
Fundamental Computer Science
Turing Machines (extensions)

Training session

Denis Trystram

MoSIG1-M1Info, 2021



Exercise (non deterministic TM)

I Consider a set A = {a1, a2, . . . , an} of positive integers and an
integer w ∈ N.

Give a Non-deterministic Turing Machine that recognizes the
language L = {A′ ⊆ A :

∑
ai∈A′ ai = w}.



Solution

1. choose non-deterministically a set A′ ⊆ A

2. add the elements of A′

3. if they sum up to w, then accept

I How to choose A′ non-deterministically?
I produce all binary numbers of n digits
I start from 00 . . . 0 and add 1 at each iteration



Solution

1. choose non-deterministically a set A′ ⊆ A

2. add the elements of A′

3. if they sum up to w, then accept

I How to choose A′ non-deterministically?
I produce all binary numbers of n digits
I start from 00 . . . 0 and add 1 at each iteration



Exercise RAM

I Write a program for a Random Access Turing Machine that
multiplies two integers.
Assume that the initial configuration is (1; 0, a1, a2, 0; ∅)



RAM (solution)

I Write a program for a Random Access Turing Machine that
multiplies two integers.
Assume that the initial configuration is (1; 0, a1, a2, 0; ∅)

1: while R1 > 0 do
2: R1 ← R1 − 1
3: R3 ← R3 +R2

or (all computations should pass through R0)

1: R0 ← R1

2: while R0 > 0 do
3: R0 ← R0 − 1
4: R1 ← R0

5: R0 ← R3

6: R0 ← R0 +R2

7: R3 ← R3

1: load 1
2: jzero 9
3: sub =1
4: store 1
5: load 3
6: add 2
7: store 3
8: jump 1
9: halt



RAM (solution)

I Write a program for a Random Access Turing Machine that
multiplies two integers.
Assume that the initial configuration is (1; 0, a1, a2, 0; ∅)

1: while R1 > 0 do
2: R1 ← R1 − 1
3: R3 ← R3 +R2

or (all computations should pass through R0)

1: R0 ← R1

2: while R0 > 0 do
3: R0 ← R0 − 1
4: R1 ← R0

5: R0 ← R3

6: R0 ← R0 +R2

7: R3 ← R3

1: load 1
2: jzero 9
3: sub =1
4: store 1
5: load 3
6: add 2
7: store 3
8: jump 1
9: halt



RAM (solution)

I Write a program for a Random Access Turing Machine that
multiplies two integers.
Assume that the initial configuration is (1; 0, a1, a2, 0; ∅)

1: while R1 > 0 do
2: R1 ← R1 − 1
3: R3 ← R3 +R2

or (all computations should pass through R0)

1: R0 ← R1

2: while R0 > 0 do
3: R0 ← R0 − 1
4: R1 ← R0

5: R0 ← R3

6: R0 ← R0 +R2

7: R3 ← R3

1: load 1
2: jzero 9
3: sub =1
4: store 1
5: load 3
6: add 2
7: store 3
8: jump 1
9: halt


