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Abstract

Applications implemented on critical systems are subject to both safety critical and real-time constraints. Classi-

cally, applications are specified as precedence task graphs that must be scheduled onto a given target multiprocessor

heterogeneous architecture. We propose a new method for optimizing simultaneously two objectives: the execution

time and the reliability of the schedule. The problem is decomposed in two successive steps: a spatial allocation

during which the reliability is maximized (randomized algorithm), and a scheduling during which the makespan is

minimized (list scheduling algorithm). It allows us to produce several trade-off solutions among which the user can

choose the solution that fits the application’s requirements the best. Reliability is increased by replicating adequate

tasks onto well chosen processors. Our fault model assumes that processors are fail-silent, that they are subject to

transient failures, and that the occurrences of failures follow a constant parameter Poisson law. We assess and vali-

date our method by running extensive simulations on both random graphs and actual application graphs. They show

that it is competitive, in terms of makespan, compared to existing reference scheduling methods for heterogeneous

processors (HEFT), while providing a better reliability.

1 Introduction

This work concerns reliability for distributed safety critical reactive systems. Such systems should be reliable and effi-

cient for reacting to their environment. We study the bi-objective optimization problem for maximizing the reliability

and minimizing the execution time.

Informally, an application is represented by a precedence task graph whose vertices are the instructions and whose

edges are dependencies between them. The maximal duration of each task is known, as well as the topology of the
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multiprocessor architecture. The failure rate per time unit of each processor is also an input of the problem. We are

looking for a scheduling algorithm that optimizes simultaneously both the reliability and the makespan (that is, the

execution time of the scheduled application). A scheduling algorithm consists of a spatial allocation and a temporal

allocation. Active replication of some well-chosen tasks is used for increasing the reliability.

This problem has been partially studied. Several algorithms have been proposed for minimizing only the makespan,

some of them use the replication of tasks for limiting the influence of the communications. This is usually in con-

tradiction with the replication used for increasing the reliability. In presence of replication, the reliability is usually

difficult to compute. Thus, some assumptions about duplications should be made. A few solutions have been proposed

for optimizing both objectives, but they provide only one solution, that is a single point in the (makespan, reliability)

space [4, 9, 34].

We propose a new replication scheme that allows the reliability to be easily computed. Our main contribution is

to propose a trade-off approach for maximizing the reliability and minimizing the makespan in static multiprocessor

scheduling on heterogeneous multiprocessor architectures. We consider successively the problem of determining a

spatial allocation and then a temporal allocation. Several random choices are repeated for the first phase, while the

second is solved by an algorithm derived from the well-known list scheduling algorithm HEFT. By taking the reliability

as a constraint and by minimizing the makespan for several values of the reliability, we are therefore able to provide a

set of several non-dominated compromise solutions.

This paper is organized as follows: Firstly, we present the general scheduling problem with reliability with a new

model of replication in Sections 2 and 3. Then, we discuss related work in Section 4. The new two-phase scheduling

method is presented in Section 5. Finally, some experiments are run for assessing the method. The results are analyzed

in Section 6 and compared to HEFT [41], which is a reference scheduling algorithm.

2 Problem Statement

2.1 System Model

Let us consider an application graph G = (T = {t1, . . . , tn}, E), where T is a set of tasks and E is a set of

precedence constraints between tasks. For each directed edge e = (ti, tj) ∈ E, the amount of data to transfer from ti

to tj is datatitj .

We are also given a network of heterogeneous (unrelated) processorsQ = {q1, . . . , qm}. The processing time of

task t on processor q is denoted by ptq . The communication network is fully connected and the data link between q and

q′ has a bandwidth equal toBWqq′ . The inter-processor communication time between ti on qi and tj on qj is therefore
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commtiqitjqj = datatitj/BWqiqj . The intra-processor communication time is very small and can be neglected, as

is usually the case. Moreover, communications between processors can be overlapped by local computations (this is

realistic since most processors now have a communication dedicated co-processor).

A static multiprocessor schedule of an application graph G = (T,E) onto a network of processors Q =

{q1, . . . , qm} consists of an assignment of each task of T to one processor of Q, along with a starting time. It is

therefore formally represented by two functions:

• A spatial allocation function π that gives the processor where each task is to be executed: π : T → Q. It can

be seen either as a set of pairs (t, q) ∈ T × Q, or as a matrix of size n ×m whose elements belong to {0, 1},

where a ‘1’ (resp. a ‘0’) in position (t, q) means that t is scheduled on q (resp. is not scheduled on q).

• A temporal allocation function σ that gives the starting time of each task: σ : T → R+.

Finally, the length or makespan of a schedule (denoted Cmax) is the completion time of its last operation. For-

mally, Cmax = maxt∈T (σ(t) + ptπ(t)). This problem is classic and basic results are available in the chapter 3 of [25].

The above two definitions actually concern the particular case of a schedule without replication. For the general

case of a schedule with active replication, a schedule is formally defined as:

• π gives the set of processors where each task’s replica is scheduled: π : T → 2Q. It can also be seen as

a two-variable function: π : T × Q → {0, 1}. For the ease of notation, we write π(qi) the set of tasks

scheduled on processor qi. Finally, we write π ⊆ π′ iff ∀t ∈ T, π(t) ⊆ π(t), or equivalently, π ⊆ π′ iff

∀(t, q) ∈ T ×Q, π(t, q) ≤ π′(t, q).

• σ gives the starting time of each task’s replica onto each processor: σ : T ×Q→ R+.

For a schedule without replication, π is such that ∀t ∈ T,Σmj=1π(t, qj) = 1. For a schedule with replication, it is

such that ∀t ∈ T,Σmj=1π(t, qj) = rt, where rt is the number of replicas of task t, called its replication factor. The

subset of processors on which t is executed is denoted π(t). This notation is somehow abusive but it carries the right

semantics.

2.2 Fault Model

The processors of Q are assumed to be fail-silent [11]. All the failures are transient and we assume that their maximal

duration is such that a failure affects only the task currently executed on the faulty processor, and not the following

tasks.
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We also assume that communication links are reliable. This assumption can be met by replicating all the com-

munication links a sufficient number of times to make them significantly more reliable than the processors, and by

implementing an appropriate communication protocol able to tolerate transparently their failures (as in [15]).

Failure occurrences are supposed to be statistically independent events, and the occurrence of a failure on a

processor q follows a Poisson’s law with constant parameter λq , called the failure rate by time unit of q. It follows

that the probability that q is operational in a time slot of length ` is e−λq.`. Conversely, the probability that q fails

during a time slot of length ` is 1 − e−λq.`. Modern fail-silent processors can have a failure rate in the order of 10−6

per hour.

A schedule is operational iff all its tasks are operational. A task t scheduled on processor q is operational iff q

does not fail during the whole duration of t. Therefore, the probability that t is operational on q is:

P(t, q) = e−λq.ptq (1)

Finally, the reliability of a schedule is the probability that it is operational. We will denote by UR the unreliability of

a schedule, equal to 1 minus its reliability.

2.3 Bi-objective Problem Definition

Given an application graph G and a set of processors Q, the problem is to determine a static distributed schedule with

active replication of G onto Q, with a minimal Cmax and a minimal UR. This is a bi-objective static scheduling

problem.

In multi-objective optimization, optimality is not defined as an absolute best solution. We will consider the notion

of Pareto dominance [42, 40] in order to get a partial order between solutions. The quality of a solution is represented

by the values of all the objective functions. For instance, solution (5, 4), whose first objective is equal to 5 and whose

second objective is equal to 4, is neither better nor worse than solution (4, 5). Those two solutions are not comparable

and said to be Pareto independent.

DEFINITION 1 Consider two solutions S0 and S1 of a multi-objective problem. S0 Pareto dominates S1 if S0 is as

good as S1 for all objective functions and strictly better on at least one. A solution is said to be Pareto optimal if no

Pareto solution dominates it. The set of all Pareto solutions is the Pareto set of the problem.

Determining if a point is Pareto-optimal or not is NP-hard, as minimizing the makespan is already a NP-hard

problem (see chapter 2 of [25]).
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3 Principle

3.1 Task Replication

The idea is to improve the reliability of the schedule thanks to the active replication of tasks. This technique is also

known as the state machine approach [33]. It involves scheduling several copies of a task onto as many distinct

processors, so that they can be executed in parallel by those processors.

Adding more replicas decreases the UR of the schedule, but in general increases its Cmax. In this sense, we say

that both objectives Cmax and UR are antagonistic.

In order to get a worst-case scheduling, we force a replica (t, q) to await for the completion of all the replicas of

all its predecessor tasks before starting its own execution. We call this replication scheme replication for reliability.

It differs from the usual replication considered in scheduling, in which a replica only awaits for the completion of the

first replica of all its predecessor tasks. This difference is illustrated in Figure 1. Figure 1(e) is the task DAG to be

scheduled. Figures 1(a) and (c) are two possible schedules onto a fully connected three processors architecture: the

former uses the replication for efficiency scheme, while the latter uses the replication for reliability scheme. In these

schedules, each task is represented by a box whose width is proportional to its execution time on its processor; each

inter-processor communication is represented by an arrow whose projection on the time axis is proportional to the

communication delay. Formally, in the replication for reliability case (Figure 1(c)), the precedence constraints can be

written as: ∀(ti, tj) ∈ E,∀qj ∈ π(tj), σ(tj , qj) ≥ maxqi∈π(ti)(σ(ti, qi) + ptiqi
+ commtiqitjqj

). In the replication

for efficiency case, the max would be replaced by a min.

3.2 Computing the Reliability of a Spatial Allocation

A spatial allocation can be represented as a Reliability Block Diagram (RBD) (see for instance [27, 35]). Formally,

an RBD is a directed graph (N,E), such that each vertex of N is a block representing an element of the allocation

(i.e., a replica of a task placed on a processor), and each edge of E is a causality link between two blocks. N has

two particular vertices namely, the source S and the destination D (S has no incoming edges and D has no outgoing

edges). A RBD is operational iff there exists at least one operational path from S to D. A path is operational

iff all its blocks are operational. The probability that a block is operational is equal to its reliability (computed by

Equation (1)). By construction, the probability that a RBD is operational is equal to the reliability of the spatial

allocation it represents.

When the spatial allocation contains no replication (i.e., a schedule without replication), its RBD is serial. Indeed,

it consists of a single path from S to D, where the i-th block represents the execution of the i-th task. In order to
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deliver an operational schedule, all the tasks must be executed without any fault. Therefore, computing the reliability

of the RBD is linear in the number of tasks.

When the spatial allocation contains replications, its RBD has no particular predefined form. For instance, Fig-

ure 1(b) shows the RBD corresponding to the schedule presented in Figure 1(a). Either dIII or dI must be operational

(where dI stands for the replica of d placed on processor I). On one hand, dIII can not be operational if its prede-

cessors are not operational. At the time where dIII is scheduled, bI and cI are not completed. dIII can only receive

its data from bII and cIII . On the other hand, dI can be operational if either cI or cIII is operational and either bI

or bII is operational. Computing the reliability of such a RBD can only be done in exponential time in the size of the

RBD (unless P=NP). Classical methods rely on an efficient symbolic encoding of the RBD with BDDs (see, e.g., the

AltaRica workbench [13] or the Sharpe tool [17]).

Using replication for reliability leads to different properties. Indeed, if all but one replicas of task i failed, the

scheduled is still valid. All tasks that depend on the result of i could still be executed without any problem. Therefore,

the schedule is operational if a single replica of each task is operational. As a consequence, the RBD is always

a serial/parallel graph, i.e., it is a chain of parallel macro blocks. Figure 1(d) shows the RBD of the schedule of

Figure 1(c), which uses the replication for reliability scheme. The probability that such a RBD is operational can be

computed in linear time of the size of the RDB [27, 35].

Remark that the reliability of a schedule does not depend on the temporal allocation but only on the spatial alloca-

tion. We denote by P(π) the reliability of the spatial allocation π, computed by the following expression (2):

P(π) =
∏n
i=1

(
1−

∏
qj∈π(ti)

(1− P(ti, qj))
)

=
∏n
i=1

(
1−

∏
qj∈π(ti)

(
1− e−λqj

.ptiqj

))
=
∏n
i=1 P(πi)

(2)

For convenience, let us define P(πi) = 1 −
∏
qj∈π(ti)

(
1− e−λqj

.ptiqj

)
. Using this notation, we have, P(π) =∏n

i=1 P(πi). This expression stems from the following three hypotheses: fail-silent transient failures, statistically

independent failure occurrences, and replication for reliability. Finally, we denote the unreliability of a schedule as

UR(π, σ) = 1− P(π).

3.3 An Impossibility Result on Constant Approximation

This section proves that there does not exist a “good” compromise solution. [10] contains a similar proof, but for

schedules without replication. Here, we prove that replication does not help in finding a unique good compromise

6



III
p
ro

c
e
ss

o
r

I b

II a

c

b

d

c d

time

bII

bI cI

cIII

dIII

dIS

D

aII

(a) Classical replication scheme. (b) The RBD induced by (a).

III

I b

II a

c

b

c d

p
ro

c
e
ss

o
r

d

time

bII

bI cI

cIII

dI

dIII

S DaII

(c) Replication for reliability. (d) The serial/parallel RBD induced by (c).

c

b

a d

(e) An application task DAG.

Figure 1: Difference between classical and reliable replication applied on the example of a diamond task graph.

solution.

Let us first recall the definition of approximation in mono-objective optimization. S is a ρ-approximation (ρ ≥ 1)

of an instance I according to the function to minimize f iff f(S) ≤ ρf∗(I) where f∗(I) is the minimum value of f

among all the solutions of I . Finding such an approximation constant ρ is what most works are aiming at.

In multi-objective optimization, the definition is extended in order to take into account several functions. A so-

lution S is a ρ = (ρ1, ρ1, . . . , ρk)-approximation of I according to f = (f1, f2, . . . , fk) iff for all i, S is a ρi-

approximation of I according to fi.

THEOREM 1 The problem of minimizing Cmax and UR can not be approximated within constant factors ρ =

(ρCmax , ρUR) by a unique solution.
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Proof: Consider the instance composed of two processors p1 and p2 and one task t, such that the processing

time of t on p1 is 1, while it is k on p2. The failure rate of p1 is left unspecified to λ1, while that of p2 is equal to

λ2 = λ1/k
2.

Consider all the three solutions of this instance: S1 in which t is scheduled on p1; S2 in which t is scheduled on

p2; and S3 were t is scheduled on both p1 and p2. Remark that S1 is optimal for Cmax, with Cmax(S1) = 1 and

UR(S1) = 1 − e−λ1p1 . S2 is close to the optimal for UR, with Cmax(S2) = k and UR(S2) = 1 − e−λ1p1/k. S3 is

optimal for the UR, with Cmax(S3) = k and UR(S3) = 1− e−λ1p1−λ1p1/k.

Both ratios Cmax(S2)/Cmax(S1) and UR(S1)/UR(S2) go to infinity with k. Ratios involving S3 and S1 go to

infinity with k too. As a conclusion, none of these three solutions can approximate all the solutions within a constant

factor.

Because of this theorem, we propose to compute a set of compromise solutions, among which the user will choose

the one that matches the best his/her application requirements.

3.4 On the Model Assumptions

Before going in more details, we would like to discuss some choices made on the model.

On the WCET analysis. The WCET analysis has been extensively studied (see [30, 26] for surveys). Knowing

the execution characteristics is not a critical assumption since WCET analysis has been applied with success to real-

life processors with branch prediction [6] or with caches and pipelines [39]. In particular, it has been applied to

the most critical embedded system, namely the Airbus A380 avionics software running on the Motorola MPC755

processor [12, 37].

On transient faults and their negligible duration. Computing the reliability with RBDs requires the assumption

that failure occurrences are statistically independent events. This in turn requires that the failure of a processor can only

impact the task currently executing onto this processor, and not the future tasks scheduled onto it (otherwise the failure

of the current task and the failure of the future task would not be independent). This in turn requires that the processor

failures be transient. Remark also that, from the point of view of safety critical embedded systems, transient failures

are far more common than permanent failures. Moreover, processors in critical systems are usually fail-silent [11],

so the statistical independence of faults on different processors is a pertinent assumption. This reliability model is

directly borrowed from [34] and is widely used in the literature [4, 22, 29].

On fully reliable communication links. If communication links are subject to failures, then the RBD will not be

serial-parallel. Thus, computing the reliability will become a complex problem. Having failures on communication

links is much harder since it requires to address extra problems, such as routing. Moreover, having a failure on a

8



link will result in a failure on several tasks’ execution, which makes failure non statistically independent. [21] deals

with this problem by adding for each task t, a special synchronization task that depends on all the replicas of all the

predecessor tasks of t, and on which depend all the replicas of all the successor tasks of t. By doing that, performances

and reliability are degraded in order to gain more tractability.

On the efficiency of the replication for reliability scheme. In the approaches targetting fault-tolerance, a task

does not need to wait for the completion of all the replicas of its predecessors. It just needs to wait for the completion

of the first replica. But here, we target reliability instead of fault-tolerance; thus, we need to ensure that the reliability

block-diagram representing the schedule is serial-parallel in order to make the computation of the reliability tractable.

For this reason, we adopted the replication for reliability scheme. One can wonder if this particular scheme induces

a significant overhead. In another article, Girault and Kalla [14] have shown that a close scheme only incurs a small

overhead on the makespan of the final schedule (less than 4% on average). For this reason, we believe that our

replication scheme is realistic in practice.

4 Discussion on Related Approaches

In this section, we first review the main results for independently minimizing the makespan and the unreliability

objectives. Then, we introduce the multi-objective optimization, and we present the main approaches proposed for

dealing with this problem.

4.1 Optimizing the Makespan in Heterogeneous Computing

Off-line scheduling for optimizing the makespan on homogeneous resources (machines, computers ...) has lead to

a huge number of studies [25]. Even if most variants of this problem are NP-hard, it is often possible to derive

a theoretical analysis for designing approximation algorithms. In the context of parallel processing, scheduling on

heterogeneous resources is a more recent, and more difficult, problem. The existing results consist mainly of smart

heuristics that have no theoretical guarantees. Considering the relaxed hypothesis of tasks independence, there is a

known 2-approximate algorithm [16]. Let us now survey briefly the main existing results.

The most popular methods are extensions of list scheduling algorithms for heterogeneous resources. HEFT (Het-

erogeneous Earliest First Task scheduling) [41] sorts the tasks by decreasing order of average remaining critical path.

It is a greedy algorithm: each task is considered one after the other, and is mapped onto the processor that can complete

it the soonest. HEFT is often considered as a reference heuristic for running experiments. It has been improved in [43]

by using a different ordering of tasks.
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The min-min heuristic and its variants [19] consider, for each task, the processor that can complete it the soonest.

Min-min assigns the task with the smallest minimum completion time in order to optimize processor’s usage (in this

sense, it is a dual approach of HEFT). The max-min variant assigns the task with the greatest minimum completion

time. The idea here is to take into account early tasks that will potentially penalize the global makespan. The number

of proposed variants reflects the heuristic character of the method. These algorithms are designed for independent

tasks, but could easily be adapted for tasks with data dependencies.

Other approaches are based on clustering, which involves grouping tasks that communicate heavily. Tasks grouped

together are executed on the same resource. Finally, the starting time of each task is determined, thanks to classical

scheduling methods. [5] is an example of such an approach, which deals with heterogeneity by considering the

resources of similar capabilities.

4.2 Optimizing the Reliability Only

Let us remind first that the reliability is increased by replicating some tasks. The maximum reliability is therefore

obtained by executing a replica of each task on all processors. When the communication links are reliable, the com-

putation of the reliability of the induced RBD can be done in linear time. With link failures, computing the reliability

of the RBD is NP-complete. Thus, there exists no polynomial time algorithm (unless P=NP). However, it is possible

to design an efficient exact exponential algorithm thanks to a symbolic encoding of the RBD with BDDs [17, 13].

Another way to compute the reliability of the RBD is to add extra synchronization tasks in order to transform it

into a serial/parallel graph. Despite the fact that the problem becomes polynomial, there is an additional overhead due

to these synchronization tasks (see details in [21]).

[38] optimizes the reliability by using clustering techniques in order to minimize the communication times. Then,

heavier communications between clusters are mapped to the more reliable links, while clusters with higher computa-

tion cost are mapped to the more reliable processors.

With our assumptions, the optimal reliability can be easily computed.

4.3 General Purpose Multi-objective Optimization

In this section, we discuss the main way apporaches in the literature for optimizing several objectives simultaneously.

This topic has recently received more and more attention [2, 3, 1].

The most commonly used approaches (and the simplest ones) transform the multi-objective problem into a mono-

objective one, namely:
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1. We can fix a threshold value for one objective. The solution is then constrained to a minimum (or maximum)

value on all but one objective functions. This technique is sometime called ε-constraint [40].

2. We can aggregate all the objectives into a single function. A new objective function is derived usually by a linear

or convex combination of the objectives. If a solution is optimal for a linear or convex aggregation function,

then it is Pareto optimal. However, finding such a solution is usually NP-hard.

3. We can sort the objectives by a hierarchy that reflects the relative importance of the objectives. The problem is

solved iteratively for each objective, like in [18].

Most of these approaches lead to a single solution. In contrast, we are proposing a new method that generates

several non-dominated solutions, by iteratively using a threshold method applied at different levels (i.e., solution 1).

Only very few works proposed integrated approaches. [28] formalized in a nice way a generic method for obtaining

an ε-approximation of a Pareto set by partitioning the solution space in increasing size area of a factor ε. Then,

looking for a solution in each area gives an ε-approximation of the Pareto set. Such a set has a polynomial cardinality

if the problem belongs to NP. Finding a point in each area is a NP-hard problem in the unreliability and makespan

minimization problem. Still, the main idea helps to construct an interesting set of independent solutions.

4.4 Reliability and Makespan Bi-objective Optimization

In [4], the authors proposed a heuristic for a similar problem in which communication links are not reliable. The

authors compute an upper-bound of the reliability thanks to the minimal cut sets method applied to the RBD. The

proposed heuristic optimizes a linear combination of the two objectives, normalized with respect to thresholds provided

by the user.

[8] proposed a bi-objective scheduling problem for non fully connected networks of processors. The exact reli-

ability is NP-hard to compute, which makes the problem harder. The optimization problem is treated by adapting a

list-based heuristic called DLS [36] into RDLS. DLS is a greedy algorithm for heterogeneous scheduling for makespan

that iterates by scheduling a pair (task, processor) that has the greatest Dynamic Level. RDLS considers a Reliable

Dynamic Level that is obtained by adding a term to the Dynamic Level to take into account the reliability of the

processors. However, tasks are not replicated, so the impact on reliability is very limited.

[10] tackled the problem of maximizing the reliability and minimizing the makespan on related machines where

processors are subject to crash fault. Approximation of the Pareto set is given for the case of unitary execution times.

This work also proposes a general way to transform heuristics for minimizing the makespan into bi-objective heuristics.

Here again, the tasks are not replicated, so the impact on reliability is very limited.
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5 A New Bi-objective Scheduling Heuristic

In this section, we present our two-steps heuristic for optimizing both the makespan and the reliability. First, it

computes the spatial allocation function in order to set UR lower than a threshold value; then, it computes the temporal

allocation function aiming at minimizing Cmax. It is inspired by [28] for approximating Pareto sets, but does not

ensure performance ratios.

5.1 Principle

As shown in Section 3.3, it is in general impossible to achieve simultaneously a solution approximating both objectives

within a constant factor. Thus, we will provide a set of several Pareto independent solutions in order to help a decision

maker to determine a trade-off solution. Then, we propose to consider one objective as a threshold, set to several

successive levels, and to solve the resulting mono-objective problem for each level.

As the unreliability of a solution S = (π, σ) depends only on π, it is easier to impose a threshold on UR. Hence,

we start by computing a spatial allocation π that satisfies a fixed UR. As there is a huge number of π that satisfy a given

threshold, we will generate them randomly. This will be explained in more detail in 5.2. Spatial allocations are post-

optimized thanks to a greedy algorithm that removes the tasks having the longest execution times (see Section 5.2.2).

Since we have fixed the allocation π, we only have to care about the makespan while generating σ. The problem

of choosing σ to minimize the makespan is a pre-allocated scheduling problem, which is discussed in Section 5.3.

In summary, our method involves two successive phases: first we compute a spatial allocation π that satisfies the

UR threshold, and then we compute a temporal allocation σ that minimizes Cmax. Decoupling those two phases is

possible because the reliability of a static multiprocessor schedule depends only on its spatial allocation π.

5.2 Phase 1: Spatial Allocation Scheme

5.2.1 Properties and Algorithm

The following property defines a partial order relationship in the allocation space.

PROPERTY 1 Let π and π′ be two spatial allocations. π ⊂ π′ ⇒ URπ > URπ′ .

Proof: For any (t′i, q
′
j) ∈ π′ − π, we have 0 ≤ P(t′i, q

′
j) ≤ 1, or equivalently:

0 ≤ 1− P(t′i, q
′
j) ≤ 1 (3)
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Now, according to equation (2), P(π) =
∏n
i=1(1 −

∏
qj∈π(ti)

(1 − P(ti, qj))). Thanks to equation (3), 0 ≤∏
(t′i,q

′
j)∈π′−π

(1 − P(t′i, q
′
j)) ≤ 1. Hence, multiplying this term with the term

∏
qj∈π(ti)

(1 − P(ti, qj)) results in

a smaller term:

∏
(t′i,q

′
j)∈π′−π

(1− P(t′i, q
′
j))×

∏
qj∈π(ti)

(1− P(ti, qj)) ≤
∏

qj∈π(ti)

(1− P(ti, qj))

As a consequence, ∀1 ≤ i ≤ n, the term 1 −
∏
q′j∈π′(t′i)

(1 − P(t′i, q
′
j)) is greater than the term 1 −

∏
qj∈π(ti)

(1 −

P(ti, qj)). Therefore, P(π′) ≥ P(π).

This property can be used by a greedy algorithm to improve the reliability of a spatial allocation by adding active

replicas. The two following properties help us to choose which replica to add. Property 2 formally states that the

reliability of a spatial allocation can not be better than the worst reliability of a task. Property 3 states that there exists

a task having a reliability greater than the n-th root of the allocation’s reliability.

PROPERTY 2 Let π be a spatial allocation such that UR(π) < UR0, then ∀t ∈ T,P(πt) > 1− UR0.

PROPERTY 3 Let π be a spatial allocation such that UR(π) < UR0, then ∃t ∈ T,P(πt) > n
√

1− UR0.

Proof: By contradiction. Suppose that, for all task t, we have P(πt) ≤ n
√

1− UR0. The reliability of the

spatial allocation is P(π) =
∏n
i=1 P(πi). Since all P(πi) are probabilities, we have 0 ≤ P(πi) ≤ 1. Thus, P(π) ≤

(maxni=1 P(πi))
n. The hypothesis leads to the following bound on the unreliability of the schedule: UR(π) = 1 −

P(π) ≥ 1− n
√

1− UR0
n ≥ UR0, which is a contradiction.

We now present the IRSAG algorithm (Iterative Randomized Spatial Allocation Generator) that constructs a spatial

allocation with an unreliability smaller than a threshold UR0 (see Figure 1). The principle is to add random replicas to

the current allocation. It starts by fulfilling Property 2, that is, it adds a replica for each task as long as its unreliability

is greater than the threshold (lines 6 to 13). If no task satisfies Property 3, a task is randomly chosen (lines 14 to 19).

Finally, replicas are added until the unreliability threshold is reached (lines 20 to 25).

Remark that the IRSAG algorithm works with any initial allocation π0, and not only with the empty set.

The IRSAG algorithm uses a uniform distribution for choosing the replica (t, q) to add. The last part taken alone

ensures that tasks are in average replicated evenly. This seems to be a good property according to the structure of the

reliability function (Equation (2)).
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Algorithm 1 IRSAG: Spatial allocation generation
1 input : an instance, a value UR0 and an allocation π0

2 output : an allocation π
3 begin
4 π := π0;
5 prop3 := false;
6 forall t ∈ T do
7 while P(πt) < 1− UR0 do
8 π := π ∪ (t, alea(1,m));
9 if P(πt) >

n
√

1− UR0 then
10 prop3 := true;
11 end if
12 end while
13 end forall
14 if prop3 = false then
15 t0 := alea(1, n);
16 while P(πt0) <

n
√

1− UR0 do
17 π := π ∪ (t0, alea(1,m));
18 end while
19 end if
20 while (UR(π) > UR0) do
21 if π = T ×Q then
22 return NIL;
23 end if
24 π := π ∪ (alea(1, n), alea(1,m));
25 end while
26 return π;
27 end

Algorithm 2 CommBlevelList
1 input : an instance and an allocation π
2 output : an temporal allocation σ
3 begin
4 Let blevel[t] be the longest path from t to the end

of the graph.
5 forall t ∈ T in anti-topological order
6 if t is a communicating task or a leaf

then
7 prio[t] := blevel[t]
8 else
9 prio[t] := maxt′|∃(t,t′) prio[t

′]
10 end if
11 end forall
12 forall time x from 0 to∞
13 forall q ∈ Q
14 if j is idle at x
15 Select t ready on q at time x minimiz-

ing prio[t]
16 Schedule t in σ from x to x+pt on q
17 end if
18 end forall
19 end forall
20 return σ
21 end

5.2.2 Improvement

The IRSAG algorithm returns a spatial allocation that has an unreliability smaller that UR0. But IRSAG does not

ensure that its allocation is the best among such allocations. It is not even minimal by inclusion. Due to the replication

model, removing replicas can only lead to a better Cmax. This is why we propose a procedure called maopt (for

Minimal Allocation Optimization) which is basically a greedy local descent. It iteratively removes replicas as long as

the unreliability remains below UR0. Replicas are sorted in decreasing order of execution times in order to remove

first the longest replica.

5.3 Phase 2: Pre-allocated Scheduling

Since we are using the model of replication for reliability (Figure 1(b)), we cannot reuse the classical literature on

multiprocessor scheduling with duplication, because all these results assume the classical model of replication (see

Figure 1(a)) and the related discussion ).

Finding the best temporal allocation σ with a fixed spatial allocation π is equivalent to scheduling a DAG of

tasks where tasks are forced to be scheduled on a given processor. This particular problem is the Scheduling with
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Preallocation Problem, which is known to be strongly NP-hard [32]. In the following, all replicas are equivalent, in

the sense that there is no distinction between two replicas of the same task and two replicas of two different tasks.

Therefore, the term “task” refers to a replica on a processor.

Definition 2 below leads to a weakly dominant property for schedules and will help us to solve the problem. We

introduce a notion of priority between the tasks in order to characterize the temporal allocation on a given processor.

When two tasks t and t′ are ready, if t has a greater priority than t′, then t is scheduled before t′. t is a communicating

task if one of its direct successor t′ is scheduled on a different processor than t.

DEFINITION 2 Let σ be a schedule. For each processor q, {tcq1, . . . , tc
q
kq
} denotes the set of communicating tasks

ordered in the same way as in the schedule. The schedule is communication friendly if for any processor q and for

each pair of communicating task tcqi , tc
q
j such that i < j, the predecessors of tcqi have a greater priority than the

predecessors of tcqj .

PROPERTY 4 Let σ be a valid schedule that is not communication friendly, then there exists a communication

friendly schedule with a better (or equal) makespan.

Sketch of the proof: From σ we derive, on each processor, the total ordering of communicating tasks. By

iteratively swapping consecutive tasks to comply with Definition 2, the makespan can only decrease because the

communicating tasks are done earlier (or at the same time) than in the original schedule.

The proof gives us an algorithm that improves an existing temporal allocation. We first need an existing temporal

allocation to use it. So we generate one using a list scheduling algorithm.

In the literature, list scheduling algorithms are widely used for classical scheduling problem [25]. The principle

can be stated as “compute if there is something to compute”. In order to break tie, tasks are ordered according to some

priority. The B-level of a node is a classical lower bound of the minimum completion time of the application from the

execution date of the node. It can be seen as the application’s completion time assuming that there is an infinite number

of processors. The B-level of a leaf node (i.e., without successors) is its execution time, while the B-level of a non-leaf

task is the sum of its execution time and of the greatest B-level of its successors. As our problem is pre-allocated, we

can take into account the communication times when computing the B-level. It remains a lower bound of the optimal

makespan.

The CommBlevelList algorithm focuses on communicating tasks by setting non communicating tasks’ priority

to the maximum priority of their successors, and communicating tasks’ priority to their B-level (see Figure 2). It

includes a loop over the time to compute the starting time of the tasks. This loop is included for the sake of clarity: an

algorithm producing the same schedules could be written using heaps instead of iterating on time slices.
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Let us now study the approximation ratio of CommBlevelList. The following proposition states that no constant

approximation of the makespan can be obtained by any List Scheduling algorithm LS.

PROPOSITION 1 Let LS be a list scheduling algorithm. There exist instances of the pre-allocated scheduling

problem such that CLSmax ≥ (m − 1)C∗max, where CLSmax is the makespan obtained by LS and C∗max is the optimal

makespan.

Proof: This proposition is proved by constructing an instance that asymptotically reaches the bound (m − 1).

The result concerns any List Scheduling algorithm. Thus, the schedule should not be function of the priority list of the

algorithm. Only one task should be ready at a time per processor.

The constructed instance on m processors is the following. Processor 1 has a single task t11 of processing time

p1
1 = ε. Every other processors q (2 ≤ q ≤ m) have two tasks t1q and t2q of processing time p1

q = ε and p2
q = 1. Each

task tiq (q 6= 1) is the successor of t1q−1. The communication delay between t1q−1 and t1q is ε, while the communication

delay between t1q−1 and t2q is ε
2 .

The optimal makespan of this instance is obtained by scheduling all the t1q tasks as soon as possible and then

executing all tasks t2q in parallel, except on processor m where task t2m is scheduled before t1m. Hence, the optimal

makespan is C∗max = (2m− 3
2 )ε+ 1.

However, according to the principle of list scheduling algorithms, the tasks t2q are executed before the tasks t1q

since the corresponding communications are shorter. This postpones the release of the tasks on the next processor. In

this case, all tasks are executed sequentially. The resulting makespan is therefore CLSmax = mε+ (m−1)ε
2 +m− 1.

As a consequence, the ratio CLS
max

C∗max
tends to (m− 1) when ε tends to 0.

In other words, this proposition states that, to reach a constant approximation, an algorithm should be able to

wait for important tasks instead of executing unimportant ones. The main problem in the design of approximation

algorithms for this problem is the lack of “good” lower bounds of the optimal makespan. Indeed, classical lower

bounds, such as the critical path or the maximal load of a processor, are not within a constant factor of the optimal

makespan. In our problem, we do not know any criterion to distinguish important tasks from unimportant ones.

5.4 Discussion

We proposed a two phases algorithm, where the first phase generates a spatial allocation and the second phase generates

a temporal allocation. This decomposition is pertinent since the reliability of a schedule only depends on the spatial

allocation and not on the local ordering of the tasks. In our method, the spatial allocation is generated randomly using

suitable properties. One can wonder whether we can expect more from a more sophisticated deterministic algorithm
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or not.

The first phase does not give directly the makespan of the schedule. It ensures that the reliability is greater than a

given threshold. It is very hard to optimize the makespan in this phase because it remains unknown until the second

phase is finished. Thus, the first phase should provide a spatial allocation which will be scheduled efficiently in

phase 2. The problem is that the problem tackled in phase 2 is hard, and, as we proved in the last section, classical

algorithms like List Scheduling cannot guarantee a constant approximation. Thus, useful lower bounds of the optimal

makespan can not be easily determined. The lower bounds we know are not sufficient since we could reach very

different makespans with two instances featuring the same values of lower bound. Since we do not know which

function to optimize in phase 1, random generation seems to be the only reasonable policy.

6 Experimental Study

In this section, we present experimental results about the method proposed in Section 5. There is no interest in

comparing our method with a method that does not use task replication, and, as a consequence, does not improve the

reliability by more than one order [10, 9, 8]. So we do not compare the proposed algorithm with other bi-objective

algorithms. But we give responses to some questions detailed in 6.1. Some instances for the experimental tests are

constructed by using a model of random networks, while others are applications taken from an existing benchmark.

Details about the instances generation are given in 6.2. Experiences are described in 6.3. Finally, the results are

analyzed in 6.4.

6.1 Goals of the Experiments

Assessing the efficiency of the method is difficult, since extracting the Pareto set of an instance requires an exponential

time. We try to validate it by studying several points:

• In order to be competitive, the algorithm for the pre-allocated scheduling problem should be efficient. If it is

not, the complete method would not give interesting results, even if the first phase gives the best possible spatial

allocation.

• It is also interesting to study the impact of the quality of the spatial allocation on the makespan of the resulting

solution. In particular, changing the number of iterations of the random algorithm and using the optimization

presented in 5.2.2 should be considered.

• Those first two questions are crucial for improving the method. However, the main question is: can we derive
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a set of interesting trade-off solutions from our method? And finally, is the method competitive with existing

scheduling methods for makespan only?

6.2 Benchmark Construction

We construct an instance for the heterogeneous scheduling problem by putting together, on the one hand, an application

graph with communication and processing times, and on the other hand, a network with processors of different speeds

and communication links of different bandwidths.

6.2.1 Application Generation

We consider an instance of the problem of static scheduling on identical processors with precedence constraints P |

prec, pi, cij | Cmax [25]. A classical instance for this problem is described by m processors, an application graph

G = (V,E), computation times pv of all tasks v ∈ V and data sizes Commij between tasks, for all (i, j) ∈ E.

We uses an existing benchmark [24] that considers 602 instances of various structures. This benchmark has been

used to test different scheduling algorithms in [7, 23].

6.2.2 Processor Set Generation

A set of processors is characterized by the number of processors m, their speeds speedi, their failure rates per time

unit λi, and by the bandwidth of the link between two processors BWij .

According to [31, 9], in actual systems, ratios between computational speeds of any two different processors or

bandwidth of any two different links are uniformly distributed in [1, 10]. Real systems have failure rates uniformly

distributed in [10−6/h; 10−5/h]. We randomly generated 60 sets of processors with a number of processors between

5 and 10.

6.2.3 Instance Construction

For an application and a network of processors, we constructed an instance for the heterogeneous scheduling problem.

A task i scheduled on processor j takes pi/speedj time units to compute.

We removed a class of 275 big instances from the benchmark. Despite the fact that they were solvable separately in

a reasonable time, solving all the 16200 instances (275× 60) would have taken a prohibitive time (about five minutes

by instances). We kept the 327 other instances. Thus, our experiments were made on 19620 instances (327× 60).

The instances we generated are not uniformly distributed among the instance space and are probably not represen-

tative of any application field. Thus, all results are valid only considering this particular benchmark. However, this
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benchmarking method shows the general behavior of tested algorithms.

6.3 Experimental Protocol

Our method is not monolithic, several options and parameters can vary. First, as our algorithm is randomized, we can

change the number of draws. We have considered the following number of iterations: 1, log nm, and
√
nm, where n

is the number of tasks and m is the number of tasks. Also, the maopt improvement shown in Section 5.2.2 can be

used or not. Finally, the first phase algorithm can be initialized with several allocations: the empty allocation and the

HEFT allocation were considered. Remember that the whole method takes a minimum reliability as a parameter.

Experiments are run under the following protocol. First, HEFT [41] is run on each instance. Let CmaxHEFT

and URHEFT be the values obtained on the schedule computed by HEFT. Then, our algorithm is run with different

thresholds of UR. Each UR value is obtained by multiplying URHEFT by values of r, with r taking one of the

following values: 1, 0.9, 0.8, 0.7, 0.1, 0.01, 0.001, 0.0001, or 0.00001. For instance, if URHEFT = 0.1 and r = 0.1,

then our UR threshold is 0.01, so conversely, the minimum reliability we accept is 0.99.

We also run experiments in “real condition” by setting the threshold to a geometrical increasing level from URmin

to URmax. Only Pareto independent solutions art kept. This is the way our method should be used in an actual

production environment, and our simulations confirms its practical usability.

6.4 Results and Analysis

Results are given for each r as the geometric mean (over all instances) of the ratio between the makespan of our

algorithm and the makespan of HEFT. We use the geometric mean because it is the one which makes sense when

considering ratios [20].

In order to verify the efficiency of our pre-allocated B-Level scheduling, we compare the makespan obtained by

HEFT and the makespan of our B-Level scheduling with the spatial allocation of HEFT. The mean ratio between our

algorithm and HEFT is 1.01009 with a minimum ratio of 0.885272 and a maximum ratio of 2.29752. Those results

show that, despite the non existence of a guaranteed performance, the second phase’s algorithm performs well in

practice.

We test the impact of a bad spatial allocation by comparing the results of the experiments without optimization

(iterlog curve) and with maopt (maoptiterlog curve), both of them with log nm iterations. The results are

presented in Figure 2. It shows, for each value of the UR factor r, the mean ratio of the makespan to CmaxHEFT . In

the maoptiterlog curve, the point r = 0.1 of mean makespan ratio 2 can be interpreted as: On this benchmark,

to gain two orders of unreliability, we worsened (in average) the makespan by a factor of 2 (this holds also for point
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Figure 2: Comparing random allocation with optimization

r = 0.01). Our results show that the optimization presented in Section 5.2.2 really improves the makespan, since the

maoptiterlog curve is widely below the iterlog curve. Thus, getting a good allocation for makespan is really

important.

Some strange results occur for r = 10−4 and r = 10−3 without maopt. They are due to a threshold effect

of Properties 3 and 2. In other words, Property 3 is useless for nearly all valid schedules for r ≥ 0.01; only one

replica for each task is needed to match the property, and obtaining a reliability greater than the threshold will require

extra-replica on most of tasks. When 0.0001 ≤ r ≤ 0.01, the mean number of replication that are required to match

Property 3 is closer to the number of replica needed to match the reliability goal.

Figure 3 shows the results obtained by changing the number of iterations of our algorithm. Three numbers of iter-

ations were considered:
√
nm, log(nm), and 1, which stand respectively for maoptitersqrt, maoptiterlog,

and maoptiter1. The greatest number of iterations tested is
√
nm because the computation time for an instance

with nm iterations became prohibitive (several minutes for small instances against several seconds with
√
nm iter-

ations). Moreover, it seems hard to do better than what we obtain with those parameters, as the difference between

the curves maoptiterlog and maoptitersqrt is much smaller than the difference between maoptiter1 and

maoptiterlog. We can conjecture (but experiments should be run) that increasing the number of iterations will

not improve significantly the performances. The average value obtained with r = 0.1 is rather strange: the average

makespan for r = 0.1 is better than the average makespan for r = 0.7. This is more visible when there is a single

iteration of the random algorithm. This shows that the maopt optimization becomes more efficient when r increases,

i.e., when there are more replicas.

Despite the efficiency of our algorithm’s second phase, the method tested does not give solutions close to the HEFT
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Figure 4: Comparing HEFT based allocation with
pure random one

makespan. Therefore, our algorithm’s first phase returns spatial allocations that are not “makespan friendly”. All those

results mean that completely random spatial allocation are bad for the makespan. Basing the random allocation on

an existing allocation for the makespan should improve the obtained makespan for a reliability factor close to 1.

Figure 4 confirms that basing random allocations on the HEFT spatial allocation really improves the makespan for

small reliability. However, it seems to be of no use if we want to gain an order (or more) on the reliability. In Figure 4,

the maoptiterlog curve is the same as in Figure 3, while the maoptHEFTbasediterlog curve is based on

initial allocations produced by HEFT.

Taking a particular instance of our benchmark, Figure 5 shows, for three levels of CCR (Communication to Com-

putation Ratio), the set of trade-off solutions returned by our method (that is, the approximated Pareto curve). The

results are obtained with and without basing our allocation on HEFT. The results obtained really differ depending on

the CCR. On one hand, using HEFT results in a worse curve when the CCR is low (Figure 5(a)), while, on the other

hand, when the CCR is high, the obtained curve when basing the method on HEFT completely dominates the random

one (Figure 5(b)). Figures 5(a) and (b) warn us that using exclusively HEFT can result in missing interesting solutions.

We can remark that, when the CCR is high, improving the reliability has a more significant impact on the makespan

than when the CCR is low. This is due to the replication model that implies a lot of communications.

7 Conclusion

We have presented a new bi-objective scheduling method for task graphs with data-dependencies onto heterogeneous

distributed memory architectures. The two objectives considered are the schedule length (real-time constraint) and

21



 500

 550

 600

 650

 700

 750

 800

 850

 1e−07  1e−06  1e−05  1e−04  0.001  0.01  0.1

m
a

k
e

s
p

a
n

unreliability

SQRTmaoptCCR01
SQRTmaoptHEFTbasedCCR01

 640

 660

 680

 700

 720

 740

 760

 780

 800

 1e−07  1e−06  1e−05  1e−04  0.001  0.01

m
a

k
e

s
p

a
n

unreliability

SQRTmaoptCCR1
SQRTmaoptHEFTbasedCCR1

(a) CCR=0.1 (b) CCR=1

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 1e−07  1e−06  1e−05  1e−04  0.001  0.01  0.1

m
a

k
e

s
p

a
n

unreliability

SQRTmaoptCCR10
SQRTmaoptHEFTbasedCCR10

(c) CCR=10

Figure 5: r150 with different CCR levels

22



the reliability (safety critical constraint). The failure model assumes that the processors are fail-silent, communication

links are reliable, and failure occurrences are statistically independent event and follow a Poisson law with a constant

parameter (called the failure rate per time unit of the processor). To improve significantly the reliability, we use the

active replication of tasks. A key issue is then to efficiently compute the reliability of the system. We showed that,

using a “replication for reliability” scheme, allows us to improve the reliability and to compute it easily. The drawback

is that the makespan is slightly degraded.

Since we are solving a bi-objective problem, we face the problem that there exist several non Pareto-dominated

solutions. To alleviate this problem, we transform the reliability objectives into a constraint. For a given instance, we

apply iteratively our method with several reliability constraint levels, in order to obtain a set of non Pareto-dominated

solutions. This will allow the user to choose the solution that fits best his/her applicative requirements.

Our method proceeds in two phases: first a spatial allocation of the tasks onto the processors, and then a temporal

allocation to determine at what time each task must start its execution. According to our failure model, the reliability

of a schedule depends only on its spatial allocation. During the first phase, we only produce spatial allocations whose

reliability are greater than the reliability threshold; to achieve this, we replicate some well-chosen tasks. During the

second phase, we only attempt at minimizing the schedule length.

We have performed extensive simulations of our method, with various optimizations and various initial spatial allo-

cations (either obtained with a random placement algorithm or with the popular HEFT algorithm). These simulations

prove the efficiency of our method.
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