
Analyzing Scheduling with Transient Failures

Erik Saule and Denis Trystram

LIG, Grenoble University

1 Introduction

When using thousands of processors simultaneously, the application developer

can no longer assume that the computing platform is failure free. The probabil-

ity that one of the computing processors crashes drastically increases with the

number of processors [9]. Safety issues not only occur in large scale computing

platforms but also in some real-time embedded systems [2].

There exist a lot of safety models. One of the most popular has been pro-

posed by Shatz [11] where the application is represented as a set of tasks to

schedule on processors. Under this model, the faults are supposed to be transient

(which means that the processors recover just after a failure), their occurrence

are supposed to follow a Poisson's process and to be statistically independent.

The main performance index related to safety is the reliability, i.e. the proba-

bility that the application completes successfully. Improving the reliability can

be achieved by a smart allocation of tasks on the processors. However, such

an allocation can not improve the reliability by more than one order of magni-

tude. To reach a better reliability while not worsening the makespan too much,

replication should be used.

Unfortunately, the optimization of both the e�ciency and the reliability is a

di�cult problem. Several algorithms have been proposed but most results are

heuristics which do not lead to theoretical guarantees [2, 5]. Three prior works

give strict guarantees on obtained schedules. First, without allowing replication

and under the fail-stop model (processors can crash and will never be operational

1

again), approximation algorithms where provided in [6, 8] for independent tasks.

Second, with time-independent failures, the problem of scheduling a pipeline of

tasks has been considered in [3].

Realistic models are likely to be intractable and heuristics should be the

only way to tackle them. In this paper, we provide a theoretical analysis of

two basic problems which should help to design such heuristics for more general

graphs. These problems are the scheduling of a chain of tasks, on heterogeneous

processors (in Section 3) and the scheduling of independent tasks on identical

processors (in Section 4). Both problems are solved using the same framework

(dynamic programming, scaling technique and Pareto set approximation). They

represent two interesting sub-cases of the general problem that can be solved

almost optimally.

2 Multi-objective approximation

In multi-objective optimization, the solutions are not totally ordered. It is

often possible to degrade one objective to improve the other one. However,

a solution can be absolutely better than another one which is the relation of

Pareto dominance. A solution is said to be Pareto optimal if no solution is

as good as it is on all objective values and better on at least one. The Pareto

set (denoted by P ∗) of a problem is the set of all Pareto optimal solutions [12].

Pareto sets are usually of exponential cardinality. Papadimitriou and Yan-

nakakis introduced the concept of approximated Pareto set in [10]. P is a

(ρ1, ρ2)-approximation of the Pareto set P ∗ if each solution π∗ ∈ P ∗ is

(ρ1, ρ2) approximated by a solution π ∈ P . It was shown that most scheduling

problems admit such a polynomial Pareto set approximation.

Classically, an approximated Pareto set is obtained using a
〈
ρ̄1, ρ2

〉
-approximation

algorithm. Such an algorithm takes as a parameter a threshold ω on one objec-

tive and returns a solution which �rst objective is bounded by ρ1ω and which is

a ρ2-approximation of the second objective among the solutions where the �rst

2

objective is better than ω.

This algorithm is called multiple times with di�erent values ω of the con-

strained objective. The successive values of ω are taken accordingly to a geo-

metrical sequence of common ratio (1+ρ) from a lower bound ωmin to an upper

bound ωmax that cover all the Pareto set. The set of generated solutions is a

((1 + ρ)ρ1, ρ2)-approximation of the Pareto set. The principle is that the solu-

tion generated with ω = (1 + ρ)iωmin is a ((1 + ρ)ρ1, ρ2)-approximation of all

solutions whose values of the �rst objective is in [(1 + ρ)i−1ωmin; (1 + ρ)iωmin].

The generated Pareto set approximation is polynomial as long as the size of

ωmin and ωmax are polynomial in the size of the instance. This technique was

�rst used in [1] and applied later on the reliability objective in [6, 8] under the

fail-stop model (see [8] for details on the approximation technique).

3 Chain of tasks on heterogeneous processors

3.1 Model

Let T = {1, . . . , n} be a chain of tasks to schedule on the set M = {1, . . . ,m} of

processors. The result of task i− 1 must be available before task i starts. The

computation time of task i on processor j is denoted by pij . In this model, the

communication times are neglected, that is, the result of task i is available on all

processors right after the completion of i. The failure occurrences on processor

j follows a Poisson's process of parameter λj , the failure rate of j. Thus, the

probability of success of the execution of i on processor j is P (i, j) = e−λjpij .

Reliability is increased by using active replication of tasks. Computing the

reliability is di�cult in presence of replicas and precedence since two di�erent

tasks can be executed at the same time. That is why we use the replication

for reliability scheme. The point is that each replica of task i waits for the

completion of all the replicas of task i− 1.

A schedule is de�ned by a function π : T → P(M) where P(M) is the set of

all the subsets of M . A schedule is valid as soon as each task is executed on at

3

least one processor.

In this model, the makespan of a schedule is Cmax(π) =
∑
i∈T maxj∈π(i) pij .

The reliability of the schedule is the probability of all tasks to be operational

and a task is operational if at least one of the replica of the task �nishes its

execution successfully. Thus, reliability (the probability of success) of a schedule

is rel(π) =
∏
i∈T

(
1−

∏
j∈π(i) (1− P (i, j))

)
.

3.2 Solving Using Dynamic Programming

Let us present an
〈
ρ̄1, ρ2

〉
-approximation algorithm by setting a constraint on

the makespan. Thus, we are interested in schedules of optimal reliability whose

makespan is less than ω.

Since the application graph is a chain and replication is used for reliability,

if two replica are scheduled at the same time then they are replica of the same

task. The maximum possible reliability of schedules of ω time units can be

obtained using the following principle : For each task, we have to choose which

processors will execute a replica of this task. Remark that, if task i is scheduled

on processor j, then it should also be scheduled on j′ such that pij′ ≤ pij . This

will improve the reliability without worsening the makespan. If pij time units

are spent for executing task i then it remains ω − pij time units for the other

tasks. This principle is expressed in the recursive expression of the optimal

reliability R(ω, n) which can be reached on the �rst n tasks in ω time units:

R(ω, n) = maxj∈M
(
R(ω − pnj , n− 1)

(
1−

∏
j′∈M |pnj′≤pnj

(1− P (n, j′))
))

.

R(ω, 0) = 1 if ω ≥ 0 and 0 otherwise. Notice that there is no task 0, it is only

used to initialize the recursive expression.

This dynamic programming formulation leads to an algorithm that computes

a matrix of n rows and ω columns where the value of the element at the xth

column and y rows is R(x, y). The matrix is �lled row after row using the

recursive equation. The last row is then parsed to �nd the highest value of

R(x, n) that is the optimal reliability in schedules of makespan better than ω.

Remark that the value of R(y, x) is obtained from a value of row x− 1 and

4

from a set of processors Mj = j′ ∈ M | pnj′ ≤ pnj . Each element [x, y] of the

matrix is associated with a schedule that reaches R(x, y) which is constructed

from the schedule associated with the value from row x − 1 in which task y is

scheduled on the set of processors Mj .

The complexity is this algorithm is dominated by the computation of the

matrix. The computation of each value is done in O(m). The overall complexity

is in O(ωnm) which is pseudo polynomial.

3.3 Approximation Algorithm

The dynamic programming expression is similar to the one used in the multi

subset sum problem [4]. For this problem, a FPT AS algorithm can be derived

by using a scaling technique (also called trimming in [4]). The same technique

holds on our problem and is brie�y recalled below.

The approximation algorithm is in three steps. First, from the instance I

of the problem, it derives an approximated instance I ′ by using the following

transformation where x > 1: p′ij =
⌊pij

x

⌋
, ω′ =

⌈
ω
x

⌉
and P ′(i, j) = P (i, j). Sec-

ond, it solves instance I ′ using the dynamic programming algorithm presented

in Section 3.2. Finally, it returns the solution of I ′ as a solution of I.

The transformation of the instance ensures the following properties:

PROPOSITION 1. All valid solutions in the original instance I are still valid

solutions of instance I ′: Let π be a schedule such that
∑
i maxj∈π(i) pij ≤ ω then∑

i maxj∈π(i) p
′
ij ≤ ω′.

PROPOSITION 2. All valid solutions of the transformed instance I ′ do not

exceed ω too much in the original instance I: Let π be a schedule such that∑
i maxj∈π(i) p

′
ij ≤ ω′ then

∑
i maxj∈π(i) pij ≤ ω + (n+ 1)x.

Both proofs are simple arithmetic and thus are omitted but they can be

found in [4]. Using x = ωε
n+1 as the scaling factor, the following theorem is

obtained.

5

THEOREM 3. The described algorithm is a
〈
1 + ε, 1

〉
-approximation for schedul-

ing a chain on heterogeneous processors subject to failure.

The optimality on the reliability is obtained from Proposition 1. This propo-

sition basically says that all valid schedules in I are also valid in I ′. Since I ′

is solved exactly, the solution returned by the algorithm has a better-than-

optimal reliability (this is not contradictory since the solution returned by the

approximation algorithm may not match the constraint on the makespan). The

approximation 1 + ε on the makespan comes from Proposition 2 and the well

chosen value of x.

The time complexity of the algorithm is O(n
2m
ε). The values of the makespan

are bounded by ωmin =
∑
i minj pij and ωmax =

∑
i maxj pij . A ((1 + ε)(1 +

ρ), 1)-approximation of the Pareto set can be constructed inO(log1+ρ(
ωmax

ωmin)n
2m
ε)

using the technique recalled in Section 2.

4 Independent tasks on homogeneous processors

4.1 Model

In this section, we consider the problem of scheduling independent tasks on ho-

mogeneous processors. Formally, the processing time of a task does not depend

on its allocation ∀i ∈ T, pij = pi and all processors have the same failure rate

∀j ∈M,λj = λ.

Since there is no dependencies between tasks, there is no need to insert idle

times. Thus, the makespan is not expressed in the same way as before. With

independent tasks, we have: Cmax(π) = maxj∈M
∑
i|j∈π(i) pi. The expression of

the reliability does not really change, the only di�erence is that ∀i,∀j, P (i, j) =

P (i) since the failure rate of all the processors are homogeneous.

6

4.2 Two-phase approximation

Optimizing the makespan, even without duplication and reliability, is a NP-

hard problem which is classically solved using approximation algorithms. The

most classical one is List Scheduling proposed by Graham [7] which is a 2-

approximation algorithm. Its principle is to consider each task iteratively and

schedule it on the least loaded processor. The approximation ratio comes from

the following bound on the makespan of a solution produced by List Scheduling:

Cmax ≤ maxipi +
P

i pi

m .

With duplication to improve the reliability, the optimization is much harder

since the number of copies of each task has to be determined. The result of Gra-

ham shows that there are two major parameters in the bound of the makespan

namely, the size of the longest task and the total volume of computations. How-

ever, the size of the longest task does not depend on the scheduling process. We

only focus on the maximum reliability which can obtained with a total compu-

tation volume less than C. The exact information we are interested in is how

many times each task should be replicated. The optimal reliability is given by

the following recursive expression:

R(C, n) = maxj∈M
(
R(C − jpn, n− 1)

(
1− (1− P (n)j)

))
. R(C, 0) = 1 if

C ≥ 0 and 0 otherwise.

As previously, this expression leads to a pseudo-polynomial optimal algo-

rithm of time complexity in O(Cnm) that provides how many time each task

should be replicated. The same scaling technique as before leads to a (1 + ε)-

approximation of the total computation time, in time complexity O(n
2m
ε).

4.3 Approximation algorithm

This dynamic programming approach only states how many times a task should

be replicated but does not provide the actual allocation on the processors. Two

replicas should not be scheduled on the same processor. Thus, a classical List

Scheduling algorithm will not produce valid solutions. However, the same princi-

7

ple can be used to construct the allocation function π. The algorithm LSR (List

Scheduling with Replication) is described as follows. For each task i, schedule

all its | π(i) | replicas on the | π(i) | least loaded processors. In the following

the load of processor j is denoted by Cjmax(π) =
∑
i|j∈π(i) pi. The following

proposition states that the schedule is well balanced.

PROPOSITION 4. π is well balanced: ∀j, j′, Cjmax(π)−Cj′max(π) ≤ maxi pi.

Proof. The proof is done by proving by induction that after the allocation of

task i, the following property is valid ∀j, j′, Cjmax(π) − Cj′max(π) ≤ maxi′≤i pi′ .

It is straightforward to verify that the property is valid when a single task is

allocated. Suppose that the property is true for the �rst i tasks. We are going

to prove that it is also veri�ed for the �rst i+1 tasks. πi′ denotes the allocation

of the �rst i′ tasks only.

Let j and j′ be two processors such that Cjmax(πi) − Cj
′

max(πi) ≤ maxi′ pi′ .

The di�erence does not change if a replica is allocated on both processors.

Consider that at the (i+1)th step, a replica of i+1 has been allocated to j but not

to j′ : Cjmax(πi+1) = Cjmax(πi)+pi+1, Cj
′

max(πi+1) = Cj
′

max(πi). By construction

Cjmax(πi) ≤ Cj
′

max(πi). We �nally conclude that Cjmax(πi+1) − Cj′max(πi+1) =

Cjmax(πi)+pi+1−Cj
′

max(πi) ≤ pi+1 and Cj
′

max(πi+1)−Cjmax(πi+1) = Cj
′

max(πi)−

Cjmax(πi)− pi+1 ≤ maxi′ pi′ .

Using this allocation algorithm, we are able to construct a schedule of

makespan less than Cmax(π) ≤ C
m + maxi pi and of optimal reliability. Given

a feasible value of the makespan ω, the overall algorithm is: compute how

many times each task should be replicated using the dynamic programming

with C = ωm and then allocate the replicas using LSR. Since there is no solu-

tion for C < mmaxi pi, the overall process is an approximation algorithm.

THEOREM 5. The procedure described in this section is a
〈
2 + ε, 1

〉
-approximation

algorithm of time complexity O(n
2m
ε).

On the makespan, the approximation factor should be decomposed as (1 +

ε) + 1 where 1 + ε comes from the non-optimal solving of the dynamic program-

8

ming and a part of 1 comes from the inaccuracy of the LSR algorithm (maxi pi

is smaller than ω). The reliability depends only on the dynamic programming

which provides a better-than-optimal value for the reliability (once again, this

is not contradictory since the makespan threshold is not matched).

The complexity of this algorithm is dominated by the dynamic programming

part. Indeed, LSR can be implemented using a heap with a complexity in

O(nm logm). The values of the makespan are bounded by ωmin =
P

i pij

m and

ωmax =
∑
i pi. A ((1 + ε)(1 + ρ), 1)-approximation of the Pareto set can be

constructed in O(log1+ρ(
ωmax

ωmin)n
2m
ε) using a technique similar to the one of

Section 2.

5 Conclusion

Optimizing the reliability at the same time as the makespan is a di�cult prob-

lem. In order to reach this objective, we analyzed two core scheduling prob-

lems with replication, namely, a chain of tasks which is the simplest precedence

constraint on heterogeneous processors and independent tasks on identical pro-

cessors. Since almost optimal solutions can be constructed for the two core

problems, some interesting extensions should be studied such as scheduling ap-

plications with arbitrary structure on identical processors and independent task

on uniform processors. This work could be the milestone for the design of good

heuristics for more general and realistic problems since almost optimal solutions

can be constructed for the two core problems.

References

[1] E. Angel, E. Bampis, and A. Kononov. A FPTAS for approximating the

unrelated parallel machines scheduling problem with costs. In Proc. of

ESA, pages 194�205, 2001.

9

[2] I. Assayad, A. Girault, and H. Kalla. A bi-criteria scheduling heuristic for

distributed embedded systems under reliability and real-time constraints.

In Proc. of DSN, pages 347�356, 2004.

[3] A. Benoit, V. Rehn-Sonigo, and Y. Robert. Optimizing latency and relia-

bility of pipeline work�ow applications. In Proc. of HCW, 2008.

[4] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to algorithms.

MIT press, 1990.

[5] A. Dogan and F. Özguner. Matching and scheduling algorithms for mini-

mizing execution time and failure probability of applications in heteroge-

neous computing. IEEE TPDS, 13(3):308�324, 2002.

[6] J. Dongarra, E. Jeannot, E. Saule, and Z. Shi. Bi-objective scheduling algo-

rithms for optimizing makespan and reliability on heterogeneous systems.

In SPAA '07, pages 280�288. ACM press, June 2007.

[7] R. L. Graham. Bounds for certain multiprocessing anomalies. Bell System

Technical Journal, 45:1563�1581, 1966.

[8] E. Jeannot, E. Saule, and D. Trystram. Bi-objective approximation scheme

for makespan and reliability optimization on uniform parallel machines. In

Euro-Par 2008, pages 877�886, 2008.

[9] A. Oliner, R. Sahoo, J. Moreira, M. Gupta, and A. Sivasubramaniam.

Fault-aware job scheduling for bluegene/l systems. In Proc. of IPDPS,

2004.

[10] C. Papadimitriou and M. Yannakakis. On the approximability of trade-o�s

and optimal access of web sources. In Proc. of FOCS, pages 86�92, 2000.

[11] S. Shatz and J. Wang. Task allocation for maximizing reliability of dis-

tribued computer systems. IEEE TC, 41(9):1156�1169, 1992.

[12] V. T'kindt and J. Billaut. Multicriteria Scheduling. Springer, 2007.

10

