Fundamental Computer Science Turing Machines (extensions) Training session

Denis Trystram

MoSIG1-M1Info, 2021

Exercise (non deterministic TM)

- Consider a set $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ of positive integers and an integer $w \in \mathbb{N}$.

Give a Non-deterministic Turing Machine that recognizes the language $L=\left\{A^{\prime} \subseteq A: \sum_{a_{i} \in A^{\prime}} a_{i}=w\right\}$.

Solution

1. choose non-deterministically a set $A^{\prime} \subseteq A$
2. add the elements of A^{\prime}
3. if they sum up to w, then accept

Solution

1. choose non-deterministically a set $A^{\prime} \subseteq A$
2. add the elements of A^{\prime}
3. if they sum up to w, then accept

- How to choose A^{\prime} non-deterministically?
- produce all binary numbers of n digits
- start from $00 \ldots 0$ and add 1 at each iteration

Exercise RAM

- Write a program for a Random Access Turing Machine that multiplies two integers.
Assume that the initial configuration is $\left(1 ; 0, a_{1}, a_{2}, 0 ; \emptyset\right)$

RAM (solution)

- Write a program for a Random Access Turing Machine that multiplies two integers.
Assume that the initial configuration is $\left(1 ; 0, a_{1}, a_{2}, 0 ; \emptyset\right)$

1: while $R_{1}>0$ do
2: $\quad R_{1} \leftarrow R_{1}-1$
3: $\quad R_{3} \leftarrow R_{3}+R_{2}$

RAM (solution)

- Write a program for a Random Access Turing Machine that multiplies two integers.
Assume that the initial configuration is $\left(1 ; 0, a_{1}, a_{2}, 0 ; \emptyset\right)$

1: while $R_{1}>0$ do
2: $\quad R_{1} \leftarrow R_{1}-1$
3: $\quad R_{3} \leftarrow R_{3}+R_{2}$
or (all computations should pass through R_{0})
1: $R_{0} \leftarrow R_{1}$
2: while $R_{0}>0$ do
3: $\quad R_{0} \leftarrow R_{0}-1$
4: $\quad R_{1} \leftarrow R_{0}$
5: $\quad R_{0} \leftarrow R_{3}$
6: $\quad R_{0} \leftarrow R_{0}+R_{2}$
7: $\quad R_{3} \leftarrow R_{3}$

RAM (solution)

- Write a program for a Random Access Turing Machine that multiplies two integers.
Assume that the initial configuration is $\left(1 ; 0, a_{1}, a_{2}, 0 ; \emptyset\right)$

1: while $R_{1}>0$ do
2: $\quad R_{1} \leftarrow R_{1}-1$
3: $\quad R_{3} \leftarrow R_{3}+R_{2}$
or (all computations should pass through R_{0})
1: $R_{0} \leftarrow R_{1}$
2: while $R_{0}>0$ do
3: $\quad R_{0} \leftarrow R_{0}-1$
4: $\quad R_{1} \leftarrow R_{0}$
5: $\quad R_{0} \leftarrow R_{3}$
6: $\quad R_{0} \leftarrow R_{0}+R_{2}$
7: $\quad R_{3} \leftarrow R_{3}$

1: load 1
2: jzero 9
3: sub $=1$
4: store 1
5: load 3
6: add 2
7: store 3
8: jump 1
9: halt

