is orthogonal to itself. In fact, if F = GF (2), any vector v of even Hamming weight is orthogonal
to itself. [This orthogonality of a non-zero vector to itself can never happen when F is the real field R.
Why not?]

If V is a subspace of FN , then one writes V⊥ to denote the set of vectors that are orthogonal to
every vector in V, i.e.,

V⊥ = {v′ : v′ ∈ FN and v′vT = 0 for all v ∈ V}.

If v′vT = 0 then (cv′)vT = c(v′vT) = 0 holds for all c ∈ F . Similarly, if v1vT = v2vT = 0, then
(v1+v2)vT = 0. It follows from the test for a subspace that V⊥ is also a subspace of FN . We will call
V⊥ the orthogonal subspace of V in FN .

If A is an r ×N matrix with entries in F , then by the row space of A, denoted R(A), one means the
subspace of FN spanned by the rows of A. The dimension of the subspace R(A) is of course at most r,
the number of rows of A, with equality if and only if the rows of A are linearly independent vectors in
FN .

Matrix Characterization of Orthogonal Subspaces: If V is a subspace of FN and if A is a matrix
with entries in F such that V = R(A), then a vector v′ in FN lies in V⊥ if and only if v′AT = 0.

41

Proof: Let v1,v2, . . . ,vr be the rows of A and note that v′AT = v′[vT
1 · · ·vT

r] = [v′vT
1 , . . . ,v′vT

r].
Suppose v′ lies in V⊥, then v′ is orthogonal to each row of A so that certainly v′AT = 0.

Conversely, suppose v′AT = 0. Then v′vT
i = 0 for i = 1, 2, . . . , r. But any vector v in V = R(A)

can be written as v = c1v1+c2v2+ · · ·+crvr. Hence v′vT = v′(c1vT
1 +c2vT

2 + · · ·+crvT
r) = c1v′vT

1 +
c2v′vT

2 + · · · + crv′vT
r = 0, so that v′ is indeed orthogonal to every vector in V. 2

Fundamental Properties of Orthogonal Subspaces: If V is a K-dimensional subspace of FN and
V⊥ is its orthogonal subspace, then

dim(V⊥) = N − K

and

(V⊥)⊥ = V.

Proof: Because FN = {0}⊥ and {0} = (FN)⊥, the claim is trivially true if K = 0 or K = N . Suppose
then that 1 ≤ K < N . Let G be a K × N matrix whose rows v1,v2, . . . ,vK are a basis for V. Let
vK+1,vK+2, . . . ,vN be any vectors in FN such that v1,v2, . . . ,vN are a basis for FN . [It suffices to pick
vi to be any vector in FN \S(v1,v2, . . . ,vi−1) for i = K + 1, K + 2, . . . , N .] Let G̃ be the (N −K)×N

matrix whose rows are vK+1,vK+2, . . . ,vN . Then

M =

[
G

G̃

]
(8.12)

is an N × N matrix with linearly independent rows, i.e., an invertible matrix. Thus, there is a unique
inverse matrix

M−1 =
[
H̃T HT

]
(8.13)

where H̃T denotes the first K columns of M−1. Because

M M−1 =

[
GH̃T GHT

G̃H̃T G̃HT

]
= IN =

[
IK 0
0 IN−K

]

where In denotes the n × n identity matrix, it follows that

GH̃T = IK (8.14)

GHT = 0 (8.15)

G̃H̃T = 0 (8.16)

G̃HT = IN−K . (8.17)

Because the rows of M are a basis for FN , every v ∈ FN can be written uniquely as v = [a, ã] M ,
i.e., as

v = aG+ã G̃.

But v is in R(G) precisely when v can be written as aG for some a, i.e., as aG+0 G̃. Thus, it follows
from the uniqueness of a and ã that v ∈ V = R(G) if and only if ã = 0. But

vHT = aGHT +ã G̃HT = ã

42

where we have made use of (8.15) and (8.17). Thus, by the matrix characterization of orthogonal
subspaces, v ∈ R(H)⊥ if and only if ã = 0. Thus, we have proved that

R(G) = R(H)⊥. (8.18)

Because M−1 is invertible, its columns are linearly independent; equivalently, the rows of the matrix

(M−1)T =

[
H̃

H

]

are linearly independent. Thus, every v ∈ FN can be written uniquely as

v = c̃ H̃+cH.

It follows from the uniqueness of c and c̃ that v ∈ R(H) if and only if c̃ = 0. But for all v ∈ FN ,

v GT = c̃ H̃GT +cHGT

= c̃(GH̃T)T +c(GHT)T

= c̃

where we have made use of (8.14) and (8.16). Thus, by the matrix characterization of orthogonal
subspaces, v ∈ R(G)⊥ if and only if c̃ = 0. Hence, we have proved that

R(G)⊥ = R(H). (8.19)

Recalling that V = R(G) and that the N −K rows of H are linearly independent, it follows from (8.19)
that dim(V⊥) = dim(R(H)) = N − K. From (8.18), it follows further that V = (V⊥)⊥. 2

8.8 Parity-Check Matrices and Dual Codes

A parity-check matrix for an (N, K) q-ary linear code V is any matrix H with elements in GF (q) such that
a vector v in GF (q)N is a codeword (i.e., v ∈ V) just when v HT = 0. By the matrix characterization
of orthogonal subspaces, it follows that H is a parity-check matrix for V if and only if V = R(H)⊥,
i.e., if and only if the code V is the orthogonal subspace of the row space of H. By the Fundamental
Properties of Orthogonal Subspaces, it follows further that R(H) = V⊥ and that dim(V⊥) = N − K.
The codes V and V⊥ are called dual codes.

A parity-check matrix H for the code V will be called reduced if its rows form a basis for V⊥, i.e.,
if this parity-check matrix is an (N − K) × N matrix. A reduced parity-check matrix for the code V is
an encoding matrix for the dual code V⊥, and conversely. Our proof of the Fundamental Properties of
Orthogonal Subspaces actually shows how to construct a reduced parity-check matrix.

Construction of a Reduced Parity-Check Matrix: A reduced parity-check matrix H for an
(N, K) q-ary linear code with 1 ≤ K < N having an encoding matrix G (whose rows we denote here by
v1,v2, . . . ,vK) can be constructed as follows:

(1) Choose vi as any vector in GF (q)N \ S(v1,v2, . . . ,vi−1) for i = K + 1, K + 2, . . . , N .

(2) Form the N × N matrix M whose rows are v1,v2, . . . ,vN . Then compute the inverse matrix M−1.

43

(3) Take HT as the last N − K columns of the matrix M−1.

Example 8.8.1 Consider the (3, 2) binary linear code of Example 8.5.1. The encoding matrix G given
there has rows v1 = [1, 0, 1] and v2 = [0, 1, 1]. Choosing v3 = [0, 0, 1], we obtain the upper triangular
matrix

M =

1 0 1
0 1 1
0 0 1

whose inverse is itself, i.e.,

M−1 =

1 0 1
0 1 1
0 0 1

 .

Taking HT as the last column of M−1 gives

H = [1, 1, 1].

Writing b = [b1, b2, b3] we see that b is a codeword, i.e., bHT = 0, if and only if

b1 + b2 + b3 = 0.

In general, each row of a parity-check matrix H gives the coefficients in a linear combination of digits
that must vanish for codewords, i.e., a “parity check” that must be satisfied. These parity checks are all
linearly independent if and only if H is a reduced parity-check matrix.

Let cT
1 , cT

2 , . . . , cT
N be the columns of H, i.e., H = [cT

1 , cT
2 , . . . , cT

N]. Then

bHT = b

c1

c2

...
cN

 = b1c1+b2c2+ · · ·+bNcN .

Because bHT = 0 if b is a non-zero codeword, it follows that a codeword b of weight w determines
a vanishing linear combination with all coefficients non-zero of w columns of H (rows of HT), and
conversely. It follows that the minimum weight wmin of the code equals the smallest such n, and hence
so also does dmin. Thus, we have proved the following useful result.

Determination of Minimum Distance from a Parity-Check Matrix: If H is any parity-check
matrix for an (N, K) q-ary linear code with 1 ≤ K < N , then the minimum distance dmin of this code
equals the smallest positive integer n such that there are n columns of H that are linearly dependent.

Example 8.8.2 Consider the parity-check matrix

H = [1, 1, 1]

found in Example 8.8.1 for the (3, 2) binary linear code of Example 8.5.1. No single column of H is
linearly dependent (i.e., no column of H is the all-zero column). However, there is a pair of linearly
dependent columns (and, in fact, every pair of columns of H is linearly dependent for this special code).
Thus, dmin = 2.

44

An (N, K) q-ary linear code is called systematic if it has an encoding matrix of the form G = [IK P]
where P is some K × (N − K) matrix; if it exists, such an encoding matrix is easily seen to be unique
and is called the systematic encoding matrix. If the systematic encoding matrix is used for encoding,
then the information vector a gives the codeword

b = a[IK P]

= [a IK , aP]

= [a, aP]

in which a appears unchanged as the first K digits. This, in fact, is why the encoding is called “system-
atic”. Finding a parity-check matrix is especially easy when the code is systematic and one knows the
systematic encoding matrix.

Parity-Check Matrices for Systematic Codes: If V is a systematic (N, K) q-ary linear code with
1 ≤ K ≤ N and if G = [IK P] is its systematic encoding matrix, then H = [−PT IN−K] is a reduced
parity-check matrix for V.

Proof: We may choose the matrix M in our general construction of reduced parity-check matrices as the
upper triangular matrix

M =

[
IK P

0 IN−K

]
.

The inverse matrix is the upper triangular matrix

M−1 =

[
IK −P

0 IN−K

]

as the reader can directly verify by multiplying M by M−1. The last N − K columns of M−1 give HT ,
the transpose of the desired reduced parity-check matrix. Thus, H = [−PT IN−K] as claimed. 2

Suppose V is any (N, K) q-ary linear code with K ≥ 1. Then the subset of codewords of V that
have 0 as their first component is easily seen (by the subspace test) to be a subspace of V. Moreover, an
N -tuple b is a codeword in this subspace if and only if bHT = 0 and b [1, 0, . . . , 0]T = 0 where H is any
parity-check matrix for V. Thus, this subspace of codewords is itself a linear code V1 with parity-check
matrix

H1 =

[
H

1 0 · · · 0

]
.

Continuing in this manner,we see that

Hn =

[
H

In 0

]

is a parity-check matrix of the linear code Vn consisting of the codewords in V whose first n components
are all 0’s. If we take H to be a reduced parity-check matrix for V, then Hn has exactly N − K + n

rows. Thus, dim(R(Hn)) ≤ N − K + n or, equivalently (since Hn is a parity-check matrix for Vn),
dim(Vn) ≥ K −n. It follows that Vn must contain non-zero codewords if n = K −1. We have made the
argument for the first n components of codewords, but it should be obvious to the reader that it holds
for every choice of n components. We have proved the following interesting result.

45

Zero-Components of Codewords: For any (N, K) q-ary linear code with K ≥ 2 and any choice
of K − 1 among the N components, there exist non-zero codewords that contain only zeroes in these
components. In particular,

wmin = dmin ≤ N − K + 1. (8.20)

The upper bound (8.20) on minimum distance, which trivially holds also for K = 1, is called Single-
ton’s bound after its discoverer. An (N, K) q-ary linear code that meets this bound with equality is called
a maximum-distance-separable (MDS) code. The (3, 2) binary linear code of Example 8.5.1 with dmin = 2
is an MDS code, as indeed are all the (N, K) q-ary codes with K = N − 1 and dmin = 2 constructed in
Problem 8.1. For any N and any q, the (N, 1) q-ary linear code with G = [1 1 · · · 1] has dmin = N and is
thus also an MDS code. More interestingly, the Reed-Solomon codes that we shall soon study are MDS
codes.

8.9 Cosets and Syndromes

We first give an algebraic characterization of the condition for a linear code to be able to correct all the
error patterns in a set E, as we considered in Section 8.4. Because an (N, K) q-ary linear code V is a
subgroup of the additive group of the vector space GF (q)N , one can form the coset e+V of GF (q)N

relative to the subgroup V that contains a particular vector e. These are always the “cosets” that we
shall mean in this section.

Algebraic Condition for Error Correction: An (N, K) q-ary linear code V can correct all error
patterns in a set E if and only if these error patterns all lie in different cosets of GF (q)N relative to V.

Proof: Suppose that e and e′ are distinct error patterns in E but that e+V = e′+V. Then for any
codeword b there is a codeword b′ different from b such that b+e = b′+e′. Thus, (8.7) cannot be
satisfied, i.e., the code cannot correct all errors in E.

Conversely, suppose that all error patterns in E lie in different cosets relative to V. If e is the actual
error pattern and b the actual transmitted codeword, then the received word r = b+e lies in the coset
e+V. Thus, all error patterns in E can be corrected by a decoder f(·) that maps r into the codeword
r− ê where ê is the error pattern (if any) in E that lies in the coset r+V. 2

If b is the transmitted codeword, e the actual error pattern and r = b+e the received word in an
(N, K) q-ary linear code V with parity-check matrix H, then

s = rHT (8.21)

is called the syndrome of r relative to the parity-check matrix H (or simply the syndrome of r for short).
Note that

s = (b+e)HT

= bHT+eHT

= 0+eHT

= eHT ,

which illustrates the important fact that the syndrome of the received word depends only on the actual
error pattern and not at all on the transmitted codeword.

46

Equivalence of Syndromes and Cosets: The error patterns e and e′ lie in the same coset of GF (q)N

relative to V, an (N, K) linear code with parity-check matrix H, if and only if e and e′ have the same
syndrome relative to H.

Proof: Suppose e and e′ have the same syndrome, i.e., that eHT = e′HT . Then (e− e′)HT = 0 so that
e− e′ is a codeword. Thus e− e′+V = V or, equivalently, e+V = e′+V so that e and e′ lie in the
same coset relative to V.

Conversely, suppose that e and e′ lie in the same coset, i.e., that e+V = e′+V. Then e− e′+V = V
so that e− e′ is a codeword. Thus, (e− e′)HT = 0 or, equivalently, eHT = e′HT so that e and e′ have
the same syndrome relative to H. 2

Corollary to the Algebraic Condition for Error Correction: An (N, K) q-ary linear code with
parity-check matrix H can correct all error patterns in a set E if and only if the syndromes of these error
patterns relative to H are all different.

-r
HT -s

fH(·) ê

?
−

+
⊕ -- b̂

Figure 8.2: A syndrome decoder for a linear code with parity-check matrix H

This corollary suggests what is known as a syndrome decoder for a linear code and is shown in Fig. 8.2.
The received word r is first mapped to the syndrome s of r relative to HT . Then the function fH(·) [the
so-called error-pattern detector] emits that error pattern ê = fH(s) in the coset r+V = e+V that the
designer has chosen to correct, i.e., to take as his decision for the actual error patten e. The decision ê
is then subtracted from r to obtain the decision b̂ for the actual transmitted word b. It follows from the
above corollary that any set of error patterns that can be corrected by any decoder for a linear code V can
also be corrected by some syndrome decoder for V. Almost all decoders used in practice are syndrome
decoders.

8.10 Varshamov’s Bound

We now consider a very interesting construction for linear codes, due to Varshamov, which is the most
powerful general construction known. The idea is to build a parity-check matrix H for a q-ary linear
code with minimum distance dmin ≥ d by ensuring that no column of H is a linear combination of d− 2
or fewer columns so that all choices of d − 1 or fewer columns of H are linearly independent.

Suppose that r = N −K is the desired redundancy of the q-ary linear code and that d is the desired
(lower bound on) minimum distance, where 2 ≤ d ≤ r + 1 [and where this upper bound on d is imposed
by Singleton’s bound (8.20)]. We can choose c1, where cT

1 is the first column of H, to be any non-zero
vector in GF (q)r. We continue then to pick further columns cT

2 , cT
3 , . . .[until we have chosen cT

N where
N is the desired blocklength] in such a manner that ci is not a linear combination of d − 2 or fewer of

47

the vectors c1, c2, . . . , ci−1. Suppose that ci has just been chosen. Because every linear combination of
d− 2 or fewer of the vectors c1, c2, . . . , ci is either the zero vector or a linear combination of exactly j of
these vectors in which all j coefficients are non-zero and 1 ≤ j ≤ d − 2, it follows that there are at most(

i

0

)
+
(

i

1

)
(q − 1) +

(
i

2

)
(q − 1)2 + · · · +

(
i

d − 2

)
(q − 1)d−2 = V

(i)
d−2

distinct linear combinations of d − 2 of fewer of the vectors c1, c2, . . . , ci, where we have written V
(i)
d−2

to denote the volume of the Hamming sphere of radius d − 2 in the i-dimensional vector space GF (q)i.
Thus, if V

(i)
d−2 < qr, there will certainly exist a choice for ci+1 that is not a linear combination of d − 2

or fewer of the vectors c1, c2, . . . , ci. We have proved the following result.

Varshamov’s Theorem: For any GF (q) and any positive integers N , K and d with 2 ≤ d ≤ N−K+1,
if

V
(N−1)
d−2 < qN−K , (8.22)

then there exists a q-ary (N, K) linear code with dmin ≥ d.

Example 8.10.1 For any GF (q), choose d = 3 and N − K = m where m ≥ 2. By Varshamov’s
Theorem, there exists a q-ary (N, K = N − m) linear code with dmin ≥ 3 provided

V
(N−1)
1 = 1 + (N − 1)(q − 1) < qm

or, equivalently, if N − 1 < (qm − 1)/(q − 1) or, again equivalently, if N ≤ (qm − 1)/(q − 1). Thus, there
exists a q-ary (N = (qm − 1)/(q − 1), K = N −m) linear code with dmin ≥ 3. In fact, these are precisely
the Hamming single-error correcting codes (see Problems 8.4, 8.5 and 8.6) and their minimum distance
is exactly 3.

In Problem 8.2, another general construction of linear codes is given that we have called there
“Gilbert’s bound” because the construction is so similar to that used earlier by Gilbert for (in gen-
eral) nonlinear codes. The construction in Problem 8.2 establishes the following result.

A Gilbert-like Theorem: For any GF (q) and any positive integers N , K and d with 1 ≤ d ≤ N−K+1,
if

1
q

V
(N)
d−1 < qN−K , (8.23)

then there exists a q-ary (N, K) linear code with dmin ≥ d.

It is easy to see that (if we ignore the trivial case d = 1) the Gilbert-like Theorem is weaker than
Varshamov’s Theorem in the sense that any code guaranteed to exist by the former theorem is also
guaranteed to exist by the latter, but not conversely. [The reader can easily check that the Gilbert-like
Theorem does not suffice to establish the existence of the Hamming codes.] The reason for this is the
inequality

V
(N−1)
d−2 <

1
q

V
(N)
d−1 (8.24)

that holds for all positive integers d and N with 2 ≤ d ≤ N . To see the truth of (8.24), it suffices to
note that every point x = [x1, x2, . . . , xN−1] in the Hamming sphere of radius d − 2 centered at 0 in
GF (q)N−1, i.e., every x in GF (q)N−1 with w(x) ≤ d − 2, can be associated uniquely with the q points
{[x1, x2, . . . , xN−1, y] : y ∈ GF (q)} in the sphere of radius d − 1 centered at 0 in GF (q)N , but that
there will be points in the latter sphere not associated to any point in the former (namely all the points
[x1, x2, . . . , xN−1, 0] with w(x) = d − 1).

48

The weaker bound (8.23) is more convenient for asymptotic arguments than the stronger bound
(8.22). If we fix N and K, then, for the largest d such that (8.23) is satisfied, it will be true that

1
q

V
(N)
d ≥ qN−K ,

or, equivalently, that
V

(N)
d ≥ qN−K+1. (8.25)

Making use of the well-known bound

V
(N)
d ≤ 2N h(d/N) if d/N ≤ 1/2 (8.26)

for q = 2 where h(p) = −p log2 p − (1 − p) log2(1 − p) is the binary entropy function, we obtain the
following bound from (8.25).

Asymptotic Varshamov-Gilbert Bound: For any N and any code rate R = K/N , there exists a
binary (N, K) linear code with

h(dmin/N) > 1 − R. (8.27)

Example 8.10.2 For R = 1/2 and any even N , it follows from (8.27) that there exists an (N, K = N/2)
binary linear code with h(dmin/N) > 1/2 or, equivalently, with

dmin ≥ 0.11N. (8.28)

For large N , the best “effective” constructions known for R = 1/2 codes have dmin far less than the 11%
of N guaranteed by the Varshamov-Gilbert bound.

It is presently unknown whether, for very large N , there exist binary codes that can do better than
the bound (8.27). More precisely, it is unknown whether there exist binary codes of length N and rate R

(0 < R < 1) for arbitrarily large N such that h(dmin/N) ≥ 1 − R − ∆R where ∆R is a positive number.
This question of the asymptotic tightness of the Varshamov-Gilbert bound for binary codes is one of the
most intriguing open questions in coding theory.

One can easily derive an asymptotic form of the Varshamov-Gilbert bound for q > 2, but there is
no reason to believe that this non-binary asymptotic bound should be tight for large N . [There are
“hand-waving” arguments suggesting that the binary Varshamov-Gilbert bound might be tight for large
N .] In fact, for q ≥ 49, recent code constructions based on algebraic geometry give q-ary linear codes
for which dmin/N exceeds the asymptotic Varshamov-Gilbert bound for arbitrarily large N .

8.11 The Multiplicative Group of GF (q)

The non-zero elements F ∗ of any field F form an abelian group. In the case of the finite field GF (q),
this multiplicative group GF (q)∗ has order q − 1. From the fact that every element of a finite group has
finite order and generates a cyclic group with this order and from the fact that the order of a subgroup
of a finite group divides the order of the group (Lagrange’s Theorem), it follows that every element of
GF (q)∗ is a root of the polynomial equation xq−1 = 1 or, equivalently, all q − 1 non-zero elements of
GF (q) are zeroes of the polynomial xq−1 − 1. But a polynomial of degree d (d ≥ 0) with coefficients in
a field F can have at most d zeroes in F or in any extension field E of F . Thus, β is a zero of xq−1 − 1
[or, equivalently, x − β is a divisor of xq−1 − 1] if and only if β is a non-zero element of GF (q).

49

Factorization of xq−1 − 1 and xq − x: The polynomial xq−1 − 1 [where the coefficients 1 and −1 are
elements of GF (q)] factors completely into linear factors as follows:

xq−1 − 1 =
∏

β∈GF (q)∗
(x − β). (8.29)

Similarly,

xq − x =
∏

β∈GF (q)

(x − β). (8.30)

The factorization (8.30) follows upon multiplication on both sides in (8.29) by x = x − 0.

Example 8.11.1 The reader is invited to check by direct multiplication on the right that, in GF (5),

x4 − 1 = (x − 1)(x − 2)(x − 3)(x − 4).

Let n be the maximum (multiplicative) order of the elements of GF (q)∗. Because the order of every
element of an abelian group divides the order of the element of maximum order whenever this maximum
order is finite (see Problem 7.10), it follows that the (multiplicative) order of every element of GF (q)∗

divides n. Thus, all q− 1 elements of GF (q)∗ are zeroes of the polynomial xn − 1. But n divides q− 1 so
that certainly n ≤ q−1. On the other hand, xn−1 has at least q−1 distinct zeroes so that n ≥ q−1. We
must conclude that n = q − 1. Thus, GF (q)∗ contains an element of order q − 1 and hence is the cyclic
group of order q−1. Any generator of this cyclic group, i.e., any element of GF (q)∗ with (multiplicative)
order q − 1, is called a primitive element of GF (q). From our knowledge (see Section 7.7) of the cyclic
group of order n, we can immediately make the following conclusions.

Fundamental Properties of the Multiplicative Group of GF(q): The multiplicative group of
GF (q) is the cyclic group of order q− 1. This cyclic group has ϕ(q− 1) generators, i.e., there are exactly
ϕ(q − 1) primitive elements in GF (q). If α is a primitive element of GF (q) and β = αi, then β has
(multiplicative) order (q − 1)/ gcd(q − 1, i). In particular, there are elements of (multiplicative) order N

in GF (q)∗ if and only if N is a positive integer that divides q − 1.

Example 8.11.2 The elements 2 and 3 are the ϕ(5−1) = ϕ(4) = 2 primitive elements of GF (5) because

21 = 2, 22 = 4, 23 = 3, 24 = 1 and 31 = 3, 32 = 4, 33 = 2, 34 = 1.

The elements 1 and 4 (= −1) have multiplicative orders 1 and 2, respectively.

8.12 Reed-Solomon Codes

We now consider the most important linear codes, both theoretically and practically, that have yet been
found, the so-called Reed-Solomon (RS) codes.

Let GF (q) be any finite field with q ≥ 3 elements and let N be a divisor of q − 1 satisfying N ≥ 2.
(The usual choice is N = q − 1 but sometimes one is interested in a smaller N .) Let α be an element
of (multiplicative) order N in GF (q) [and we note that, as explained in the previous section, such an α

50

always exists.] Let mo be any integer satisfying 0 ≤ mo < N ; mo is a parameter of secondary importance
and is often chosen as either 0 or 1. Let d be an integer satisfying 2 ≤ d ≤ N . Then the Reed-Solomon
Code RS(q, N , α, mo, d) is the q-ary linear code of block length N for which

H =

(αmo)N−1 (αmo)N−2 · · · αmo 1
(αmo+1)N−1 (αmo+1)N−2 · · · αmo+1 1

· · · ·
· · · ·
· · · ·

(αmo+d−2)N−1 (αmo+d−2)N−2 · · · αmo+d−2 1

(8.31)

is a parity-check matrix.

We now determine the dimension K and the minimum distance dmin of the RS(q, N , α, mo, d) code.
Note that H in (8.31) has d − 1 rows. If we consider the square submatrix formed by selecting columns
N − i1, N − i2, . . . , N − id−1 of H (where N > i1 > i2 > · · · > id−1 ≥ 0), we see that this matrix has the
form

H̃ =

(αmo)i1 (αmo)i2 · · · (αmo)id−1

(αmo+1)i1 (αmo+1)i2 · · · (αmo+1)id−1

· · ·
· · ·
· · ·

(αmo+d−2)i1 (αmo+d−2)i2 · · · (αmo+d−2)id−1

We now aim to prove that this square matrix is nonsingular, i.e., that it has linearly independent rows
(or, equivalently, linearly independent columns). We can factor (αmo)ij [6= 0] out of the j-th column
of this submatrix without altering whether the columns are linearly independent or linearly dependent.
Doing so, we obtain the new submatrix

Ĥ =

1 1 · · · 1
αi1 αi2 · · · αid−1

· · ·
· · ·
· · ·

(αi1)d−2 (αi2)d−2 · · · (αid−1)d−2

that we now recognize as Vandermonde’s matrix of order d − 1 (see Problem 8.10). Because α has
multiplicative order N and 0 ≤ id−1 < · · · < i2 < i1 < N , it follows that the elements αi1 , αi2 , . . . , αid−1

are all distinct and hence that Vandermonde’s matrix is nonsingular (see Problem 8.10). Thus, d − 1
columns selected from H are always linearly independent. But any d columns selected from H must be
linearly dependent since these columns have only d − 1 components. It follows that dmin = d for the
RS code. But our argument above also implies that the rows of H are linearly independent. Thus, the
dimension K of our RS code satisfies N − K = d − 1 or, equivalently, dmin = N − K + 1, which shows
that our RS code is a maximum-distance-separable (MDS) code. We summarize our findings.

Parameters of Reed-Solomon Codes: The RS(q, N , α, mo, d) code is a q-ary linear (N, K) code
with minimum distance dmin = d and is MDS, i.e., dmin = N − K + 1.

We now wish to find an efficient decoding algorithm for RS codes. For this purpose, we will introduce
the discrete Fourier transform (DFT), which will also give us much better insight into the structure of
RS codes.

51

8.13 The Discrete Fourier Transform

With any vector b = [b1, b2, . . . , bN] ∈ FN , we can identify the polynomial

b(X) = b1X
N−1 + b2X

N−2 + · · · + bN−1X + bN =
N∑

n=1

bnXN−n (8.32)

of degree less than N with coefficients in the field F and we can talk interchangeably about the vector
b or the polynomial b(X). Suppose that there is an element α of (multiplicative) order N in F . Then
the discrete Fourier transform (DFT) of the “time-domain” vector b is the “frequency-domain” vector
B = [B1, B2, . . . , BN] ∈ FN , defined by

Bi = b(αi) i = 1, 2, . . . , N. (8.33)

Making use of (8.32), we can write (8.33) explicitly in terms of the components of b as

Bi =
N∑

n=1

bn · (αi)N−n, (8.34)

which, because αiN = 1, reduces to

Bi =
N∑

n=1

bnα−in, i = 1, 2, . . . , N, (8.35)

which the reader may find more familiar. [In digital signal processing of sequences (vectors) over the
complex field C, one often chooses α = e+j2π/N as the element of (multiplicative) order N used to defined
the DFT.]

It is easy to see that the DFT is a true “transform”, i.e., that it is invertible. For suppose that b
and b̃ are vectors with the same DFT, i.e., B = B̃. It follows then from (8.33) that αi is a zero of the
polynomial b(X) − b̃(X) for i = 1, 2, . . . , N . But b(X) − b̃(X) has degree less than N and the zeroes
α1, α2, . . . , αN of this polynomial are all distinct; we must conclude that b(X) − b̃(X) is the polynomial
0, i.e., b(X) = b̃(X) or, equivalently, that b = b̃. Thus, b can indeed be recovered from its DFT B.

To see how to recover b from its DFT B, we consider the polynomial

B(X) = B1X
N−1 + B2X

N−2 + · · · + BN−1X + BN (8.36)

that can be identified with the vector B and evaluate this polynomial at α−n = αN−n. We obtain

B(α−n) =
N∑

i=1

Bi · (α−n)N−i

=
N∑

i=1

N∑
j=1

bj α−ijαin

or

B(α−n) =
N∑

j=1

bj

N∑
i=1

(αn−j)i. (8.37)

52

For j = n, the second sum on the right of (8.37) is just the sum of N 1’s in the field, which we will
denote by ((N)). For 1 ≤ n ≤ N and 1 ≤ j ≤ N , we have −N < n − j < N and hence αn−j 6= 1 if
j 6= n. But in this case the second sum in (8.37) must be 0 as we now show. Let β = αn−j 6= 1 and note
that βN = 1. Then the second sum S in (8.37) becomes

S = β + β2 + · · · + βN = β(1 + β + · · · + βN−1);

multiplying by 1 − β gives
(1 − β)S = β(1 − βN) = 0.

But 1 − β 6= 0 and hence S = 0 as claimed. Thus we have shown that (8.37) reduces to

B(a−n) = ((N))bn.

Thus, the inverse DFT is given by

bn =
1

((N))
B(α−n), n = 1, 2, . . . , N. (8.38)

Making use of (8.36), we see that we can write (8.38) explicitly in terms of the components of B as

bn =
1

((N))

N∑
i=1

Bi α+ni n = 1, 2, . . . , N (8.39)

which again may seem more familiar to the reader.

The point of this section is that the DFT can be used in any field. More precisely, if one can find an
element of (multiplicative) order N in a field F , then one can define a DFT of length N for that field. It
follows from the discussion in Section 8.11 that we can set up a DFT of length N for a finite field GF (q)
if and only if N is a divisor of q − 1.

We make one final remark before leaving this section. Suppose we use (8.33) to define Bi for all
integers i ≥ 0, not just for 1 ≤ i ≤ N . In this case, we would have Bi+N = b(αi+N) = b(αi) = Bi for all
i ≥ 0, i.e., the frequency-domain sequence B0, B1, B2, . . . would be N -periodic (but its true period might
be a divisor of N). Similarly, if we use (8.38) to extend the definition of the time-domain sequence to all
n ≥ 0, we would have bn+N = 1

((N))B(α−n−N) = 1
((N))B(α−n) = bn and thus the extended time-domain

sequence b0, b1, b2, . . . would also be N -periodic. We will hereafter often find it convenient to assume
that we are dealing with these extended semi-infinite N -periodic time-domain and frequency-domain
sequences

b
˜

= [b0, b1, b2, . . .] (8.40)

and

B
˜

= [B0, B1, B2, . . .] (8.41)

defined from b and B by the relations

bn = bn+N all n ≥ 0, (8.42)

Bi = Bi+N all i ≥ 0. (8.43)

53

Because of (8.42) and (8.43), it follows that we could let all our indices above run from 0 to N − 1
instead of from 1 to N with no other changes in any of our relations above in this section, and in fact
this is what is usually done in digital signal processing.

8.14 Reed-Solomon Codes and the DFT

From the parity-check matrix H of (8.31) that we used to define the RS(q,N ,α, mo, d) code, one sees
that

bHT = [b(αmo), b(αmo+1), . . . , b(αmo+d−2)]

where b(X) = b1X
N−1 + b2X

N−2 + · · ·+ bN−1X + bN . From the definition (8.33) of the DFT, it follows
that

bHT = [Bmo
, Bmo+1, . . . , Bmo+d−2]. (8.44)

Thus, an alternative definition of the RS(q,N ,α, mo, d) code is as the set of time domain sequences b in
GF (q)N whose DFT vanishes in the band of frequencies from mo to mo + d − 2 inclusive.

8.15 Linear Feedback Shift Registers and Linear Complexity

A linear feedback shift register (LFSR) is a device, as shown in Fig. 8.3, composed of delay cells, constant
multipliers and adders. The LFSR is considered initially to be loaded with the digits s0, s1, . . . , sL−1

(where L is the length of the LFSR), which are elements of some specified field F . The multiplying
constants −c1,−c2, . . . ,−cL are also elements of this same field F . The LFSR, started at time instant
0, produces the semi-infinite output sequence

s
˜

= [s0, s1, s2, . . .] (8.45)

of elements of F according to the recursion

sj = −c1sj−1 − c2sj−2 − · · · − cLsj−L j = L, L + 1, . . .

that we write more conveniently as

sj + c1sj−1 + c2sj−2 + · · · + cLsj−L = 0 j = L, L + 1, (8.46)

We now seek a convenient algebraic description of this output sequence s
˜
.

We begin by identifying the sequence s
˜

with the formal power series

S(D) = s0 + s1D + s2D
2 + · · · , (8.47)

where our choice of D for the indeterminate is made partly to warn the reader that S(D) may not
be a polynomial (i.e., it might contain infinitely many non-zero coefficients) and partly because it is
convenient to think of D as the delay operator.

To describe the LFSR itself, we use first its connection polynomial that we define as

C(D) = 1 + c1D + c2D
2 + · · · + cLDL. (8.48)

54

sj−L sj−L+1 · · · sj−1

6 6 6

−cL −cL−1 −c1· · ·

6 6
-⊕ -⊕

��s0, s1, s2, . . .

Figure 8.3: A Linear Feedback Shift Register (LFSR)

Note that the degree of C(D) is at most L, but can be smaller. Thus C(D) alone does not suffice to
describe the LFSR; we need also to specify the length explicitly. We will write 〈C(D), L〉 to denote the
LFSR with connection polynomial C(D) and length L.

We now note that the recursion (8.46) specifies that there are no non-zero terms of degree L or greater
in the product of C(D) and S(D), i.e., that

C(D)S(D) = P (D) (8.49)

where P (D) is a polynomial of degree strictly less than L. Writing

P (D) = p0 + p1D + · · · + pL−1D
L−1 (8.50)

and equating terms of degree i, i < L, on both sides of (8.49) gives the matrix equation

po

p1

·
·
·

pL−1

=

1 0 · · · · · · 0

c1 1 0
...

...
.

...

cL−2
. 0

cL−1 cL−2 · · · c1 1

so

s1

·
·
·

sL−1

which shows that for every choice of P (D) there is a unique corresponding initial state [s0, s1, . . . , sL−1]
of the LFSR. We summarize our findings.

Description of LFSR Output Sequences: The LFSR 〈C(D), L〉 can produce the semi-infinite output
sequence s

˜
if and only if the power series S(D) can be written as

S(D) =
P (D)
C(D)

(8.51)

where P (D) is a polynomial of degree strictly less than L.

The linear complexity of the semi-infinite sequence s
˜
, which we denote as L(s

˜
), is the smallest L

such that s
˜

can be produced by an LFSR of length L, and is ∞ if no such LFSR exists. By way of

convention, the all-zero sequence 0
˜

= [0, 0, 0, . . .] is said to have linear complexity 0, i.e., L(0
˜
) = 0. It is

55

also convenient to define linear complexity of finite sequences, say, of s
˜

(n) = [s0, s1, . . . , sn−1]. The linear

complexity of s
˜

(n) is defined as the smallest linear complexity of all semi-infinite sequences having s
˜

(n)

as a prefix. Equivalently, L(s
˜

(n)) is the length of the shortest LFSR 〈C(D), L〉 that can produce s
˜

(n) as

its first n output digits [where of course the initial state must be the first L digits of s
˜

(n)].

The following is an immediate consequence of our description (8.51) of LFSR output sequences and
our definition (8.48) of a connection polynomial C(D) as a polynomial such that C(0) = 1.

Linear Complexity of Semi-Infinite Sequences: If the power series S(D) of a semi-infinite sequence
s
˜

can be written as

S(D) =
P (D)
C(D)

where P (D) and C(D) are relatively prime polynomials (i.e., they have no common factor of degree 1 or
greater) and C(0) = 1, then

L(s
˜
) = max{deg [C(D)], 1 + deg [P (D)]}.

Moreover, C(D) is the connection polynomial of the unique LFSR of length L = L(s
˜
) that can

produce s
˜
.

In practice, one must deal of course only with finite sequences. Thus, the following result is of
considerable practical importance.

Linear Complexity of Finite Sequences: If L(s
˜
) = L > 0 and if s

˜

(n) denotes the first n digits of s
˜
,

then
L(s

˜

(n)) = L all n ≥ 2L. (8.52)

Moreover, the unique LFSR of length L that can produce s
˜

is also the unique LFSR of length L that

can produce s
˜

(n) for every n ≥ 2L.

Proof: Suppose that 〈C1(D), L1〉 and 〈C2(D), L2〉, where L1 ≤ L and L2 ≤ L, both produce s
˜

(n) for

some n ≥ 2L. Equation (8.51) then determines polynomials P1(D) and P2(D), with degrees less than
L1 and L2, respectively, such that

P1(D)
C1(D)

− P2(D)
C2(D)

= Dn∆(D) (8.53)

where ∆(D) is some power series, as follows from the fact that the sequences produced by the two LFSR’s
have s

˜

(n) as a prefix and thus can differ at time n at the earliest. Multiplying by C1(D) C2(D) in (8.53)
gives

P1(D) C2(D) − P2(D) C1(D) = Dn∆(D) C1(D) C2(D). (8.54)

The left side of (8.54) has degree less than L1 +L2 ≤ 2L whereas the right side has no terms of degree
less than n. But n ≥ 2L so that both sides must be 0 and hence

P1(D)
C1(D)

=
P2(D)
C2(D)

.

It follows that both LFSR’s produce the same semi-infinite sequence. Thus, we have shown that all
LFSR’s of length L or less that produce s

˜

(n) produce the same semi-infinite sequence, which then must

56

be the sequence s
˜

because we know that s
˜

is produced by some LFSR of length L. Thus, any LFSR of

length L or less that produces s
˜

(n) must be in fact the unique LFSR of length L that produces s
˜
, and

hence L(s
˜

(n)) = L. 2

There is an efficient algorithm for finding (one of) the shortest LFSR(s) that produces a specified
sequence s

˜

(n) of length n. This LFSR synthesis algorithm (or Berlekamp-Massey algorithm as it is often

called) is given in flowchart form in Fig. 8.4. The interested reader may consult the Appendix of this
chapter for a proof that the algorithm does indeed solve the problem of finding (one of) the shortest
LFSR(s) that produces s

˜

(n).

8.16 Blahut’s Theorem – Linear Complexity and the DFT

We now show a very interesting connection between linear complexity and the discrete Fourier transform,
namely that Hamming weight in one domain equals linear complexity in the other.

Blahut’s Theorem: If B ∈ FN is the DFT of b ∈ FN and if B
˜

and b
˜

are the corresponding semi-infinite

sequences (8.40) and (8.41), then
L(B

˜
) = w(b) (8.55)

and
w(B) = L(b

˜
). (8.56)

Proof: If b = 0, the claim is trivial so we assume b 6= 0 and thus also B 6= 0. Making use of (8.35), we
can write the power series for B

˜
as

B(D) =
∞∑

i=0

BiD
i

=
∞∑

i=0

(
N∑

n=1

bnα−in

)
Di

=
N∑

n=1

bn

∞∑
i=0

(α−nD)i

or

B(D) =
N∑

n=1

bn
1

1 − α−nD
. (8.57)

Because α, which defines the DFT, has (multiplicative) order N , it follows that α−1, α−2, . . . , α−N

are all distinct. Thus, the right side of (8.57) is a proper partial fraction with w(b) terms and hence

B(D) =
P (D)
C(D)

where P (D) and C(D) are relatively prime polynomials such that deg [P (D)] < deg [C(D)] = w(b) and

C(D) =
N∏

n=1 and bn 6=0

(1 − α−nD). (8.58)

57

n = N? -YesNo
C(D), L

.....................
..

.............

- Stop
?

n <— n + 1
?

?

L <— n + 1 − L
x <— 1

C∗(D) <— T (D)
δ∗ <— δ

?
x <— x + 1

�

?

2L ≤ n?
NoYes ?

T (D) <— C(D)
C(D) <— C(D) − δ(δ∗)−1 C∗(D) Dx

?

x <— x + 1

-

?

δ = 0?
NoYes ?

δ <— sn + c1sn−1 + · · · + cLsn−L

?

sn

?

?

N

?

C(D) <— 1 C∗(D) <— 1
L <— 0 δ∗ <— 1
x <— 1 n <— 0

?

Start

-

Figure 8.4: LFSR Synthesis Algorithm (Berlekamp-Massey Algorithm) for finding (one of) the shortest
LFSR(s) that can generate the sequence s0, s1, . . . , sN−1.

58

It follows from (8.58) that C(0) = 1 and thus that 〈C(D), L = w(b)〉 is the unique shortest LFSR that
produces B

˜
. In particular, we have shown that L(B

˜
)= w(b). The proof of (8.56) is entirely similar. 2

8.17 Decoding the Reed-Solomon Codes

It is now a simple matter to formulate a decoding algorithm for this RS code that will correct all patterns
of t or fewer errors where 2t < d = dmin. Let b be the transmitted codeword and e the actual error
pattern so that

r = b+e (8.59)

is the received word. Taking the DFT gives

Ri = Bi + Ei all i.

But Bi = 0 for i = mo, mo + 1, . . . , mo + d − 2 so that

Ri = Ei mo ≤ i ≤ mo + d − 2. (8.60)

[The reader may notice here that [Rmo
, Rmo+1, . . . , Rmo+d−2] is just the syndrome of r relative to the

parity-check matrix H of (8.31), i.e., computing the syndrome is just the operation of computing d − 1
terms of the DFT of r.] We see that we now know the first d − 1 terms of the semi-infinite sequence

E
˜

′ = [Emo
, Emo+1, . . . , Emo+d−2, Emo+d−1, Emo+d, . . .]

[where the “prime” on E
˜

′ reminds us that this is not quite the same as E
˜

whose first term is Eo]. But

E
˜

is a periodic sequence and thus L(E
˜

′) = L(E
˜
) since each of these semi-infinite periodic sequences

contains the other as a subsequence. Further Blahut’s Theorem tells us that L(E
˜
) = w(e) so that we

can now conclude that
L(E

˜

′) = w(e).

From our results on the Linear Complexity of Finite Sequences, it follows that if

2w(e) ≤ d − 1 (8.61)

then we can find the shortest LFSR that produces E
˜

′ by applying the LFSR synthesis algorithm to the

known first d−1 terms of E
˜

′. We can then use this LFSR together with the known terms of E
˜

′ to produce

the N -tuple E′ which is just some cyclic shift of E. Knowing E, we can find e by the inverse DFT and
then recover the codeword b as r− e. If 2w(e) ≥ d, however, this algorithm could give incorrect results;
we indicate this possiblity by placing “hats” on the computed quantities that are guaranteed to be correct
only when the actual error pattern has Hamming weight satisfying 2w(e) < d = dmin. We summarize
this efficient decoding algorithm.

Step 1: Compute Ei for mo ≤ i ≤ mo + d− 2 by computing the DFT of the received word r over this
frequency band.

Step 2: Use the LFSR synthesis algorithm to find (one of) the shortest LFSR(s) 〈C(D), L〉 that
produces the finite sequence Emo

, Emo+1, . . . , Emo+d−2 . If 2L ≥ d, stop and emit ?, i.e., announce a
detected error pattern.

59

Step 3: Load the LFSR 〈C(D), L〉 with the last L digits of the sequence Emo
, Emo+1, . . . , Emo+d−2 and

clock the LFSR N − (d−1) times to produce Ê′ = [Emo
, Emo+1, . . . , Emo+d−2, Êmo+d−1, . . . , Êmo+N−1].

Step 4: Cyclically shift Ê′ appropriately (depending on the value mo) to obtain Ê = [Ê1, Ê2, . . . , ÊN].

Step 5: Compute the inverse DFT ê of Ê.

Step 6: Subtract ê from r to obtain the decoding decision b̂ for the transmitted codeword.

60

Chapter 9

AN INTRODUCTION TO

CRYPTOGRAPHY

9.1 The Goals of Cryptography

The word “cryptography” evokes in the popular imagination images of spies furtively penning messages
in invisible ink, of banal phrases that hide within them some message of vital military or diplomatic
importance, of couriers carrying attaché cases handcuffed to their wrists and filled with secret keys, and
of mysterious people toiling in a Black Chamber to extract the message hidden deep in long sequences
of random-appearing numbers. Indeed, the history of cryptography spans several millenia and is replete
with real case histories whose drama equals that of the most imaginative espionage fiction. Only a few
decades ago, cryptography was still considered to the province of diplomats and generals. But the sudden
dawning of the Information Age in which we now live inevitably meant that cryptography would become
another standard tool of the communications engineer. Information can have enormous economic value or
can be of such an extremely sensitive nature that its unauthorized disclosure could be highly damaging to
some individual. Falsified information can wreak economic damage or can destroy an individual. When
such information is transmitted over easily accessible means of communications, prudence demands that
its confidentiality and its authenticity be assured. Cryptography can provide that assurance.

As its Greek roots that means “hidden writing” suggest, cryptography is concerned with the secrecy
of information; but it is equally concerned with the authenticity of information. The twin goals of
cryptography, secrecy and authenticity, are sometimes not so easy to distinguish. In fact, it is only recently
that cryptographers themselves have appreciated that these two goals are in fact quite independent.
Xuejia Lai has given perhaps the best rule for distinguishing between secrecy and authenticity. A
technique provides secrecy if it determines who can receive a message; it provides authenticity if it
determines who can have sent a message.

61

9.2 Shannon’s Theory of Perfect Secrecy

In his 1949 paper, Communication Theory of Secrecy Systems, Claude Shannon provided the first truly
scientific treatement of secrecy. Shannon’s theory of secrecy is in fact a straightforward application of
the information theory that he had formulated in his celebrated 1948 paper, A Mathematical Theory of
Communication. The ingenuity of the 1949 paper lies not in the methods used therein but rather in the
incisive formulation that Shannon made of the problem of secrecy.

Figure 9.1 shows the general model of a secret-key cryptosystem. This model differs from that used
by Shannon in 1949 only by its inclusion of the public random source and the private random source.
These randomizing sources have recently been found to be quite useful although, as we shall see, they
do not alter the basic results of Shannon’s theory.

Encrypter -
Public Channel

Y
DecrypterMessage

Source
-X

Private
Random
Source

S

6

Public
Random
Source

R

??

Key
Source

6

-
Z

SECURE CHANNEL

6

Z

Enemy
Cryptanalyst

66

-X̂

-X
Destination

Figure 9.1: General model of a secret-key cryptosystem.

The output of the message source in Fig. 9.1 is the plaintext X = [X1, X2, . . . , XM] that is to be
sent “secretely” to the destination. The key source provides a secret key Z = [Z1, Z2, . . . , ZK] that is
distributed securely to both the encrypter and the decrypter, usually well in advance of the time that
the plaintext is generated. This secret key, together with the private randomizer S = [S1, S2, . . . , SJ]
and the public randomizer R = [R1, R2, . . . , RT], determines the particular encrypting transformation
used to create the cryptogram (or ciphertext) Y = [Y1, Y2, . . . , YN]. We write

Y = EZRS(X) (9.1)

to express the fact that we wish to consider the cryptogram Y primarily as a function of the plaintext
X, the particular function being specified by the values of the secret key Z, the public randomizer R
and the private randomizer S. Note that (9.1) in information-theoretical terms is equivalent to

H(Y|XZRS) = 0. (9.2)

62

The decrypter has no access to the private randomizer S but must be able to recover the plaintext
X from the cryptogram Y, the secret key Z and the public randomizer R. Thus, we must have

X = DZR(Y) (9.3)

or, equivalently in information-theoretical terms,

H(X|YZR) = 0. (9.4)

As Fig. 9.1 suggests, the source outputs X, Z, R and S are all assumed to be statistically independent.
A less obvious assumption made by Shannon is that the secret key is to be used only once (or, equivalently,
that X is the totality of all plaintexts to be encrypted before the secret key is changed.) Similarly, the
public and private randomizers are to be used only once.

It is time now to examine the rascal who makes the cryptosystem necessary, the enemy cryptanalyst.
[Cryptanalysis is the science of “breaking” cryptographic systems.] The enemy cryptanalyst is assumed
to observe the cryptogram Y and the public randomizer R, but nothing else. [This kind of cryptoanalytic
attack is called a ciphertext-only attack.] His goal is to find the plaintext, at least with some reasonable
chance of success.

Shannon made the notion of an “unbreakable cryptosystem” precise by saying that a secret-key
cryptosystem provides perfect secrecy if the enemy cryptanalyst’s observation (Y,R) is statistically
independent of the plaintext X. In information-theoretical terms, perfect secrecy means

H(X|YR) = H(X). (9.5)

Shannon then went on to derive a quite surprising lower bound on H(Z) for any cryptosystem
providing perfect secrecy. Shannon’s argument was the soul of simplicity, namely

H(X|YR) ≤ H(XZ|YR)

= H(Z|YR) + H(X|YRZ)

= H(Z|YR)

≤ H(Z) (9.6)

where we have made use of (9.2) and the fact that removing conditioning can only increase uncertainty.
The following bound now follows immediately from (9.5) and (9.6).

Shannon’s bound on Key Size: In any cryptosystem that provides perfect secrecy, the uncertainty
of the secret key must be at least as great as that of the plaintext, i.e.,

H(Z) ≥ H(X). (9.7)

If the K digits of the secret key are binary digits, then K ≥ H(Z) (in bits) with equality if and only
if all 2K values of the secret keys are equally likely. Thus, Shannon’s bound (9.7) states that there must
be at least as many binary digits in the secret key as there are bits of information in the plaintext if the
cryptosystem provides perfect secrecy!

The question whether any cryptosystem can provide perfect secrecy was also answered by Shannon
in a way that we now slightly generalize.

63

Let 〈G, ∗〉 be any finite group of order, say, #(G) = L. Suppose that the lengths M , K and N of
the plaintext, secret key and cryptogram, respectively, are all the same and that the components of X,
Z and Y are all elements of G. We will call such a cryptosystem a group-operation cipher if

Yi = Xi ∗ Zi, i = 1, 2, . . . , N. (9.8)

Note that no randomizers are used in such a cipher.

Perfect Secrecy with Group-Operation Ciphers: If the components Z1, Z2, . . . , ZN of the secret
key Z of a group-operation cipher are statistically independent and equally likely to take on each of the L

elements of the group as their value, then the group-operation cipher provides perfect secrecy regardless
of the plaintext statistics.

Proof: Note that Y = [X1 ∗Z1, X2 ∗Z2, . . . , XN ∗ZN], which we abbreviate by writing Y = X∗Z. Thus,

P (Y = y|X = x) = P (X ∗ Z = y|X = x)

= P (x ∗ Z = y|X = x)

= P (Z = x−1 ∗ y|X = x)

= P (Z = x−1 ∗ y)

= L−N , all x,y (9.9)

where we have used the facts that the secret key Z and the plaintext X are statistically independent and
that the secret key Z has equal probability of taking on any of the LN possible sequences of N group
elements as its value. The fact that P (Y = y|X = x) does not depend on x means that X and Y are
statistically independent, i.e., that the cryptosystem provides perfect secrecy. 2

Shannon proved the existence of perfect secrecy systems by showing that the Vernam cipher (or
one-time pad as it is often called) is perfect. The one-time pad is the special case of a group-operation
cipher where the group operation is modulo L addition, i.e., 〈G, ∗〉 = 〈ZL,⊕〉, and where the key digits
are provided by an L-ary symmetric source. The binary Vernam cipher, which is the most frequently
used, is shown in Fig. 9.2.

It is interesting to note that Vernam published his cipher in 1926, but Shannon’s 1949 proof of its
unbreakability appears to have been the first such proof. [Vernam correctly believed and stated that
his cipher was unbreakable, but cryptographic history abounds with inventors of ciphers who incorrectly
believed and stated that their ciphers were unbreakable.]

Note that a perfect group-operation cipher uses a secret key whose uncertainty is

H(Z) = N log2 L bits,

which meets Shannon’s bound (9.7) with equality if and only if the message source is the L-ary symmetric
source, i.e., the L-ary discrete memoryless source with equiprobable output letters. This situation can
always be at least approximated by source encoding (data compression) of the actual message source to
produce the plaintext. Indeed, as Shannon pointed out in 1949, source coding (to remove redundancy)
before encryption is a powerful way to increase the security of a cryptographic system.

64

Binary
Message
Source

-Xi Yi Xi⊕

Binary
Symmetric

Source

6

-

Zi

Enemy
Cryptanalyst

6

Secure Channel-

⊕
6

-

Zi

Destination

Figure 9.2: The binary Vernam cipher (or “one-time pad”).

9.3 Kerckhoffs’ Hypothesis

In our discussion of Shannon’s theory of perfect secrecy, we tacitly assumed that everything about the
encipherment process (including the statistics of the plaintext, the secret key, and the public and private
randomizers) is known to the enemy cryptanalyst, except of course for the actual values of the plaintext,
the secret key and the private randomizer. In particular, the enciphering algorithm itself is not secret.
Thus, any secrecy that the cipher provides owes its existence to the fact that the enemy cryptanalyst
does not know the actual value of the secret key. The hypothesis that the security of the cipher should
reside entirely in the secret key was first made in 1883 by the Dutchman Auguste Kerckhoffs (1835-
1903); cryptographic history has demonstrated its wisdom. A determined enemy is generally able to
obtain a complete “blueprint” of the enciphering and deciphering machines, either by clever deduction
or by outright stealing or by measures in-between these extremes. It is generally a risky proposition to
rely on the hope that one can safeguard the design of one’s cipher from such an enemy.

Nonetheless, in many applications of cryptography and notably in military and diplomatic appli-
cations, the cryptographer often makes a strenuous attempt to keep his enciphering algorithm secret.
Kerckhoffs would not disapprove of this, but would warn such a cryptographer not to count too much
on the success of this safekeeping. Kerckhoffs would positively admire, however, the designers of the
Data Encryption Standard (DES) who in 1976 published a complete description of their cipher, which
is perhaps the most widely used cipher today.

9.4 Imperfect Secrecy and Unicity Distance

To determine when a non-randomized cipher that did not offer perfect secrecy could in principle be bro-
ken, Shannon introduced in 1949 the so-called key equivocation function f(·) defined for every nonegative
integer n by

f(n) = H(Z|Y1Y2 · · ·Yn) (9.10)

65

where, by way of convention, f(0) = H(Z). He then defined the unicity distance nu as the smallest n such
that f(n) ≈ 0. Thus, nu is the least amount of ciphertext from which the enemy cryptanalyst is able to
determine the secret key essentially uniquely – at least in principle, finding Z from [Y1, Y2, . . . , Ynu

] may
very well be an intractable problem. One often says, somewhat imprecisely, that the unicity distance is
the least amount of ciphertext for which the enemy cryptanalyst can break the cipher in a ciphertext-only
attack.

For a special type of non-randomized cipher, Shannon showed that the key equivocation function
behaves as shown in Fig. 9.3, i.e., a linear decrease with n until f(n) ≈ 0. The slope of this linear
decrease is −ρ where ρ is the percentage redundancy of the plaintext information as represented in the
N -digit cryptogram, i.e.,

ρ = 1 − H(X)
N log Ly

(9.11)

where Ly is the size of the ciphertext alphabet and N is the length of the cryptogram.

6

-
..

�

slope −ρ log Ly

nu

nH(Z)

f(n) = H(Z|Y1 · · ·Yn)

Figure 9.3: The usual form of the key equivocation function for a secret-key cipher.

The corresponding unicity distance is

nu ≈ H(Z)
ρ log Ly

. (9.12)

We give here an alternative derivation of Shannon’s formulas (9.11) and (9.12) that perhaps better
explains why they hold for virtually all practical non-randomized ciphers. A design goal of virtually all
cipher designers is that the ciphertext appear to be totally random for as long as possible, i.e., that

H(Y1Y2 · · ·Yn) ≈ n log Ly (9.13)

holds over as large a range of n as possible. Because the cipher is non-randomized, the uncertainty of
[Y1, Y2, . . . , Yn] when Z is given will roughly equal the uncertainty of that part of X that determines
[Y1, Y2, . . . , Yn]. For most ciphers and most real message sources, a good approximation will be

H(Y1Y2 · · ·Yn|Z) ≈ n

N
H(X) (9.14)

for all n. The two assumptions (9.13) and (9.14) suffice to obtain Shannon’s result since

H(Y1Y2 · · ·YnZ) = H(Z) + H(Y1Y2 · · ·Yn|Z)

≈ H(Z) +
n

N
H(X) (9.15)

66

where we have used (9.14), and also

H(Y1Y2 · · ·YnZ) = H(Y1Y2 · · ·Yn) + H(Z|Y1Y2 · · ·Yn)

≈ n log Ly + f(n)

where we have used (9.13) and the definition (9.10). Equating these two approximations yields

f(n) ≈ H(Z) − n(log Ly)
[
1 − H(X)

N log Ly

]
= H(Z) − nρ log Ly, (9.16)

which is the straight line plotted in Fig. 9.3. Shannon’s formulas (9.11) and (9.12) are now immediate.
[The reader may well wonder why (9.16) does not also hold for n > nu, which would give the patently
false result that f(n) < 0 for n > nu. The reason is that

H(Y1Y2 · · ·Yn) ≤ H(ZY1Y2 · · ·Yn)

≈ H(Z) +
n

N
H(X)

where we have used (9.15). Thus, the “total randomness” assumption (9.13) for [Y1, Y2, . . . , Yn] is possible
only if

n log Ly ≤ H(Z) +
n

N
H(X)

or, equivalently, only if
n ≤ nu.

Thus, our assumption (9.13) is valid just up to the point where we require its validity to derive (9.14),
but not for larger n.]

Problem 9.1. considers the unicity distance of a so-called stream cipher, where the validity of Shan-
non’s formulas (9.11) and (9.12) are even more apparent.

Shannon was well aware that the formulas (9.11) and (9.12) were generally valid. He remarked ex-
plicitely that the analysis that he used for a very particular type of cipher “can be used to estimate
equivocation characteristics and the unicity distance for the ordinary types of ciphers”. Indeed, cryptog-
raphers today routinely use Shannon’s formulas to estimate the unicity distance of virtually all ciphers.

It is important to note that Shannon’s determination of the unicity distance assumes a ciphertext-
only attack by the enemy cryptanalyst, i.e., nu is the amount of ciphertext required by the cryptanalyst
to determine the key essentially uniquely in a ciphertext-only attack. Moreover, Shannon’s analysis
assumes a non-randomized cipher, but it is not hard to see that this analysis is not affected by the use
of a public randomizer in the encryption process.

If a private randomizer is used, however, Shannon’s analysis must be altered slightly. The usual
purpose of such a randomizer is to remove redundancy from the data actually encrypted by “pumping
in” additional randomness in such a way that, after decryption, the legitimate receiver can extract the
intended message without knowledge of the private randomizer. For instance, in typical English text
(written with the 26 letters of the Latin alphabet and the space symbol), the most likely symbol is a
space which has probability about .1859, the next most likely is an “e” which has probability about
.1031, etc., and the least likely is a “z” which has probability about .0005. Suppose that such English
text is converted into 11-bit symbols in the manner that 381 (≈ .1859× 2048) of the 2048 such symbols
are all used to represent a “space”, 211 (≈ .1031× 2048) such symbols are used to represent an “e”, etc.,

67

and 1 (≈ .0005 × 2048) such symbol is used to represent a “z”, the choice of a substitute for a letter in
the English text being made by a uniform random choice (determined by the secret randomizer) from the
set of 11-bit substitutes for that letter. The substitutes for successive digits of the plaintext are chosen
independently; the digits in the private randomizer are used to make the required random choices. After
such conversion, each 11-bit symbol in the converted text is essentially equally likely to take on any
of the 2048 possible values. Moreover, anyone who sees the converted text can return it to its original
form simply by replacing each of the 381 substitutes for a space with a “space”, replacing each of the
211 substitutes for an e with an “e”, etc.. There is no need to know in advance which substitutes were
randomly chosen, but the receiver in fact learns what choices were made in the process of reconverting
the modified text to its original form. This is the process of homophonic substitution (several different
“homophones” represent each letter of the original alphabet) and it is an old cryptographic trick for
increasing the unicity distance of a cipher. If the “plaintext” X̃ for a conventional non-randomized cipher
is in fact the result of homophonic coding of the true plaintext X with the aid of the private randomizer
S, then (because the legitimate receiver obtains both X and S when he reconverts the “plaintext” X̃)
all the results of this section still apply provided that H(X) is replaced by H(X̃) = H(X) + H(S).

Finally, the results of this section can be applied to the case where the enemy cryptanalyst is able
to make a known-plaintext attack (in which the enemy cryptanalyst knows the plaintext X) or a chosen-
plaintext attack (in which the enemy has chosen X himself) in his effort to find the secret key Z. One
simply replaces H(X) by 0 so that the appropriate redundancy is ρ = 1.

9.5 Simmons’ Theory of Authenticity

Although Shannon gave his theory of secrecy in 1949, it was not until 1984 that Simmons gave an
analogous theory of authenticity.

Simmons considered a secret-key algorithm as in Fig. 9.1 with a one-time key, except that he did
not allow a public random source. Until further notice, we shall likewise assume that there is no public
randomizer R.

Enemy
Cryptanalyst

- Authenticity
Checker

- Decrypter - Destination

Secure Channel

66

Ỹ OK X̃

Z Z..
..............................
..

....................................

...

?

NOT OK

Figure 9.4: Model of an impersonation attack

Simmons considered various types of authenticity attacks, the simplest and most fundamental of
which is the impersonation attack shown in Fig. 9.4. In this attack, the enemy cryptanalyst tries to

68

pawn his “crooked cryptogram” Ỹ off on the destination as the real thing. The attack succeeds if Ỹ is
accepted as authentic, i.e., if Ỹ is in fact a valid cryptogram for the actual secret key Z. The purpose
of such an impersonation attack might, for instance, be to disrupt legitimate communications. It is
important to note that the enemy cryptanalyst makes no observation of the actual cryptogram Y, which
in fact may not yet exist. It is even possible (but improbable) that he will choose Ỹ= Y, but this is still
counted as a win for the enemy cryptanalyst in an impersonation attack.

To describe the “authenticity checker” in Fig. 9.4, we need to introduce the authentication function
ϕ(·, ·), which is defined by

ϕ(y, z) =

{
1 if y can be a valid cryptogram when z is the secret key
0 otherwise.

The authenticity checker is merely a device that accepts the crooked cryptogram Ỹ if ϕ(Ỹ,Z) = 1
and rejects it otherwise.

Simmons has defined the impersonation success probability PI as the probability that Ỹ is accepted
as valid, given that the enemy cryptanalyst uses the attack that is optimum in the sense of maximizing
this probability. Let Ay denote the event that y will be accepted by the decrypter as a valid cryptogram.
The probability of Ay is then

P (Ay) =
∑
z

ϕ(y, z)PZ(z), (9.17)

i.e., the total probability of all keys for which y can be a valid cryptogram. The optimum impersonation
attack is then to choose Ỹ as (one of) the value(s) y that maximizes P (Ay). Thus,

PI = max
y

P (Ay)

≥
∑
y

P (Ay)PY(y), (9.18)

where equality holds if and only if P (Ay) is the same for all crytpograms y having positive probability,
i.e., if and only if all authenticity attacks are optimum (or, equivalently, all are equally bad). Using
(9.17) in (9.18) gives

PI ≥
∑
(y,z)

ϕ(y, z)PY(y)PZ(z). (9.19)

Recall that the support of a function is the set of arguments for which the function is non-zero. For
instance, the support of the joint probability distribution PYZ, denoted supp PYZ, is the set of all (y, z)
such that PYZ(y, z) 6= 0. But ϕ(y, z)PZ(z) 6= 0 precisely when (y, z) ∈ supp PYZ. Thus, (9.19) can be
rewritten as

PI ≥
∑

(y,z)∈suppPYZ

PY(y)PZ(z)

=
∑

(y,z)∈suppPYZ

PYZ(y, z)
PY(y)PZ(z)
PYZ(y, z)

= E

[
PY(Y)PZ(Z)
PYZ(Y,Z)

]
, (9.20)

where we have used the fact that the expectation of any function f(Y,Z) of the discrete random variables
Y and Z that takes values on the extended real line (which includes −∞ and +∞) is defined by

E[f(Y,Z)] =
∑

(y,z)∈suppPYZ

PYZ(y, z)f(y, z).

69

Inequality (9.20) is equivalent to

log PI ≥ log E

[
PY(Y)PZ(Z)
PYZ(Y,Z)

]
. (9.21)

Because log()̇ is strictly convex-∩ on the positive real line, it follows from (9.21) and Jensen’s in-
equality that

log E

[
PY(Y)PZ(Z)
PYZ(Y,Z)

]
≥ E

[
log

PY(Y)PZ(Z)
PYZ(Y,Z)

]
= −I(Y;Z) (9.22)

with equality if and only if PY(y)PZ(z)
PYZ(y,z) has the same value for all (y, z) in supp PYZ. Combining (9.20)

and (9.21) gives the following fundamental result.

Simmons’ Bound on Impersonation Success Probability: The probability of success, PI , in an
optimum impersonation attack satisfies

PI ≥ 2−I(Y;Z) (9.23)

with equality if and only if both (1) all impersonation attacks (in which Ỹ is chosen as a cryptogram y
with PY(y) 6= 0) are equally good, and (2) PY(y)PZ(z)

PYZ(y,z) has the same value for all (y, z) in supp PYZ.

From Simmons’ bound (9.23), we can draw the at-first surprising conclusion that to reduce the enemy’s
chance of success in an impersonation attack to an acceptably small value, one must allow the cryptogram
Y to give away much information about the secret-key Z. In general, however, it may be very difficult
for the enemy to exploit this information.

We now consider the modifications to the above analysis that must be made when the secret-key
cryptosystem includes a public randomizer R (in addition to the private randomizer S that was allowed
above). In this case, we assume that the enemy cryptanalyst observes R, but nothing else, before
producing his crooked cryptogram Ỹ in an impersonation attack. The enemy cryptanalyst can thus
optimize his attack for the observed value r of R. Letting PI|r denote his optimum success probability
when the event R = r occurs, we see that all the analysis for the case when there was no public randomizer
still applies, except that all the probability distributions used must be conditioned on the occurrence of
this event. In particular, Simmons’ bound (9.23) becomes

PI|r ≥ 2−I(Y;Z|R=r) (9.24)

where I(Y;Z|R = r) is the mutual information between the cryptogram Y and the secret key Z, given
that the event R = r has occurred. The optimum probability of successful impersonation PI can be
written according to the “theorem of total probability” as

PI =
∑
r

PI|rPR(r). (9.25)

Using (9.25) in (9.24) now gives
PI ≥

∑
r

2−I(Y;Z|R=r)PR(r). (9.26)

But 2−(·) is a strictly convex-∪ function on the whole real line so that Jensen’s inequality can be used
in (9.26) to give

PI ≥ 2
−P

r
I(Y;Z|R=r)PR(r)

, (9.27)

70

which is precisely the same as
PI ≥ 2−I(Y;Z|R).

We leave to the reader the task of checking that the conditions for equality in (9.27) are as stated in
the following summary.

Extended Simmons’ Bound on Impersonation Success Probability: When the secret-key cryp-
tosystem includes a public randomizer R (as well as possibly also a private randomizer S), then the
probability of success, PI , in an optimum impersonation attack satisfies

PI ≥ 2−I(Y;Z|R) (9.28)

with equality if and only if the following three conditions are satisfied:

1. I(Y;Z|R = r) has the same value for all r with PR(r) 6= 0;

2. all impersonation attacks (in which, when R = r is observed, Ỹ is chosen as a cryptogram y with
PY|R(y|r) 6= 0) are equally good, and

3. for every r such that PR(r) 6= 0,
PY|R(y|r)PZ(z)
PYZ|R(y, z|r) has the same value for all (y, z) in supp PYZ|R.

This is as much as we will say about Simmons’ theory of authenticity, but it should be enough to
make clear to the reader that the theory of authenticity is much more subtle than the theory of secrecy.
In practice, too, it is usually much harder to ensure authenticity than to ensure secrecy.

9.6 Unconditional Security and Computational Security

To this point we have assumed no computational constraint on the enemy cryptanalyst. Our analysis
of techniques for achieving secrecy and/or authenticity applies even when this enemy cryptanalyst has
unlimited time and computing power available to use in his attack. Security against such a computa-
tionally unrestrained enemy is now ususally called unconditional security; Shannon used the terminology
“theoretical” security. As we have seen, achieving unconditional security usually requires the advance
distribution of enormous quantities of secret key, more than is practically acceptable in all but a few
esoteric applications of cryptography.

Most cryptographic systems used in practice rely not on the impossibility of their being broken but
rather on the difficulty of such breaking. Security against an enemy who has a certain limited time and
computing power available for his attack is now usually called computational security; Shannon used the
terminology “practical” security.

Shannon postulated in 1949 that every secret-key cipher can in principle be described by a work
characteristic W (n) that measures its computational security against a ciphertext-only attack. Shannon
defined W (n) to be the average computational work (measured in some convenient units, e.g., in hours
of computing time on a specific supercomputer) that the enemy would expend to find all values of the
secret key consistent with the first n digits of the ciphertext, given that this enemy used the best possible
attacking algorithm. Shannon further hypothesized that the work function of a typical cipher would
have the general shape shown in Fig. 9.5. For n = 0, all values of the secret key are consistent with
the “empty observation” of the enemy cryptanalyst; no computational work is required to say this. For

71

small n, it generally becomes more difficult as n increases to say what values of the secret key are no
longer possible. But one can expect that, when the number of possible values of the secret key is not
too large, it becomes easier as n increases to specify this small set of possible values consistent with the
n observed digits of the ciphertext.

6

-

W (n)

nu

n

..

Figure 9.5: Shannon’s postulated work characteristic for a typical secret-key cipher (nu = unicity dis-
tance; the dashed portion of the curve indicates that the value of the secret key is not yet uniquely
determined).

The fact is, however, that there is no really practical secret-key cipher whose work characteristic is
known. It is at the present time not possible to identify the best possible attack on such a cipher, nor
is it even possible to give useful lower bounds on the computational effort of the best possible attack.
Instead, cryptographers today must rely on what one might call the historical work characteristic Wh(n)
of the cipher, which we can define as the average computational work that the enemy would expend
to find all values of the secret key consistent with the first n digits of the ciphertext, given that the
enemy used the best possible attacking algorithm known to the cryptographer. How good such a measure
is depends obviously on the skill of the cryptographer.

The design of secret-key ciphers is today far more art than science. Such designs are generally guided
by two principles suggested by Shannon: confusion and diffusion. The enciphering transformations should
greatly complicate the manner in which the statistics of the plaintext affect the statistics of the ciphertext,
i.e., they should create confusion. To forestall divide-and-conquer attacks, a single plaintext digit and/or
a single secret-key digit should influence the values of many ciphertext digits, i.e., the cipher should cause
diffusion of the plaintext statistics and/or the secret-key statistics. But it is primarily through study of
how earlier cryptographic systems have been broken that the cryptographer today develops secret-key
ciphers that are (presumably) computationally secure. This is obviously not a very satisfactory state of
affairs, but then cryptography is still a young science, albeit an old art.

9.7 Public-key Cryptography

In 1976, two Stanford University researchers, Whitfield Diffie and Martin E. Hellman, published a paper
entitled “New Directions in Cryptography”, which shook the foundations of cryptographic thinking.
Diffie and Hellman suggested that it is possible to devise computationally secure cryptographic systems

72

that required no secure channel for the exchange of secret keys. Ralph Merkle, then a graduate student
at the University of California, Berkeley, independently formulated the basic ideas of such “public-key
cryptography” and submitted a paper thereon at almost the same time as Diffie and Hellman, but his
paper was published almost two years later than theirs so that he has not always received due credit for
his discovery.

The Diffie-Hellman paper created intense excitement among cryptographic researchers and, indeed,
stimulated a much increased interest in cryptography. It is hardly an exaggeration to say that the
Diffie-Hellman paper marks the beginning of active open research in cryptography.

The fundamental contribution of the Diffie-Hellman paper consisted in two crucial definitions, that of
a one-way function (which they borrowed from R. M. Needham’s work on computer passwords) and that
of a trapdoor one-way function (which was completely new), together with suggestions as to how such
functions could eliminate the need for the exchange of secret keys in computationally-secure cryptographic
systems. Public-key systems can never provide unconditional security; indeed, Shannon and Simmons
have given us tight lower bounds on the amount of secret-key that is needed to obtain unconditional
security for a secrecy system and for an authenticity system, respectively. The breakthrough provided
by Diffie and Hellman was their realization that, if we decide to rely on computational security as indeed
we must in most practical cryptographic applications, then we no longer require the secure exchange of
secret keys.

9.8 One-Way Functions

A one-way function as defined by Diffie and Hellman is a function f such that (1) for every x in the
domain of f it is easy to compute f(x), but (2) for virtually all y in the range of f it is computationally
infeasible to find an x such that f(x) = y. The first thing to note about this definition is that it is
only semi-mathematical. The words “easy”, “virtually all” and “infeasible” that appear therein are not
precise terms, but it is not hard to imagine that they could be given precise meanings should this ever
become necessary. The virtue of not precisely specifying these terms is that it does not force us to settle
now upon a precise definition that we might later find to be inadequate or to be far inferior to another
precise definition; the intuitive meaning of the Diffie-Hellman definition is clear enough to serve our
purposes.

It is less clear how a one-way function could be cryptographically useful. The original use of one-way
functions in password systems is perhaps the most obvious application. Suppose user i uses the password
xi and presents this password initially to the system, which then computes yi = f(xi) and stores the
pair (i, yi) in the password file. When later someone purporting to be user i presents a password x̃ to
the system, the system again computes ỹ = f(x̃) and checks whether (i, ỹ) is in the password file. If
so, the user is granted access; if not, he is denied access to the system. The virtue of this system is
that the password file need not be kept secret (although there is also no reason to make it public.) An
intruder who somehow gets access to the password file obtains no benefit therefrom if f is truly a one-way
function. For instance, the entry (i, yi) is useless to such an intruder as it is computationally infeasible
for the intruder to find an x such that yi = f(x), and he needs such an x to impersonate user i in the
access-control protocol. It is interesting to note that this first application of one-way functions was to
a system for providing authenticity. It was left to Diffie and Hellman to suggest how certain one-way
functions could be used to provide secrecy.

73

9.9 Discrete Exponentiation and the Diffie-Hellman-Pohlig

(Conjectured) One-Way Function

Let 〈G, ∗〉 be a cyclic group of order n (see Section 7.7) and let α be a generator of this group. Then by
discrete exponentiation to the base α in 〈G, ∗〉 we mean the function f : Zn → G such that

f(x) = αx. (9.29)

We know from our discussion in Section 7.7 that the n values of f(x) as x ranges over Zn =
{0, 1, . . . , n − 1} are all distinct. Thus, the inverse function f−1 : G → Zn exists and is called the
discrete logarithm to the base α. Instead of x = f−1(y), one usually writes the more suggestive

x = logα y. (9.30)

We noted already in Section 7.7 that αx1 ∗αx2 = αx1⊕x2 where the addition in the exponent is modulo
n addition. Equivalently, we can write

logα(y1 ∗ y2) = logα y1 ⊕ logα y2. (9.31)

Similarly, because for any integer i and x the product ix can be written as Qn + (i � x) where �
denotes multiplication modulo n and Q is some integer, it follows that

(αx)i = αix = αQn+(i�x) = (αn)Qαi�x = αi�x.

Equivalently, we can write
logα(yi) = i � logα y. (9.32)

We see from (9.31) and (9.32) that the discrete logarithm obeys the two usual rules for ordinary
logarithms except that the arithmetic required for the discrete logarithm is that of the ring of integers
modulo n, 〈Zn,⊕,�〉.

One might suspect that, for some choice of the cyclic group 〈G, ∗〉 of order n and the base α,
the discrete logarithm might be a one-way function because of the following two facts: (1) discrete
exponentiation (i.e., given x, computing αx) is always “easy”, requiring at most 2 log2 n multiplications
in G when the square-and-multiply algorithm is used (see Problem 9.4), but (2) the fastest known
algorithm (Shank’s algorithm) for finding discrete logarithms (i.e., given y, computing logα y) requires
about

√
n multiplications (see Problem 9.7). However, one must not be too hasty in concluding that

discrete exponentiation is one-way. If n has a special form or if the group 〈G, ∗〉 has a special structure,
there may be major shortcuts to Shank’s algorithm; moreover, there is no proof that there are not
algorithms for computing the general discrete logarithm that are much faster than Shank’s algorithm.

The Diffie-Hellman-Pohlig conjecture is that discrete exponentiation in the multiplicative group of
GF (p) when the base α is a primitive element of GF (p) is a one-way function provided that p is a large
number (say, at least 100 decimal digits in length) such that n = p − 1 also has a large prime factor
(ideally, n = p − 1 = 2p′ where p′ is also a prime). [This conjecture was made by Diffie and Hellman
in 1976 whithout the proviso that n must have a large prime factor; the necessity of this condition was
added by S. C. Pohlig and Hellman in 1978.] The conjecture still stands as of this writing in 1991. No
proof of the conjecture has been forthcoming, but neither has an algorithm been found for inverting the

74

Diffie-Hellman-Pohlig function that is substantially faster than Shank’s algorithm. In other words, the
historical evidence in favor of the conjecture has been increasing, but hard theoretical evidence has not
been produced.

9.10 The Diffie-Hellman Public Key-Distribution System

In their 1976 paper, Diffie and Hellman suggested an ingenious scheme for creating a common secret key
between sender and destination in a network without the need for a secure channel to exchange secret
keys; their scheme relies on the one-wayness of discrete exponentiation. Suppose f(x) = αx is truly a
one-way function and is known to all users of the network. Diffie and Hellman postulated a Trusted
Public Directory (TPD) containing non-secret but authentic information that is available to all users of
the network.

Upon joining the network, each user (say, user i) secretly and randomly chooses a private number
xi and then computes his public number yi = αxi . He identifies himself in some satisfactory way to the
custodian of the TPD, who then places the pair (i, yi) in the TPD. Any user in the network is permitted
to fetch any information in this TPD.

When two users, say users i and j, later wish to communicate secretly, each fetches the public
number of the other from the TPD, then raises the fetched number to a power equal to his own private
number (by square-and-multiply). Thus, user i computes yxi

j = (αxj)xi = αxjxi and user j computes
y

xj

i = (αxi)xj = αxixj . This number αxixj that both user i and user j can compute is their common
secret, which they can now use as the secret key in a conventional secret-key cryptosystem. What the
Diffie-Hellman scheme provides is thus a public way to distribute secret keys, and this scheme is usually
called the Diffie-Hellman public key-distribution system.

An attacker, who wishes to eavesdrop on the secret conversation between user i and user j and who
is able to take discrete logarithms, can easily break the system by fetching both yi and yj from the TPD,
taking the logarithm of one of these (say, xi = logα yi) and then exponentiating by square-and-multiply
to get yxi

j = αxixj , the desired secret key. But if the discrete exponentiation used is truly one-way, this
attack is computationally infeasible. As of this writing in 1991, no one has produced an attack on the
Diffie-Hellman public key-distribution scheme that is not computationally equivalent to computing the
discrete logarithm, nor has anyone proved that all attacks on this system are computationally equivalent
to computing the discrete logarithm.

Although the Diffie-Hellman public key-distribution system is the first public-key cryptographic tech-
nique ever proposed, it is still generally considered to be one of the best.

9.11 Trapdoor One-Way Functions, Public-Key Cryptosystems

and Digital Signatures

The second crucial definition used by Diffie and Hellman is considerably more subtle than that of a
one-way function. A trapdoor one-way function as defined by Diffie and Hellman is actually a family of
invertible (or “bijective”) functions fz, indexed by a parameter z (the “trapdoor”), such that (1) when
z is known, it is easy to find algorithms Ez and Dz that easily compute fz and f−1

z , respectively, but

75

(2) for virtually all z and virtually any y in the range of fz, it is computationally infeasible to find the x

such that fz(x) = y when z is not known, even if the algorithm Ez is known. For such a function to be
cryptographically useful, one needs to add to the Diffie-Hellman condition the additional condition that
(3) it is easy to pick a value of z at random.

The cryptographic utility of a trapdoor one-way function is readily apparent; it can be used to create
what Diffie and Hellman called a Public-key cryptosystem (PKC). Each user in a network secretly and
randomly chooses a value of the trapdoor, say user i chooses zi. This is easy to do because of condition
(3) above. User i then computes his decryption algorithm Dzi

; he also computes the corresponding
encryption algorithm Ezi

that he then places in the Trusted Public Directory (TPD) [after satisfying
the custodian of their TPD that he is indeed user i]. Usually, the algorithms Ezi

and Dzi
are known in

advance except for the values of certain parameters; it suffices then for user i to place the parameters
of Ezi

in the TPD and user i need only to store the parameters of Dzi
to be able to use his decryption

algorithm. The parameters of Ezi
are called the public key of user i, while the parameters of Dzi

are
called the private key of user i.

Should user j wish to send a secret message x to user i, he merely fetches the public key of user i

from the TPD, then uses the algorithm Ezi
to compute the cryptogram y = fzi

(x). User i can decipher
this message since his private key permits him to use the algorithm Dzi

to compute f−1
zi

(y) = x. But
if fz is truly a trapdoor one-way function, it will be computationally infeasible for any other user to
decipher this message intended for user i.

Diffie and Hellman also showed in 1976 that, provided the domain and the range of the trapdoor
one-way function fZ coincide for every z (in which case fZ is called a trapdoor one-way permutation), fZ

can also be used to ensure the authenticity of messages or, as they more colorfully described it, to create
digital signatures. Here Diffie and Hellman assumed that legitimate messages have sufficient internal
structure to be reliably distinguished from random sequences. If fZ is a trapdoor one-way permutation
and user j wishes to sign a message x so that it is unmistakable that it came from him, user j applies his
decryption algorithm to x to compute the signed message x′ = f−1

zj
(x). Any other user, say user i, who

obtains x′ can fetch user j’s public key from the TPD, then use algorithm Ezj
to compute fzj

(x′) = x.
However, only user j knows how to write the meaningful message x as the random-looking string x′; it
is computationally infeasible for any other user when given x to find the x′ such that fzj

(x′) = x. Of
course, the scheme as just described provides no secrecy. If secrecy is also desired, user j [after forming
x′ = f−1

zj
(x)] could fetch the public key of user i from the TPD, then use the algorithm Ezi

to compute
the cryptogram y′ = fzi

(x′). User i would first decrypt this cryptogram y′ with the help of his own
private key, then he could check its authenticity with the help of user j’s public key.

There are many cryptographers who think that the digital-signature capability of trapdoor one-way
permutations is the most important contribution of public-key cryptography.

9.12 The Rivest-Shamir-Adleman (RSA) (Conjectured) Trap-

door One-Way Function

Although Diffie and Hellman shrewdly defined trapdoor one-way functions in their 1976 paper and clearly
pointed out the cryptographic potential of such functions, they did not even hazard a conjecture as to a
possible such function. The first such proposal was made in 1978 by the M.I.T. researchers R. L. Rivest,

76

A. Shamir and L. Adleman (RSA for short). The RSA “function” is the family of functions fz where

z = (p1, p2, e), (9.33)

in which p1 and p2 are distinct odd primes (whose product we denote by m = p1p2) and in which e is a
unit of Zϕ(m), and where fz : Zm → Zm is the e-th power function

fz(x) = xe (9.34)

in Zm, the ring of integers modulo m = p1p2. Because the domain and range of fz coincide for all z, the
precise RSA conjecture is that fz is a trapdoor one-way permutation, provided that p1 and p2 are both
large primes (RSA suggested that they have about 100 decimal digits) each such that p1 − 1 and p2 − 1
both have large prime factors, and that e is chosen uniformly at random in Z∗

ϕ(m). [The choice e = 1
is obviously bad and the choice e = −1 is not much better, but there seems to be no other especially
bad choice for e. Nonetheless, it is to err on the safe side to make the random choice of e that RSA
recommend.]

We now have before us the following tasks: First, we must show that when z is known, it is easy to
find an algorithm Ez that easily computes fz. Second, we must show that fz is indeed an invertible (or
bijective) function. Third, we must show that, when z is known, it is easy to find an algorithm Dz that
easily computes f−1

z . Fourth, we must make it at least plausible that, for virtually all z = (p1, p2, e) and
virtually all y ∈ Zm, it is computationally infeasible to find the x ∈ Zm such that y = xe, even when
Ez is known. Fifth and finally, we must show that it is easy to choose the trapdoor z = (p1, p2, e) at
random.

When the trapdoor z = (p1, p2, e) is known, one can easily multiply p1 and p2 to get the modulus
m = p1p2. Thus, one easily obtains the parameters m and e needed to compute the power function
(9.34) by the square-and-multiply algorithm, which is our desired algorithm Ez for easily computing fz.
The parameter pair (m, e) needed to specify Ez is the public key of the RSA system.

When z = (p1, p2, e) is known, one can easily compute ϕ(m) = ϕ(p1p2) = (p1 − 1)(p2 − 1), as follows
from (7.36). Because e is a unit of Zϕ(m), we can then easily find its multiplicative inverse d = e−1 in
Zϕ(m) by using, say, Euclid’s (or Stein’s) extended greatest common divisor algorithm with inputs ϕ(m)
and e, as was shown in Section 7.5. We now claim that the power function

gz(y) = yd (9.35)

in Zm is in fact the desired inverse function f−1
z . If this claim is true, then we can take the square-

and-multiply algorithm to be our easy-to-find algorithm for easily computing f−1
z and we can take the

parameter (m, d) to be the private key of the RSA system. Our task thus reduces to showing that

(xe)d = x (9.36)

holds for all x in Zm. Note that de = Qϕ(m)+1 in Z, where Q is some integer, because de = 1 in Zϕ(m).
Suppose first that x is a unit of Zm (which actually covers all cases of real interest since otherwise either
x is 0 or gcd(m, x) is either p1 or p2). Then

xde = xQϕ(m)+1 =
(
xϕ(m)

)Q

x = x

where we have made use of Euler’s theorem from Section 7.8. Thus (9.36) holds when x is a unit of Zm,
and it holds trivially when x = 0. It remains only to consider the case when x is a non-zero non-unit

77

of Zm, i.e., when x is divisible by either p1 or p2, but not both. With no loss of essential generality,
suppose that p1, but not p2, divides x. Then the Chinese remainder theorem (CRT) transform (x1, x2)
of x [see Section 7.6] for the modulus m1 = p1 and m2 = p2 is (0, x2) where x2 6= 0. The CRT transform
of xde is then (0, xde

2) where xde
2 is computed in Zp2 = GF (p2), as follows from the CRT characterization

of multiplication in Zm. But

xde
2 = x

Qϕ(m)+1
2 =

(
x

ϕ(m)
2

)Q

x2 =
(
x

(p2−1)
2

)(p1−1)Q

x2 = x2

in GF (p2), where we have made use of Fermat’s theorem from Section 7.8. Thus, the CRT transform of
xde is (0, x2), the same as the CRT transform of x. It now follows from the CRT that xde = x, which
completes the proof that (9.36) holds for all x in Zm, and hence that

f−1
z (y) = yd (9.37)

in Zm is indeed the inverse of the RSA function fz.

We have now reached the fourth task of showing that, for virtually all z and virtually all y in Zm,
it is at least plausibly computationally infeasible to find the x such that y = fz(x), even if Ez is known
or, equivalently, when the public key (m, e) is known. If we could factor m, then of course we would find
p1 and p2 and hence learn the trapdoor z = (p1, p2, e). The RSA conjecture really reduces to the two
conjectures that, first, any way of inverting fz given the public key (m, e) is computationally equivalent
to factoring m and, second, that factoring m is computationally infeasible when p1 and p2 are randomly
chosen large primes such that p1 − 1 and p2 − 1 both have large prime factors. There is some hard (but
incomplete) evidence for the first of these two conjectures. If we could find ϕ(m) from (m, e) then we
could easily compute d = e−1 in Zϕ(m) and hence easily invert fz. But finding ϕ(m) also tells us the
value of

−b = m − ϕ(m) + 1

= p1p2 − (p1 − 1) (p2 − 1) + 1

= p1 + p2

and we already know the value of
c = m = p1p2

so that we can now easily find p1 and p2 by computing the two roots of the real quadratic equation

X2 + bX + c = 0

with the aid of a simple integer square-root algorithm. Thus, breaking RSA by finding ϕ(m) is compu-
tationally equivalent to factoring m. In fact, all attacks thus far proposed against RSA have turned out
to be computationally equivalent to factoring m – but no proof has been forthcoming that this must be
the case. There is no hard evidence, however, that factoring of integers is inherently difficult, but there
is much historical evidence in support of this second conjecture. Anyone who has tried to improve upon
known factoring algorithms soon convinces himself that this is a very hard problem. As of this writing in
1991, the best general factoring algorithms can factor a 100 decimal digit number in about 10 days (i.e.,
about 0.027 years) on the fastest supercomputer. Moreover, all fast general factoring algorithms have
running times (either proved or conjectured) that grow with the size of the integer m to be factored in
such a way that, when m has between about 50 and 200 decimal digits, the factoring time increases by a
factor of 10 when m is increased by about 15 decimal digits (i.e., about 50 binary digits). Thus, it would

78

take about (0.027) × 10(200−100)/15 > 105 years today to factor an m having about 200 decimal digits,
which is the size recommended by RSA. The RSA system is safe from an attack made by factoring, at
least until revolutionary advances in factoring algorithms have been made!

We now come to our final task, showing that it is easy to choose randomly the trapdoor z = (p1, p2, e)
for RSA. How to find easily the two very large primes needed is such an interesting story in itself that
we postpone this discussion to the next section. When p1 and p2 have been obtained, it is easy to choose
e uniformly random in Z∗

ϕ(m). One merely chooses e uniformly random in Zϕ(m), then checks whether e

is indeed a unit by computing gcd(ϕ(m), e) with, say, Euclid’s (or Stein’s) gcd algorithm and checking
to see if the result is 1. If not, one makes another random choice, etc.. The probability of success on
any random choice is ϕ(ϕ(m))/ϕ(m) which, because p1 − 1 and p2 − 1 have large prime factors, is large
so that only a few random choices will be needed on the average. For instance, if p1 − 1 = 2 p′1 and
p2 − 1 = 2 p′2 where p′1 and p′2 are also odd primes, the probability of success on any random choice is

ϕ(ϕ(p1p2))
ϕ(p1p2)

=
ϕ((p1 − 1) (p2 − 1))

(p1 − 1) (p2 − 1)
=

ϕ(4 p′1p
′
2)

(p1 − 1) (p2 − 1)
=

2 (p′1 − 1) (p′2 − 1)
4p′1p

′
2

≈ 1
2

so that only two random choices will be needed on the average to find e.

9.13 Finding Large Primes

According to the well-known number theorist H.W. Lenstra, Jr., “all modern primality testing rests on
generalizations of Fermat’s theorem”. Fermat’s theorem implies that when m is a prime number, then
Rm(bm−1) = 1 for any integer b, 2 ≤ b < m (cf. Section 7.8). One concludes that a prime number must
pass the following test.

Fermat’s Test: Let b and m be integers and suppose 2 ≤ b < m. If

Rm(bm−1) 6= 1, (9.38)

then m is not a prime.

Note that b = m − 1, which equals 	1 in Zm, always passes the Fermat test, i.e., if m is odd
Rm((−1)m−1) = 1. Therefore, one should always choose the base b within the interval 2 ≤ b < m− 1 for
primality testing. If Rm(bm−1) = 1, then one says that m is a pseudoprime to the base b (but m could
also be a genuine prime.)

Example 9.13.1 Let m = 91. By choosing, e.g., b = 2 and by computing R91(290) = 64, Fermat’s test
implies that 91 is not a prime.

Let m = 1105 and choose b = 3. Then, R1105(31104) = 1 so that 1105 is a pseudo-prime to the base
3 and hence one can draw no conclusion as to whether m is a prime or not. It can be shown that the
integer m = 1105 is a Carmichael number, i.e., it satisfies Rm(bm−1) = 1 for all integers b, 2 ≤ b < m,
which are relatively prime to m. Hence, by using only the Fermat test there is little chance to conclude
that m = 1105 is composite by randomly choosing the base b in the interval 2 ≤ b < 1105. In fact,
Rm(bm−1) 6= 1 if and only if gcd(m, b) 6= 1 and therefore, only m − 2 − ϕ(m) = 335 of all m − 2 = 1103
possible choices for b will not pass the Fermat test.

To overcome the weakness of the Fermat test shown in Example 9.13.1, one can generalize this test by
imposing additional conditions relying on square root properties in the finite field GF (p). If p is an odd

79

prime, then 1 ∈ GF (p) has the two square roots 1 and 	1, i.e., if x2 = 1 then x = 1 or x = 	1 = p − 1
in GF (p). From this fact, one obtains the following test that an integer m must pass, if it is a prime.

Square-Root Test: Let m be an odd integer at least 3 and suppose that x ∈ Zm satisfies x2 = 1. If
x 6= 1 and x 6= m − 1, then m is not a prime.

We can combine the Fermat test and the square-root test by choosing x = Rm(b(m−1)/2), where
2 ≤ b < m − 1. If the odd integer m passes the Fermat test, then x2 = Rm(bm−1) = 1, and one can
apply the square-root test.

Example 9.13.2 Let m = 1105 and b = 3. From Example 9.13.1 we know that m passes the Fermat
test, but it does not pass the square-root test because x = Rm(b(m−1)/2) = R1105(3552) = 781. Hence,
m is not prime (which is obvious because 5 clearly divides m).

If x = Rm(b(m−1)/2) = 1 and m−1
2 is even, one can apply the square-root test again to y =

Rm(b(m−1)/4). Iterating this procedure, one obtains one of the most efficient and widely used primality
test, viz. Miller’s test, which is given in flowchart form in Fig. 9.6.

Miller’s Test: Let m be an odd integer at least 3 and let b be a base satisfying 2 ≤ b < m − 1 and
suppose m − 1 = 2sQ, where Q is odd. If all of the following inequalities

Rm(bQ) 6= 1, Rm(bQ) 6= m − 1, Rm(b2Q) 6= m − 1, . . . , Rm(b2s−1Q) 6= m − 1

hold, then m is not prime.

If m passes Miller’s test for a given b, it is called a strong pseudoprime to the base b. The efficiency
of Miller’s test is guaranteed by the following theorem that we state without proof.

Rabin’s Theorem: If m is not a prime, then m can pass Miller’s test for at most bm/4c possible choices
of the base b, 2 ≤ b < m.

Corollary to Rabin’s Theorem: The probability that m passes Miller’s test for n independent random
choices of the base b, given that m is not a prime, is less than or equal to 1

4n .

Thus, the two RSA primes can be found to any desired confidence by applying Miller’s test for n

randomly chosen bases. Using the square-and-multiply algorithm to compute Rm(bQ) and a check to
avoid that m is divisible by some small prime number, one obtains the following efficient algorithm to
find RSA primes.

Efficient Finding of “Probable Primes” for RSA:

Precomputation:

Compute r ≈ 10100 as r = 2 · 3 · 5 · 7 · 11 · 13 · 17 · . . . (product of successive smallest primes).

Computation:

1. Randomly choose an m in 1 ≤ m ≤ 10100 (perhaps eliminating some “dumb” choices) and check
whether gcd(r, m) = 1. If no, repeat this step (which requires only 333 substractions by Stein’s
algorithm).

2. Randomly choose a base b (2 ≤ b ≤ m− 2) and check whether m passes Miller’s test. If no, return
to step 1.

80

Start

?
m, b

(2 ≤ b < m − 1, m odd)

?
Find s and Q such that
m − 1 = 2sQ, Q odd

?
(Exponentiation)
V <— Rm(bQ)

?

V = 1?

?
i <— 1

?

?

V = m − 1?

?

i = s?

?
V <— Rm(V ∗ V)

i <— i + 1

-

?

...............................
..

...................

“m is NOT a strong
pseudoprime
to the base b”

?
Stop

...............................
..

...................

“m IS a strong
pseudoprime
to the base b”

?
Stop

?

-

Yes

Yes

Yes

No

No

No

Figure 9.6: Flowchart of Miller’s Test.

81

3. Repeat step 2 until you are convinced that m is a prime.

NOTE: One might wish simultaneously to check both m and m−1
2 for primeness to ensure that p− 1 has

a large prime factor.

82

Bibliography

The following textbooks and introductory papers are recommended supplementary reading.

Algebra

I. N. Herstein, Topics in Algebra, 2nd Ed., Wiley, 1975.

N. Jacobson, Basic Algebra I, Freeman & Co., San Francisco, 1974.

S. Lang, Undergraduate Algebra, 2nd Ed., Springer, 1990.

Algebraic Coding Theory

R. E. Blahut, The Theory and Practice of Error Control Codes, Addison-Wesley, 1984.

J. H. van Lint, Introduction to Coding Theory, GTM, Springer, 1982.

F. J. MacWilliams and N. J.. A. Sloane, The Theory of Error-Correcting Codes, North-
Holland, New York, 1977.

W. W. Peterson and E. J. Weldon, Jr., Error-Correcting Codes, 2nd Ed., MIT Press, 1972.

C. E. Shannon and W. Weaver, The Mathematical Theory of Communications, University of
Illinois Press, 1963.

S. Lin and D. J. Costello Jr., Error Control Coding: Fundamentals and Applications, Prentice-
Hall, Inc., Englewood Cliffs, New Jersey, 1983.

Cryptography

C. E. Shannon, “Communication Theory of Secrecy Systems”, B.S.T.J, Vol.28, pp. 656-715,
Oct. 1949.

Contemporary Cryptology: The Science of Information Integrity (Ed. G. J. Simmons), IEEE
Press, 1992.

A. J. Menezes, P. C. van Dorschof, S. A. Vanstone, Handbook of Applied Cryptography, CRC
Press, 1997.

83

