
Multi-Users Scheduling in Parallel Systems

Erik Saule and Denis Trystram
LIG, Grenoble University
51, avenue J. Kuntzmann

38330 Montbonnot St. Martin, France
{erik.saule,denis.trystram}@imag.fr

Abstract

We are interested in this paper to study scheduling prob-
lems in systems where many users compete to perform their
respective jobs on shared parallel resources. Each user
has specific needs or wishes for computing his/her jobs ex-
pressed as a function to optimize (among maximum com-
pletion time, sum of completion times and sum of weighted
completion times). Such problems have been mainly studied
through Game Theory. In this work, we focus on solving the
problem by optimizing simultaneously each user’s objective
function independently using classical combinatorial opti-
mization techniques. Some results have already been pro-
posed for two users on a single computing resource. How-
ever, no generic combinatorial method is known for many
objectives.

The analysis proposed in this paper concerns an arbi-
trarily fixed number of users and is not restricted to a single
resource. We first derive inapproximability bounds; then
we analyze several greedy heuristics whose approximation
ratios are close to these bounds. However, they remain
high since they are linear in the number of users. We pro-
vide a deeper analysis which shows that a slightly modified
version of the algorithm is a constant approximation of a
Pareto-optimal solution.

Keywords: Multi-objective optimization, Multi-users
scheduling, approximation algorithms

1 Introduction

1.1 Context and Motivation

High performance computing systems such as clusters
and computational grids are generally not dedicated to a
single user but they are shared among many users that each
execute many jobs. These users compete to perform their
respective jobs on the common resources. In such systems,

the resource allocation problem is handled by a scheduler
whose mechanism is rather simple: the jobs are submitted
by users into queues and they are scheduled by batches.
To our knowledge, the most elaborated cluster scheduler
is MAUI [10]. It uses queue parameters to take into ac-
count various parameters related to the jobs’ characteristics.
MAUI can be used in such a way that each user has a dedi-
cated queue. Tuning its queue’s parameters enables the user
to express his/her needs. However, theoretical properties
of such a scheduler have not been studied from the users’
point of view. Notice that most existing schedulers are cen-
tralized, which means that a single program is responsible
for scheduling the jobs.

In this work, we are interested in studying the problem of
scheduling jobs belonging to different users optimizing si-
multaneously the needs (or wishes) of each user. The users
have no decision to make, they only submit their jobs to the
scheduler and choose an objective function among some ex-
isting classical objectives. Our goal is to propose and ana-
lyze policies for sharing the resources taking into account
the objectives of the users.

1.2 Related approaches

Several attempts have been proposed for optimizing si-
multaneously several objectives. We mainly distinguish be-
tween two approaches for solving the multi-users schedul-
ing problem, namely, Game Theory and classical Multi-
objective Combinatorial Optimization.

Game Theory is a very useful framework for studying
systems where many agents (users in our context) inter-
act [16]. In computing systems, we distinguish two classes
of problems. On the first hand, a centralized arbiter con-
structs a solution depending on users’ decisions. In such
cases, the problem is often considered under an economic
perspective where prices are associated to time slots, and
can be solved using auctions or division protocols. On the
second hand, the users construct the solution in a distributed
way. For instance, Pascual et al. address the load bal-

1

ancing problem involving multiple organizations and show
that cooperation between organizations can always been
achieved for improving the global behavior [17]. Legrand
and Touati study a simple master-slave system where many
non-cooperating users submit their own divisible jobs [13].

Multi-objective Combinatorial Optimization received re-
cently a great interest [18]. Most investigations have been
conducted as bi-objective optimization problems and some-
times involved three simultaneous objectives. Such results
are based on sophisticated algorithms, however, they are
difficult to extend to a larger number of objectives. And as
far as we know, no generic combinatorial method is known
for many objectives. Two papers that can serve as a basis
for optimizing many objectives in the multi-users schedul-
ing problem [4, 1]. Both of them address the restricted prob-
lem of two users that submit jobs to a single machine. We
analyze in detail the content of both papers in Section 2.

Multi-users problems can also be considered by optimiz-
ing non-classical objective functions. User objective func-
tions can be aggregated within a fairness function. An infi-
nite number of fairness functions can be defined, all of them
have their advantages and none can be easily discarded [15].
However, the aggregation technique only makes sense when
all the users’ objectives are the same.

1.3 Contributions

We address in this work the problem of scheduling in-
dependent sequential jobs belonging to k different users on
m processors where each user selects an objective function
among a list of classical well-studied objectives, namely,
makespan, sum of (weighted or not) completion times. Our
main contribution is to provide algorithms that schedule the
jobs of k users with different and mixed objectives with the
best achievable theoretical guarantee. More precisely:

First, we show that if all users are interested in the
makespan, the problem can not be approximated with a ratio
better than (1, 2, . . . , k). We use here the natural extension
of the approximation ratios notation where the i-th number
corresponds to the approximation ratio on the i-th user ob-
jective. If all users are interested in the sum of completion
times, the problem can not be approximated with a ratio
better than (k, . . . , k).

Then, we propose an algorithm (called MULTICMAX) for
the case where all the users are interested in the makespan
and prove that it is a (ρ, 2ρ, . . . , kρ) approximation where
ρ is the approximation ratio of an algorithm for the single-
user case (notice that a PTAS is known for this problem).
Then, we propose an algorithm (called MULTISUM) for the
case where all users are interested in the sum of comple-
tion times and prove that it is a (k, . . . , k)-approximation.
Both algorithms are optimal in the sense that no algorithm
achieves better approximation ratios.

These ratios may appear disappointing since they depend
on the number of users. However, the ratios are high be-
cause they take as a reference a non valid solution, namely
the one that achieves the best objective value for each user
as if he/she was the only one using the system. We show for
the makespan case that an adaptation of MULTICMAX is a
constant approximation of a Pareto-optimal solution.

Finally, we tackle the mixed case where k′ users are in-
terested in the sum of completion times and k′′ users are
interested in the makespan. We propose for this problem
an algorithm (called MULTIMIXED) that is a (k, . . . , k)-
approximation for the sum of completion times and a
(k

k′′ ρ, 2k
k′′ ρ, . . . , kρ)-approximation for the makespan.

1.4 Organization

The rest of the paper is organized as follows. Section 2
is devoted to the formal description of the problem and no-
tations. It contains a brief description of two related pa-
pers and a discussion on how to extend their results to a
more general framework. Section 3 states the complexity
and approximability of the general problem and of all sub-
problems. Section 4 deals with the sub-problem where all
the users are interested in the makespan. The MULTICMAX
algorithm is given and analyzed. Then, a modification of
this algorithm is provided and its distance to the Pareto set
is computed. Section 5 describes and analyzes MULTISUM,
an approximation algorithm for the sub-problem where all
users are interested in the sum of completions times or the
sum of weighted sum completion times. Finally, in Sec-
tion 6, previous results are used to derive MULTIMIXED,
an approximation algorithm for the mixed case where users
may be interested in both the makespan and the sum of com-
pletion times.

2 Model and Preliminaries

2.1 Problem Definition and Notations

Let us consider k independent users (indexed by u) com-
peting for the resources on a parallel platform composed of
m identical resources (processors). Each user u owns n(u)

jobs (denoted by J
(u)
i , 1 ≤ i ≤ n(u)). The jobs are submit-

ted to a centralized scheduler.
Let n =

∑k
u=1 n(u) be the total number of jobs. Job

J
(u)
i belongs to user u and has a processing time of p

(u)
i .

A schedule is defined by the starting times of all the jobs:
σ(J (u)

i). The completion time of J
(u)
i is C

(u)
i = σ(J (u)

i) +
p
(u)
i . The usual constraints of scheduling must hold: each

job is scheduled without interruption and no more than m
jobs can run at a time.

2

The makespan of jobs belonging to u is
C

(u)
max = max

J
(u)
i

C
(u)
i . The average completion times

of jobs belonging to u is
∑

C
(u)
i (the weighted variant is∑

w
(u)
i C

(u)
i). In general f∗ denotes the optimal value of

objective f . The value of f achieved in a given schedule S
is denoted by f(S).

The multi-objective problem where each objective is the
one chosen by each user is called MUSP (for Multi-Users
Scheduling Problem). However, we will consider sub-
problems where the users’ choice are fixed in the problem.
For example, we will denote by MUSP (k′ :

∑
Ci ; k′′ :

Cmax) the sub-problem where k′ users are interested in the
sum of completion times and k′′ = k − k′ users are inter-
ested in the makespan.

2.2 Analysis of basic related works

We recall in this section the results of two recent papers
dealing with the same problem with restricted hypotheses.
They can serve as a basis for solving the general multi-users
scheduling (allocation) problem. Both papers (Baker and
Smith [4] and Agnetis et al. [1]) consider two users
competing for the execution of their jobs on a common
single resource.

In the first paper [4], the problem is to optimize a lin-
ear combination of two of the three following objectives :
makespan, sum of completion times (weighted or not) and
maximum lateness. They proved that the combination of
any pair of objectives can be solved in polynomial time ex-
cept for the combination of maximum lateness and sum of
weighted completion times. Moreover, on a single machine,
if a user wants to optimize the makespan of his-her own set
of jobs, then they can be merged into a single job.

These results can be extended to several users (more than
2) as long as the objective function remains a linear combi-
nation of users’ objective functions: two users optimizing
the makespan of their jobs can be seen as a single user that
wants to optimize the sum of weighted completion times of
two jobs, each one being the merge of the original jobs.
Moreover, a user interested in the makespan is seen has
a single task of a sum of completion time interested user.
However, optimizing a linear combination of users’ objec-
tives does not seem to be a good idea. Let us consider the
instance involving two users where the first one is inter-
ested in minimizing the makespan of several jobs which are
merged into one big job with processing time p(1), while the
second one wants to minimize the sum of completion times
of Kp(1) unitary jobs (where K is an integer). By opti-
mizing the sum of both objectives, the system will schedule
all the jobs of the second user before scheduling the job of

the first one. This behavior is unfair because the jobs of
the first user can be arbitrarily delayed by jobs of the sec-
ond user when K goes to infinity. Moreover, the first user
has incentive to lie: he/she would have obtained a better
performance if he/she declared to be interested by the sum
of completion times instead of the makespan... In the ter-
minology of Game Theory, this method does not guarantee
the truthfulness [3].

A second argument against using similar approaches
based on linear (weighted) combinations of objectives is
that in the objective space, the Pareto set1 of such a problem
is not always convex or all Pareto optimal solutions may
be aligned. Thus, it is possible to achieve only a few
interesting solutions by such a technique.

The second paper of Agnetis et al. [1] also concerns
the optimization of the objectives of two users (among the
makespan, the sum of completion times and the sum of
weighted completion times) on a single common resource.
They distinguish between two questions:

First, they are interested in Constrained Optimization
Problems where one objective is fixed as a constraint and
the second objective is optimized. The authors show that
when both users are interested in the makespan, the prob-
lem can be solved in polynomial time. If they are both inter-
ested in the sum of completion times, the problem becomes
binary NP-hard and they provide a pseudo-polynomial dy-
namic program to solve it. With mixed objectives, if one
user is interested in the weighted sum of completion times,
the problem is binary NP-hard. Other cases are polynomial.

Secondly, they are interested in Pareto Optimization
Problems in which the output of the algorithm is all Pareto
optimal schedules. The main issue is the cardinality of the
Pareto set. When one user is interested in the makespan, if
the other one is interested in the makespan or in the sum
of completion times, the cardinality of the Pareto set is
polynomial. If the second one is interested in the weighted
sum of completion times, the problem is open. If both
users are interested in the sum of completion times, the
cardinality of the Pareto set can be exponential.

All those results are interesting from a theoretical point
of view. For instance, the constrained version of a multi-
objective problem helps to construct an approximation of
the Pareto set for this problem [2]. They help to deter-
mine the frontier between easy and hard problems. How-
ever, they can not be directly used to deal with the multi-
machine/multi-users case. They do not provide a generic
way to optimize different objective functions.

1The set of Pareto optimal solutions, i.e. solutions where no objective
value can be improved without degrading another objective value.

3

2.3 Discussion on Objective Functions

In this section, we give another point of view about this
multi-user optimization problem by showing how to reduce
the optimization of a fairness function to the problem we
are addressing.

In the literature, when scheduling individually important
jobs of different sizes, the problem of fairness arises. It
can be tackled using the stretch objective function which is
defined as the time the task spent in the system normalized
by its processing time. Stretch optimization was studied
on non-preemptible independent tasks [5]. In a sense, the
stretch of a job is a degradation factor it obtains by not being
the only job in the system. The stretch is also used in bag-
of-task applications [12] which is comparable to our setting.
In bag-of-tasks, the application is composed of small jobs
(possibly infinitely small jobs), whereas in MUSP the user
submits a set of jobs.

Thus, the idea is to optimize a stretch-like function de-
rived from the user objective function. If f (u) is the objec-
tive function of user u, the degradation of u in schedule S

is d(u)(S) = f(u)(S)
f(u)∗ where f (u)∗ is the minimum value of

f (u).
Stretch of applications needs an aggregation function to

ensure fairness. Three of them are usually considered which
corespond to the standard norms L∞, L1, L2: minimizing
the maximum of stretches, the sum of stretches and the
product of stretches. Thus, optimizing the sum (or maxi-
mum, ...) of degradations seems the logical extension, in
the following let L be the considered norm.

Such an objective function would be NP-hard to opti-
mize and approximation algorithms would be needed. How-
ever, no non-trivial lower bound on such functions is known
which is a pre-request to design approximation algorithms.

The point is that L is decreasing and monotone func-
tion of the degradations according to the Pareto order and
the degradation of user u is an increasing function of f (u).
Thus, in the multi-objective problem of minimizing the tu-
ple (f (1), . . . , f (k)), if S Pareto-dominates S′, then L(S) ≤
L(S′). In other words, solving the multi-objective opti-
mization problem will solve the problem of optimizing L
since the minimum of L is reached by a Pareto optimal so-
lution.

3 Complexity and Inapproximability

We first study the complexity of all sub-problems (all
possible combinations of objectives). Then, we focus on
bounding the performance of the best achievable approxi-
mation algorithms.

Optimizing the makespan of a single set of jobs (i.e. one
objective) on an arbitrary number of processors is strongly

NP-hard [6]. Thus, as soon as one user wants to optimize
the makespan, the problem becomes strongly NP-hard. Let
us now concentrate on the case where all the users are inter-
ested in the sum of completion times which is a sub-case of
the weighted sum of completion times problem. Recall that
the decision problem restricted to two users interested in
the sum of completion times on a single machine is binary
NP-complete [1]. Thus, on an arbitrary number of proces-
sors, the problem is harder. In conclusion, all optimization
sub-problems we are interested in are NP-hard.

As all sub-problems are NP-hard, it is likely that no op-
timal polynomial-time algorithms can be designed. Thus,
we are interested in polynomial approximation algorithms.
In the reminder of this section, we are looking for lower
bounds on best achievable approximation vector-ratios of
a single solution. Formally, a scheduling algorithm algo
has a performance vector-ratio (ρ1, . . . , ρk) if for all valid
schedules S and for all users u, f (u)(algo) ≤ ρuf (u)(S)
where f (u) is the objective of user u. First, let us remark
that the optimal value of one particular objective function is
obtained by scheduling optimally the jobs of one user like
if he/she was the only user of the machine. Thus, all known
bounds on the best approximation ratios for the single user
case are still valid.

We now examine two sub-problems successively, each
one is for an arbitrary fixed number of machines that
serve for establishing inapproximability bounds. These re-
sults are summarized in Propositions 3.1 and 3.2. They
are expressed as "The problem can not be approximated
with a performance vector ratio better than (ρ1, . . . , ρk)"
where ’better than’ stands for the component wise rela-
tion. This means that there is no (ρ1 − ε, ρ2 . . . , ρk)
or even (ρ1, . . . , ρi−1, ρi − ε, ρi+1 . . . , ρk)-approximation
algorithm (ε > 0). However, this formulation does
not prevent a (ρ1, . . . , ρi−1, ρi − ε, ρi+1, . . . , ρj−1, ρj +
ε, ρj+1, . . . , ρk)-approximation algorithm from existing.

Proposition 3.1 MUSP (k : Cmax) can not be ap-
proximated with a performance vector-ratio better than
(1, 2, . . . , k).

Proof. In this case, all the users are interested in the
makespan. Let us consider the following instance. Each
user has only m jobs. All the jobs have the same unit
length. Obviously, for all the users independently, the best
makespan that can be achieved is 1. In any efficient sched-
ule, one user will have a makespan of 1, another one will
have a makespan of 2, and so on. Thus, it is impossible
to obtain an algorithm that guarantees a vector-ratio better
than (1, 2, . . . , k). Moreover, remark that any permutation
of this vector-ratio can be obtained.

However, the vector-ratio (1, 2, . . . , k) is not achievable
in all instances. For example, consider the instance where
the k − 1 last users have m jobs of unit length and the first

4

one has m jobs of processing time k. In such an instance,
if the first user gets a performance ratio of 1, all other users
will get a performance ratio worse than k.

In conclusion, the best achievable vector-ratio is valid for
a permutation depending on the instance. Therefore, if the
scheduler aims at obtaining a performance vector-ratio of
(1, 2, . . . , k), then it is impossible to guarantee that a given
user will get a performance ratio better than k without hav-
ing a look at other users’ jobs. ut

Proposition 3.2 MUSP (k :
∑

Ci) can not be approxi-
mated with a vector-ratio better than (k, . . . , k).

Proof. Let us consider the instance with k users who are
interested in the sum of completion times. Each user owns
n(u) = mx unitary jobs (∀u, ∀i, p(u)

i = 1).
The optimal schedule for one user is straightforward

since all tasks have the same length i.e, x tasks per pro-
cessor. The optimal value for each user u is

∑
C

(u)∗
i =

m
∑x

i=1 i = mx(x+1)
2 . Whatever the order of the tasks, the

optimal sum of completion times of all the tasks is given
by any well balanced schedule :

∑
C∗

i = m
∑kx

i=1 i =
mkx(kx+1)

2 .
Remark that the sum of completion times of all the

tasks is the sum of the objective values of all the users :∑
Ci =

∑
u

∑
C

(u)
i . Thus, all the values of the

∑
C

(u)
i

that lead to
∑

C∗
i =

∑
u

∑
C

(u)
i are Pareto-optimal (sup-

posing the solution is feasible). In particular the solu-
tion that distributes

∑
C∗

i equitably between the k users is
Pareto-optimal. In such a solution, the objective values are
∀u,

∑
C

(u)
i =

P
C∗

i

k = mkx2+x
2 and the associated perfor-

mance vector-ratio is
P

C
(u)
iP

C
(u)∗
i

= m(kx2+x)/2
m(x2+x)/2 = k − k−1

x+1 .

This ratio tends to k when x goes to infinity.
The existence of an approximation algorithm with a ra-

tio better than (k, . . . , k) would produce a solution which
is better than a Pareto-optimal solution on the instance de-
scribed in this proof for a well chosen value of x. ut

Notice that the previous inapproximability results have
been obtained from the non existence of a solution reaching
a given performance vector. Thus, they are not complex-
ity results i.e, approximation algorithms with better bounds
would not exist even if P = NP .

4 MUSP (k : Cmax)

4.1 Absolute Approximation

We proved in the last section that MUSP (k : Cmax) is
unary NP-hard. It is even true for a single user. Moreover,

no algorithm can guarantee a constant performance vector-
ratio better than (1, 2, . . . , k) over all permutations of ob-
jective functions. If the number of processors is fixed, the
single user case can be approximated by a PTAS proposed
by Hochbaum and Shmoys using dual approximation [9].
Other approximation algorithms exist for the case of arbi-
trary number of processors. For instance, List Scheduling
where the jobs are ordered by decreasing processing times
(also called LPT order) is a 4

3 -approximation algorithm with
low cost complexity [14]. A better 5

4 -approximation algo-
rithm has been proposed in [11].

Consider the following algorithm called MULTICMAX.
For each user u, compute a schedule S(u) with a ρ-
approximation algorithm. Then, sort the users by in-
creasing values of C

(u)
max(S(u)). Finally, schedule jobs of

user u according to S(u) between
∑

u′<u C
(u′)
max(S(u′)) and∑

u′≤u C
(u′)
max(S(u′)).

The following theorem states the theoretical guarantee of
this algorithm.

Theorem 4.1 MULTICMAX is a (ρ, 2ρ, . . . , kρ)-
approximation algorithm of MUSP (k : Cmax).

Proof. There are two properties to check. First, the sched-
ule is valid. Indeed, the jobs of each user u are scheduled in
disjoint intervals of length C

(u)
max(S(u)) according to S(u).

Secondly, the performance vector-ratio is (ρ, 2ρ, . . . , kρ).
Indeed, C

(u)
max =

∑
u′≤u C

(u′)
max(S(u′)). The users are or-

dered by increasing values of C
(u)
max(S(u)). Thus, C

(u)
max ≤

uC
(u)
max(S(u)). Moreover, S(u) was generated by a ρ-

approximation algorithm. Thus, C
(u)
max ≤ uρC

(u)∗
max. ut

A straightforward corollary is that if an exact algorithm
is used (ρ = 1), the vector-ratio obtained is (1, 2, . . . , k)
which ensures the tightness of the bound given in Propo-
sition 3.1. Using the PTAS proposed by Hochbaum and
Shmoys, the algorithm is a (1 + ε, 2 + 2ε, . . . , k + kε)-
approximation algorithm.

The permutation of objectives problem pointed out in
Section 3 also holds in Theorem 4.1: the theorem is valid
for a given unknown permutation of users. Remark that one
user can not know in advance his/her rank in the algorithm.

4.2 Distance to the Pareto Set

The performance vector-ratio of MULTICMAX depends
on k and it has been shown to be tight (using an exact al-
gorithm for computing S(u)). One could argue that such a
solution is inefficient and thus it is not interesting. How-
ever, the performance vector-ratio represents the distance
between the proposed schedule and the solution that reaches
the absolute best makespan for every users which is not fea-
sible (in the general case). In this section, we present a class

5

of solutions List, which are a MULTICMAX with ρ = 2,
and which contains efficient schedules that are close to the
Pareto set. We will prove this result for a restricted class
of instances where each user submits a reasonable number
of jobs, namely ∀u,

∑
p
(u)
i >

mC(u)∗
max

2 (Remark that such
instance are not trivial : the instance that provided the ap-
proximability lower bound respects this property and the in-
stance used to proove the NP-completeness of the makespan
minimization problem also respects it). Our purpose is to
show that a constant approximation of a Pareto optimal so-
lution can be constructed while keeping the absolute bound.

List Scheduling is a mechanism that greedily sched-
ules jobs as soon as possible in any given order [7]. It
is well-known that List Scheduling is a 2-approximation
algorithm. More precisely, if the jobs are sorted accord-
ing to the given order, we have the following property:
∀i, Ci ≤

P
i′≤i p

i′

m + (1 − 1
m)pi. We denote by List the

schedules obtained by List Scheduling using any order such
that all the jobs of user u are scheduled after each job of
user u′ < u where the users are sorted in non-decreasing
order of C

(u)∗
max. One can easily see that each solution of

List can be worsened to be a solution of MULTICMAX with
ρ = 2. Thus, any solution of List is a (ρ, 2ρ, . . . , kρ)-
approximation algorithm of MUSP (k : Cmax).

We need a reference solution on the Pareto set for com-
puting the distance between the solutions of List and the
Pareto set. Let us define a set of schedules Lex that are op-
timal for the lexicographical order of the users. Formally,
Lex is defined as: ∀S ∈ Lex,C

(1)
max(S) = C

(1)∗
max;∀u >

1, C
(u)
max(S) = min

S′|∀u′<u,C
(u′)
max(S′)=C

(u′)
max(S)

C
(u)
max(S′).

In the following, Lex(u) denotes the set of Lex solutions
of the problem restricted to the first u users i.e., the jobs of
other users are not scheduled. Remark that all solutions in
Lex have the same objective values. Thus, it makes sense
to define C

(u)
max(Lex). Let us also define Idle(Lex(u)) =

mCmax(Lex(u))−
∑

u′≤u

∑
i p

(u′)
i , the idle area in sched-

ules of Lex(u).

Property 4.2 Idle(Lex(u)) < mC
(u)∗
max

Proof. Recall first that in an efficient schedule, all the idle
time are at the end of the schedule since all the jobs are
released simultaneously.

Let J
(u′)
i be the latest job to complete in any S ∈

Lex(u). p
(u′)
i ≤ C

(u)∗
max since p

(u′)
i ≤ C

(u′)∗
max ≤ C

(u)∗
max (for

u′ ≤ u) .
By contradiction, if Idle(Lex(u)) ≥ mC

(u)∗
max, there ex-

ists a processor that is idle for more than C
(u)∗
max units of time.

This processor could have schedule J
(u′)
i sooner. Thus,

schedule S does not belong to Lex(u). ut

If the previous hypothesis ∀u,
∑

p
(u)
i >

mC(u)∗
max

2 does

not hold, one can construct an instance where a user with
a single job should be scheduled at time 0. Any solution
of List does not schedule it that soon. We can derive the
following lemma from the hypothesis.

Lemma 4.3 ∀u > 2, if C
(u−1)
max (Lex) < C

(u−2)
max (Lex) then

C
(u)
max(Lex) > C

(u−2)
max (Lex)

Proof. If C
(u−1)
max (Lex) < C

(u−2)
max (Lex) then

Idle(Lex(u− 1)) = Idle(Lex(u− 2))−
∑

p
(u−1)
i .

Recalling that Idle(Lex(u − 2)) < mC
(u−2)∗
max (from

Property 4.2) leads to Idle(Lex(u − 1)) < mC
(u−2)∗
max −∑

p
(u−1)
i . Since

∑
p
(u−1)
i >

mC(u−1)∗
max

2 (from the hypoth-
esis) and C

(u)∗
max ≥ C

(u−1)∗
max ≥ C

(u−2)∗
max (from the order of

the users), we obtain Idle(Lex(u − 1)) <
mC(u)∗

max

2 . Thus,
all the jobs of user u can not fit in the idle time before
C

(u−2)
max (Lex). At least one job of user u finishes after this

value. ut

Corollary 4.4 ∀u > 2, C
(u)
max(Lex) > C

(u−2)
max (Lex)

The proof of the corollary comes directly from the pre-
vious lemma.

The next theorem proves that any solution of List is a
3-approximation of Lex.

Theorem 4.5 ∀u, C
(u)
max(List) ≤ (3− 1

m)C(u)
max(Lex)

Proof. Let p
(u)
max = maxi p

(u)
i . From the standard anal-

ysis of List Scheduling [7], we derive: C
(u)
max(List) ≤P

u′≤u

P
i p

(u′)
i

m + (1− 1
m)p(u)

max which can be rewritten as:

C
(u)
max(List) ≤

(P
u′≤u−2

P
i p

(u′)
i

m +
P

i p
(u)
i

m

)
+(P

i p
(u−1)
i

m

)
+ (1− 1

m)p(u)
max

The first term of this expression is less than C
(u)
max(Lex)

(from Corollary 4.4). The second one is less than C
(u)∗
max

since it is a lower bound of C
(u−1)∗
max and since the users are

sorted in non-decreasing values of their optimal makespan.
p
(u)
max is a lower bound of C

(u)∗
max.

Finally, we obtain the following expression:
C

(u)
max(List) ≤ C

(u)
max(Lex) + (2 − 1

m)C(u)∗
max. As

C
(u)∗
max ≤ C

(u)
max(Lex), we obtain the bound. ut

In the previous analysis, it is required to know the op-
timal makespan of each user for constructing a solution in
List. However, if only an ρ-approximation of the makespan
of each user is known, the approximation of a solution in
List remains constant.

6

5 MUSP (k :
∑

Ci)

We are now interested in the case where all the users
want to optimize the sum of completion times of their jobs.
Recall that for a single user, this problem can be solved in
polynomial time by scheduling the tasks in non decreas-
ing order of their processing time. This algorithm is called
SPT [14]. However, for more than one user, this problem is
NP-hard. Moreover, no algorithm can guarantee a constant
vector-ratio better than (k, . . . , k) over all permutations of
objective functions.

To solve this problem, we first study the single processor
case and we analyze its performance vector-ratio. Finally,
we extend the analysis to an arbitrary number of processors.

5.1 Preliminary analysis for m = 1

Similarly as in Section 4, we compute the final schedule
of all users’ jobs from schedules of each user’s jobs. Let us
consider S(1), . . . , S(k) independent schedules for the jobs
of each user. We construct schedule S using the following
greedy algorithm called AGGREG: schedule jobs in non-
decreasing order of C

(u)
i (S(u)).

This simple algorithm ensures that the completion times
are not degraded by a factor greater than k. This is stated
by the following proposition.

Proposition 5.1 Schedule S is such that ∀u, ∀i ≤
n(u), C

(u)
i (S) ≤ kC

(u)
i (S(u)).

Proof. Let us consider job J
(u)
i . Notice first that

C
(u)
i (S) ≤ C

(u′)
i′ (S) implies C

(u)
i (S(u)) ≤ C

(u′)
i′ (S(u′)).

Thus, for each user u′, the set of job J (u′) scheduled before
C

(u)
i (S) in S is such that

∑
J

(u′)
i′ ∈J(u′) p

(u′)
i′ ≤ C

(u)
i (S(u)).

There is one such set per user. J
(u)
i completes when all

the jobs of ∪u′J
(u′) are completed. Thus, C

(u)
i (S) =∑

u′
∑

J
(u′)
i′ ∈J(u′) p

(u′)
i′ ≤ kC

(u)
i (S(u)) which proves the

proposition. ut

The previous algorithm considers each user with the
same priority. We can derive another algorithm that does
not give the same priority to the users. Let λ1, . . . , λk be
real positive values such that

∑
u λu = 1. We construct

schedule Sλ using the following greedy algorithm called
AGGREGλ: schedule the job in non-decreasing order of
C

(u)
i (S(u))

λu
. Remark that if ∀u, λu = 1

k then S = Sλ.
The completion times in Sλ of jobs belonging to user u

are not degraded by a factor greater than 1
λu

. This is stated
by the following proposition. The proof is similar to the
proof of Proposition 5.1 and thus it is omitted.

Proposition 5.2 Schedule Sλ is such that ∀u, ∀i ≤
n(u), C

(u)
i (S) ≤ C

(u)
i (S(u))

λu
.

Using AGGREG, it is possible to mix k schedules and en-
sure that the completion time of each job in each schedule
is not degraded by a factor greater than k. In particular, if
a schedule is a ρ-approximation on the sum of (weighted
or unweighted) completion times then by mixing it with
the k − 1 other schedules, the final schedule is a (kρ)-
approximation for this user.

Lemma 5.3 AGGREG (SPT (1), . . . , SPT (k)) is a
(k, . . . , k)-approximation algorithm of MUSP (k :

∑
Ci)

on one processor.

The proof of this lemma comes directly from the opti-
mality of SPT for one user and from Proposition 5.1.

5.2 Extension to m processors

The previous lemma states an interesting result for the
single machine case. In this section, we show that the gen-
eral framework can be easily extended to m processors.

We now describe the MULTISUM algorithm. Let
S(1), . . . , S(k) be k SPT schedules on m processors. Each
schedule S(u) can be seen as m independent schedules de-
noted S

(u)
1 , . . . , S

(u)
m . For each processor j, schedules S

(u)
j

of each user u are mixed by AGGREG into Sj . Then, a
global schedule on m processors is constructed by execut-
ing Sj on processor j (1 ≤ j ≤ m).

Theorem 5.4 MULTISUM is a (k, . . . , k)-approximation
algorithm for MUSP (k :

∑
Ci).

The proof of Theorem 5.4 comes directly from
Lemma 5.3 and from the independence of processors.

Optimizing the sum of weighted completion times case
is NP-hard even for a single user. However, there exist ap-
proximation algorithms such as the one proposed by Hall
et al. that reaches a performance ratio of (4 − 1

m) [8]. Us-
ing a ρ-approximation algorithm instead of SPT leads to the
following MULTIWEIGHTEDSUM algorithm.

Corollary 5.5 MULTIWEIGHTEDSUM is a (ρk, . . . , ρk)-
approximation algorithm for MUSP (k :

∑
wiCi).

Using Hall et al.’s algorithm leads to a ((4 −
1
m)k, . . . , (4− 1

m)k)-approximation algorithm.

7

6 Mixed objectives

6.1 Multi-objective optimization

In this section we are interested in the mixed objective
case where k′ users are interested in the sum of comple-
tion times and k′′ users are interested in the makespan :
MUSP (k′ :

∑
Ci ; k′′ : Cmax) with k = k′ + k′′.

Remark that the technique presented in the last sec-
tionfor the sum of completion times also works for the
makespan objective. Every user will get a performance of
k. However, it is possible to improve this result. Indeed, if
no users are interested in the sum of completion times, we
can obtain a performance ratio of (1, . . . , k). While if one
user is interested in the sum of completion times, the ratio
of each user interested in the makespan is worsened to k.

The idea in this section is to incorporate techniques pre-
sented in Section 4 and 5 into a single scheduling algorithm
called MULTIMIXED.

Consider the sub-instance of the k′′ users interested in
the makespan. Let S(cmax) be the schedule generated by
MULTICMAX (using any ρ-approximation algorithm) on
this sub-instance. For each user u interested in the sum of
completion times, let S(u) be a SPT schedule of jobs be-
longing to u on m processors. Let S

(u)
j be the sub-schedule

of S(u) on the j-th processor (S(cmax)
j is similarly defined).

For each processor j, mix all the schedules S
(u)
j (∀u ≤ k′)

and S
(cmax)
j into Sj using AGGREGλ with λu = 1

k ,∀u ≤ k′

and λcmax = k′′

k . Construct the final global schedule S by
executing Sj on processor j.

The theoretical guarantee of MULTIMIXED is stated by
the following theorem.

Theorem 6.1 MULTIMIXED is a
(k, . . . , k, k

k′′ ρ, 2k
k′′ ρ, . . . , kρ)-approximation algorithm

for MUSP (k′ :
∑

Ci ; k′′ : Cmax).

Proof. All the users interested in the sum of completion
times get a performance ratio of k. The corresponding proof
is similar to the one of Theorem 5.4 and it is omitted.

Consider now user u interested in the makespan.
Without loss of generality, we have C

(u)
max(S(cmax)) ≤

uρC
(u)∗
max (from Theorem 4.1) which means that ∀i ≤

n(u), C
(u)
i (S(cmax)) ≤ uρC

(u)∗
max.

Due to Proposition 5.2, all the jobs of the users interested
in Cmax are not degraded by a factor greater than k

k′′ . Thus,
∀i ≤ n(u), C

(u)
i (S(cmax)) ≤ k

k′′uρC
(u)∗
max which concludes

the proof. ut

6.2 Optimizing the fairness on degrada-
tions

In Section 2.3, we introduced a related problem, that
is the optimization of a fairness (in fact a norm) objec-
tive function of degradations. By using the monotony of
norms according to the Pareto order, we show that solving
the multi-optimization problem solves the norm optimiza-
tion problem. The minimum of the objective function is
reached by a Pareto optimal solution. The algorithms we
proposed do not generate all the Pareto set. However, sev-
eral interesting properties can be derived.

First, the vector-approximation ratio of an algorithm im-
plies an approximation for the norm optimization prob-
lem. For instance, consider the maximum of degradation
(L∞ norm), a (ρ, ρ, . . . , ρ)-approximation algorithm is a ρ-
approximation of the norm.

Second, all the algorithms we proposed have parameters
that can be tuned in order to generate different guaranteed
trade-offs. Thus, it is possible to scan the solution space by
changing those parameters and keep the solution that op-
timizes the norm function. For instance, on the L∞ norm
case, the following iterative process can be used. Generate a
solution using the algorithm. Sort users in decreasing order
of their degradation. Increase the priority of the first user by
decreasing the priority of the last ones. This will probably
not generate an approximation algorithm (in terms of worst
case bounds) but should give good results in practice.

7 Conclusion

In this paper, we analyzed the Multi-Users Scheduling
Problem with many users interested in optimizing objec-
tives among the most popular existing objectives on m pro-
cessors. For the cases where all the objectives are the same,
we derived some inapproximability results and we proposed
algorithms that are very close or equal to the inapproxima-
bility bounds. In the case of mixed objectives, we lack an
inapproximability bound but we proposed an algorithm with
not-straightforward vector-ratio. Indeed, its restrictions to
the cases where all the users share the same objective func-
tion have the same performances than the dedicated algo-
rithms.

This analysis leads us to the following discussion. The
approximation vector-ratios are linear in the number of
users which may appear disappointing. Indeed, the vector-
ratios are computed relatively to a absolute best solution
which is usually unfeasible. However, it ensures the perfor-
mance degradation of each user is always reasonable. Using
a deeper analysis for the makespan case, we showed that a
modification of the algorithm provides a solution close to
the Pareto set. This ensures that the solution is efficient.

8

References

[1] A. Agnetis, P. B. Mirchandani, D. Pacciarelli, and A. Paci-
fici. Scheduling problems with two competing agents. Op-
erations Research, 52(2):229–242, 2004.

[2] E. Angel, E. Bampis, and L. Gourvès. Approximation re-
sults for a bicriteria job scheduling problem on a single ma-
chine without preemption. Information Processing Letters,
94(1):19–27, Apr. 2005.

[3] A. Archer, C. Papadimitriou, K. Talwar, and E. Tardos. An
approximate truthful mechanism for combinatorial auctions
with single parameter agent. In Proc. of the 14th Annual
ACM Symposium on Discrete Algorithms (SODA), 2003.

[4] K. Baker and J. Smith. A multiple-criterion model for ma-
chine scheduling. Journal of Scheduling, 6:7–16, 2003.

[5] M. A. Bender, S. Muthukrishnan, and R. Rajaraman. Im-
proved algorithms for stretch scheduling. In Proceedings of
the 13th Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pages 762–771, 2002.

[6] M. R. Garey and D. S. Johnson. Computers and Intractabil-
ity. Freeman, San Francisco, 1979.

[7] R. L. Graham. Bounds for certain multiprocessing anoma-
lies. Bell System Technical Journal, 45:1563–1581, 1966.

[8] L. A. Hall, A. S. Schulz, D. B. Shmoys, and J. Wein.
Scheduling to minimize average completion time: Off-line
and on-line approximation algorithms. In SODA: ACM-
SIAM Symposium on Discrete Algorithms, 1997.

[9] D. S. Hochbaum and D. B. Shmoys. Using dual approxima-
tion algorithms for scheduling problems: Pratical and theo-
retical results. Journal of ACM, 34:144–162, 1987.

[10] D. Jackson, Q. Snell, and M. Clement. Core algorithms of
the maui scheduler. In D. G. Feitelson and L. Rudolph, edi-
tors, Proc. of the 7th International workshop JSSPP, number
2221 in LNCS. Springer, 2001.

[11] H. Kellerer. Algorithms for multiprocessor scheduling with
machine release times. IIE Transactions, 30(11):991–999,
Nov. 1998.

[12] A. Legrand, A. Su, and F. Vivien. Minimizing the stretch
when scheduling flows of biological requests. In Symposium
on Parallelism in Algorithms and Architectures SPAA’2006.
ACM Press, 2006.

[13] A. Legrand and C. Touati. Non-cooperative scheduling of
multiple bag-of-task applications. In Proc of InfoCom 2007,
pages 427–435, 2007.

[14] J. Y.-T. Leung. Some basic scheduling algorithms. In J. Y.-
T. Leung, editor, Handbook of Scheduling, chapter 3. CRC
Press, 2004.

[15] J. Mo and J. Warland. Fair end-to-end window-based con-
gestion control. In Proc. of SPIE ’98: International Sympo-
sium on Voice, Video and Data Communications, 1998.

[16] M. J. Osborne and A. Rubinstein. A Course in Game Theory.
The MIT Press, 1994.

[17] F. Pascual, K. Rzadca, and D. Trystram. Cooperation in
multi-organization scheduling. In Proc. of EuroPar 2007,
number 4641 in LNCS, pages 224–233, Aug. 2007.

[18] V. T’kindt and J.-C. Billaut. Multicriteria Scheduling.
Springer, 2007.

9

