Fundamental Computer Science Lecture 5: Approximation (1)

Denis Trystram MoSIG1 and M1Info – University Grenoble-Alpes

March, 2021

Agenda

- Introduction to Approximation
- ► A new problem: scheduling
 - Complexity analysis Studying two variants
 - ► A path for discussing the various aspects of approximation

Some NP-COMPLETE problems

Dealing with NP-HARD (optimization) problems

There are multiple ways to solve a NP-hard problem...

- exact algorithms
 - exact optimal solution but non-polynomial complexity
 - efficient for small instances
 - methodology: dynamic programming, branch-and-bound, pseudo-polynomial algorithms
- study special cases
 - could be polynomially solvable
 - ▶ examples: 2-SAT
- heuristics
 - non-optimal solution in polynomial time
 - without guarantees but good performance in practice
- randomized algorithms
 - polynomial-time complexity
 - produce the optimal with high probability

Dealing with NP-HARD (optimization) problems

Another -trade-off- solution is the following:

- exact algorithms
- study special cases
- approximation algorithms
 - non-optimal solution
 - running in polynomial time
 - theoretical worst case guarantees: the solution of the algorithm is not too far from the optimal
- heuristics
- randomized algorithms

Approximation ratio

- \blacktriangleright consider a problem Π and an algorithm ${\mathcal A}$ for solving this problem
- ► *OPT*_{*I*}: the objective value of an optimal solution for the instance *I* of the problem Π
- ► SOL_I: the objective value of the solution of our algorithm A for the instance I of the problem Π

Approximation ratio

- \blacktriangleright consider a problem Π and an algorithm ${\mathcal A}$ for solving this problem
- ► *OPT*_{*I*}: the objective value of an optimal solution for the instance *I* of the problem Π
- ► SOL_I: the objective value of the solution of our algorithm A for the instance I of the problem Π

approximation ratio (for a minimization problem)

$$\rho = \max_{I \in \text{Instances}} \left\{ \frac{SOL_I}{OPT_I} \right\}$$

• for each instance I: $OPT_I \leq SOL_I \leq \rho \cdot OPT_I$

$$\blacktriangleright \ \rho > 1$$

Approximation ratio

approximation ratio (for a maximization problem)

$$\rho = \max_{I \in \text{Instances}} \left\{ \frac{OPT_I}{SOL_I} \right\}$$

• for each instance I: $OPT_I \ge SOL_I \ge \frac{1}{\rho} \cdot OPT_I = \rho' \cdot OPT_I$

 $\blacktriangleright \ \rho > 1, \ \rho' < 1$

Case study on scheduling

Scheduling on parallel machines

- Input: a set \mathcal{J} of n jobs, a set \mathcal{M} of m identical machines, a processing time $p_j \in \mathbb{N}^+$ for each job $J_j \in \mathcal{J}$, and a positive integer C_{\max}
- Question: is there a schedule of all jobs on the machines such that no machine executes two jobs at the same time and all jobs are completed before time $C_{\rm max}$?

Scheduling on parallel machines

Input: a set \mathcal{J} of n jobs, a set \mathcal{M} of m identical machines, a processing time $p_j \in \mathbb{N}^+$ for each job $J_j \in \mathcal{J}$, and a positive integer C_{\max}

Question: is there a schedule of all jobs on the machines such that no machine executes two jobs at the same time and all jobs are completed before time C_{\max} ?

- all jobs are available at time zero
- C_j : completion time of job J_j
- $\blacktriangleright C_{\max} = \max_{J_j \in \mathcal{J}} \{C_j\}$
- optimization version: minimize the maximum completion time over all jobs (makespan or schedule's length)

Scheduling on parallel machines

Input: a set \mathcal{J} of n jobs, a set \mathcal{M} of m identical machines, a processing time $p_j \in \mathbb{N}^+$ for each job $J_j \in \mathcal{J}$, and a positive integer C_{\max}

Question: is there a schedule of all jobs on the machines such that no machine executes two jobs at the same time and all jobs are completed before time C_{\max} ?

- all jobs are available at time zero
- C_j : completion time of job J_j
- $\blacktriangleright C_{\max} = \max_{J_j \in \mathcal{J}} \{C_j\}$
- optimization version: minimize the maximum completion time over all jobs (makespan or schedule's length)
- denoted in short by: $P \parallel C_{\max}$

Three-field notation for scheduling: $\alpha \mid \beta \mid \gamma$

α : machine environment

- 1: single machine
- ► *P*: identical parallel machines
- ► P2: two identical parallel machines
- ► Q: related parallel machines
- ► R: unrelated parallel machines

Three-field notation for scheduling: $\alpha \mid \beta \mid \gamma$

α : machine environment

- ▶ 1: single machine
- ► P: identical parallel machines
- ► P2: two identical parallel machines
- ► Q: related parallel machines
- ► R: unrelated parallel machines
- β : jobs characteristics / constraints
 - ▶ r_j: release date of J_j
 - pmtn: preemptions and migrations are allowed, dup duplication
 - ► *prec*: precedence constraints
 - w_j : weight implying priority or p_j processing times of J_j

Three-field notation for scheduling: $\alpha \mid \beta \mid \gamma$

α : machine environment

- ▶ 1: single machine
- ► P: identical parallel machines
- ► P2: two identical parallel machines
- ► Q: related parallel machines
- ► R: unrelated parallel machines
- β : jobs characteristics / constraints
 - ▶ r_j: release date of J_j
 - $\blacktriangleright \ pmtn:$ preemptions and migrations are allowed, dup duplication
 - ► *prec*: precedence constraints
 - w_j : weight implying priority or p_j processing times of J_j
- $\gamma : \text{ objective }$
 - ► $C_{\max} = \max_{j \in \mathcal{J}} \{C_j\}$: schedule's length or makespan
 - $\sum C_j$: average completion time
 - $F_{\max} = \max_{j \in \mathcal{J}} \{C_j r_j\}$: maximum flow-time
 - $\sum F_j = \sum_{j \in \mathcal{J}} (C_j r_j)$: average flow-time

Gantt chart

- J_2 is non-preemptively executed ($p_2 = 4$)
- J_3 is preempted ($p_3 = 8$)
- J_1 is preempted and migrated $(p_1 = 9)$
- makespan: $C_{\text{max}} = C_{10} = 14$

▶ $P \mid pmtn \mid C_{max}$: polynomial or NP-COMPLETE?

- ▶ $P \mid pmtn \mid C_{max}$: polynomial or NP-COMPLETE?
- ▶ $P2 \parallel C_{\text{max}}$: polynomial or NP-COMPLETE?
- ▶ $P2 \mid p_j = 1 \mid C_{max}$: polynomial or NP-COMPLETE?
- ▶ $P2 \mid prec \mid C_{max}$: polynomial or NP-COMPLETE?

- ▶ $P \mid pmtn \mid C_{max}$: polynomial or NP-COMPLETE?
- ▶ $P2 \parallel C_{\text{max}}$: polynomial or NP-COMPLETE?
- ▶ $P2 \mid p_j = 1 \mid C_{max}$: polynomial or NP-COMPLETE?
- ▶ $P2 \mid prec \mid C_{max}$: polynomial or NP-COMPLETE?
- ▶ $P3 \parallel C_{\max}$: polynomial or NP-COMPLETE?
- ▶ $P3 | p_j = 1 | C_{max}$: polynomial or NP-COMPLETE?

- ▶ $P \mid pmtn \mid C_{max}$: polynomial or NP-COMPLETE?
- ▶ $P2 \parallel C_{\text{max}}$: polynomial or NP-COMPLETE?
- ▶ $P2 \mid p_j = 1 \mid C_{\text{max}}$: polynomial or NP-COMPLETE?
- ▶ $P2 \mid prec \mid C_{max}$: polynomial or NP-COMPLETE?
- ▶ $P3 \parallel C_{\max}$: polynomial or NP-COMPLETE?
- ▶ $P3 | p_j = 1 | C_{max}$: polynomial or NP-COMPLETE?
- ▶ $P \mid\mid C_{\text{max}}$: polynomial or NP-COMPLETE?

Analysis of two scheduling problems

- ► $P \mid\mid C_{\max}$
- ▶ $P2 \mid prec \mid C_{max}$

$P \mid\mid C_{\max}$: complexity analysis

- ▶ $P2 \parallel C_{\max}$ is weakly NP-complete by a straight forward reduction from 2PARTITION
- ► Thus, P || C_{max} is also NP-complete (in the weak sense) since P2 || C_{max} is a particular sub-problem

$P \mid\mid C_{\max}$: complexity analysis

- ▶ $P2 \parallel C_{\max}$ is weakly NP-complete by a straight forward reduction from 2PARTITION
- ► Thus, P || C_{max} is also NP-complete (in the weak sense) since P2 || C_{max} is a particular sub-problem
- Can we expect a more precise result?

$P \mid\mid C_{\max}$: complexity analysis

- ▶ $P2 || C_{max}$ is weakly NP-complete by a straight forward reduction from 2PARTITION
- ► Thus, P || C_{max} is also NP-complete (in the weak sense) since P2 || C_{max} is a particular sub-problem
- Can we expect a more precise result?

Yes!

It is NP-complete in the strong sense. We will show this result by a reduction from 3-PARTITION: 3-PARTITION $\leq_P P \mid\mid C_{\max}$

3-PARTITION

- Input: A positive integer B and a set \mathcal{J} of 3n integers denoted by p_j with values in the interval [B/4, B/2] and $\Sigma_{j \in \mathcal{J}} p_j = n \cdot B$
- Question: is there a partition into n multi-sets (each containing exactly 3 integers) such that the integers within each set sums up to B?

Consider an instance of 3-PARTITION $< B, \mathcal{J} >$ we define an instance of $P \mid\mid C_{\max}$ as follows:

- $\blacktriangleright m = \mid \mathcal{J} \mid /3$
- ► For each item j of J, define one task whose processing time is p_j

$$\blacktriangleright C_{max} = B$$

We prove now that an instance of 3-Partition is positive iff the transformed instance for $P \mid\mid C_{\max}$ is positive

- (\Rightarrow) Start by a positive instance of 3-PARTITION. We assign each of these sets to one machine, the makespan is B, thus, the instance is positive.
- (\Leftarrow) Assume now that the instance of $P \mid\mid C_{\max}$ is positive.
 - Since ∑_{j∈J} = n, each of the m machines has a load of at least B in this schedule.
 - Thus, partitioning the numbers into sets corresponding to the sets of tasks delivers a partition as required.
 - ► It is a positive instance of 3-PARTITION as well.

- \blacktriangleright consider the jobs in an arbitrary order, J_1,J_2,\ldots,J_n
- each time a machine becomes idle, schedule on it the first non-scheduled job according to the above order

- \blacktriangleright consider the jobs in an arbitrary order, J_1,J_2,\ldots,J_n
- each time a machine becomes idle, schedule on it the first non-scheduled job according to the above order

- \blacktriangleright consider the jobs in an arbitrary order, J_1,J_2,\ldots,J_n
- each time a machine becomes idle, schedule on it the first non-scheduled job according to the above order

- \blacktriangleright consider the jobs in an arbitrary order, J_1,J_2,\ldots,J_n
- each time a machine becomes idle, schedule on it the first non-scheduled job according to the above order

- \blacktriangleright consider the jobs in an arbitrary order, J_1,J_2,\ldots,J_n
- each time a machine becomes idle, schedule on it the first non-scheduled job according to the above order

- \blacktriangleright consider the jobs in an arbitrary order, J_1,J_2,\ldots,J_n
- each time a machine becomes idle, schedule on it the first non-scheduled job according to the above order

- \blacktriangleright consider the jobs in an arbitrary order, J_1,J_2,\ldots,J_n
- each time a machine becomes idle, schedule on it the first non-scheduled job according to the above order

- \blacktriangleright consider the jobs in an arbitrary order, J_1,J_2,\ldots,J_n
- each time a machine becomes idle, schedule on it the first non-scheduled job according to the above order

- \blacktriangleright consider the jobs in an arbitrary order, J_1,J_2,\ldots,J_n
- each time a machine becomes idle, schedule on it the first non-scheduled job according to the above order

List Scheduling (LS) [Graham]

- \blacktriangleright consider the jobs in an arbitrary order, J_1,J_2,\ldots,J_n
- each time a machine becomes idle, schedule on it the first non-scheduled job according to the above order

List Scheduling (LS) [Graham]

- \blacktriangleright consider the jobs in an arbitrary order, J_1,J_2,\ldots,J_n
- each time a machine becomes idle, schedule on it the first non-scheduled job according to the above order

List Scheduling (LS) [Graham]

- \blacktriangleright consider the jobs in an arbitrary order, J_1,J_2,\ldots,J_n
- each time a machine becomes idle, schedule on it the first non-scheduled job according to the above order

how to calculate the objective function of the optimal solution?

▶ we cannot (because the problem is NP-COMPLETE...)

how to calculate the objective function of the optimal solution?

- ▶ we cannot (because the problem is NP-COMPLETE...)
- use estimations (lower bounds): $OPT \ge LB$

 $SOL \leq \rho \cdot LB$

how to calculate the objective function of the optimal solution?

- ▶ we cannot (because the problem is NP-COMPLETE...)
- use estimations (lower bounds): $OPT \ge LB$

 $SOL \leq \rho \cdot LB \leq \rho \cdot OPT$

- how to calculate the objective function of the optimal solution?
 - ▶ we cannot (because the problem is NP-COMPLETE...)
- use estimations (lower bounds): $OPT \ge LB$

 $SOL \leq \rho \cdot LB \leq \rho \cdot OPT$

 \blacktriangleright what lower bounds can we use for $P \mid\mid C_{\max}$?

- how to calculate the objective function of the optimal solution?
 - ▶ we cannot (because the problem is NP-COMPLETE...)
- use estimations (lower bounds): $OPT \ge LB$

 $SOL \leq \rho \cdot LB \leq \rho \cdot OPT$

- \blacktriangleright what lower bounds can we use for $P \mid\mid C_{\max}$?
 - ► total load:

$$Load = \frac{1}{m} \sum_{J_j \in \mathcal{J}} p_j \le OPT$$

- how to calculate the objective function of the optimal solution?
 - ▶ we cannot (because the problem is NP-COMPLETE...)
- use estimations (lower bounds): $OPT \ge LB$

 $SOL \leq \rho \cdot LB \leq \rho \cdot OPT$

- \blacktriangleright what lower bounds can we use for $P \mid\mid C_{\max}$?
 - total load:

$$Load = \frac{1}{m} \sum_{J_j \in \mathcal{J}} p_j \le OPT$$

maximum processing time:

 $p_{\max} = \max\{p_j \mid J_j \in \mathcal{J}\} \le OPT$

$$C_{\max} \leq \frac{1}{m} \sum_{J_j \neq J_k} p_j$$

$$C_{\max} \leq \frac{1}{m} \sum_{J_j \neq J_k} p_j + p_k$$

$$C_{\max} \leq \frac{1}{m} \sum_{J_j \neq J_k} p_j + p_k = \frac{1}{m} \sum_{J_j} p_j + \frac{m-1}{m} p_k$$

$$C_{\max} \leq \frac{1}{m} \sum_{J_j \neq J_k} p_j + p_k = \frac{1}{m} \sum_{J_j} p_j + \frac{m-1}{m} p_k$$
$$\leq Load + \frac{m-1}{m} p_{\max}$$

$$\begin{array}{lcl} C_{\max} & \leq & \displaystyle \frac{1}{m} \sum_{J_j \neq J_k} p_j + p_k \ = \ \displaystyle \frac{1}{m} \sum_{J_j} p_j + \displaystyle \frac{m-1}{m} p_k \\ & \leq & \displaystyle Load + \displaystyle \frac{m-1}{m} p_{\max} \ \leq \ OPT + \displaystyle \frac{m-1}{m} OPT \end{array}$$

$$C_{\max} \leq \frac{1}{m} \sum_{J_j \neq J_k} p_j + p_k = \frac{1}{m} \sum_{J_j} p_j + \frac{m-1}{m} p_k$$

$$\leq Load + \frac{m-1}{m} p_{\max} \leq OPT + \frac{m-1}{m} OPT = \left(2 - \frac{1}{m}\right) OPT$$

Theorem

List Scheduling achieves an approximation ratio of $2 - \frac{1}{m}$.

Theorem

List Scheduling achieves an approximation ratio of $2 - \frac{1}{m}$.

Questions

- can we improve the analysis?
- ▶ is there a better approximation algorithm?

$P \parallel C_{\text{max}}$: can we improve the analysis of LS?

$P \parallel C_{\text{max}}$: can we improve the analysis of LS?

► No!

consider the following instance

•
$$n = m(m-1) + 1$$
 jobs

▶
$$p_1 = p_2 = \ldots = p_{m(m-1)} = 1$$
 and $p_{m(m-1)+1} = m$

$P \parallel C_{\text{max}}$: can we improve the analysis of LS?

► No!

consider the following instance

$$\cdot \ n = m(m-1) + 1$$
 jobs

▶
$$p_1 = p_2 = \ldots = p_{m(m-1)} = 1$$
 and $p_{m(m-1)+1} = m$

$P \parallel C_{\max}$: can we improve the analysis of LS?

► No!

consider the following instance

•
$$n=m(m-1)+1$$
 jobs

▶
$$p_1 = p_2 = \ldots = p_{m(m-1)} = 1$$
 and $p_{m(m-1)+1} = m$

$P \mid\mid C_{\max}$: a refined algorithm

Longest Processing Time (LPT)

- 1: consider the jobs in non-increasing order of their processing times, i.e., $p_1 \geq p_2 \geq \ldots \geq p_n$
- 2: each time a machine becomes idle, schedule on it the first non-scheduled job according to the above order

$P \mid\mid C_{\max}$: a refined algorithm

Longest Processing Time (LPT)

- 1: consider the jobs in non-increasing order of their processing times, i.e., $p_1 \geq p_2 \geq \ldots \geq p_n$
- 2: each time a machine becomes idle, schedule on it the first non-scheduled job according to the above order

Analysis

• J_k : the job that completes last which is assigned to M_i

$P \mid\mid C_{\max}$: a refined algorithm

Longest Processing Time (LPT)

- 1: consider the jobs in non-increasing order of their processing times, i.e., $p_1 \geq p_2 \geq \ldots \geq p_n$
- 2: each time a machine becomes idle, schedule on it the first non-scheduled job according to the above order

Analysis

- J_k : the job that completes last which is assigned to M_i
- if J_k is the only job on its machine
 - $J_k = J_1$
 - $M_i = M_1$
 - ► LPT creates the optimal schedule with C_{max} = p₁ = p_{max}

- $k \ge m+1$ and $p_k \le p_{m+1}$ (due to LPT rule)
- there are at least m+1 jobs
- ▶ in the optimal solution: there is a machine to which are assigned at least two jobs in {J₁, J₂,..., J_{m+1}}
- $OPT \ge 2p_{m+1}$
- ► as in LS:

$$C_{\max} \leq \frac{1}{m} \sum_{J_j \neq J_k} p_j + p_k \leq \frac{1}{m} \sum_{J_j} p_j + \frac{m-1}{m} p_k$$

- $k \ge m+1$ and $p_k \le p_{m+1}$ (due to LPT rule)
- there are at least m+1 jobs
- ► in the optimal solution: there is a machine to which are assigned at least two jobs in {J₁, J₂,..., J_{m+1}}
- $OPT \ge 2p_{m+1}$
- ► as in LS:

$$C_{\max} \leq \frac{1}{m} \sum_{J_j \neq J_k} p_j + p_k \leq \frac{1}{m} \sum_{J_j} p_j + \frac{m-1}{m} p_k$$
$$\leq Load + \frac{m-1}{m} p_{m+1}$$

- $k \ge m+1$ and $p_k \le p_{m+1}$ (due to LPT rule)
- there are at least m+1 jobs
- ► in the optimal solution: there is a machine to which are assigned at least two jobs in {J₁, J₂,..., J_{m+1}}
- $OPT \ge 2p_{m+1}$
- ► as in LS:

$$C_{\max} \leq \frac{1}{m} \sum_{J_j \neq J_k} p_j + p_k \leq \frac{1}{m} \sum_{J_j} p_j + \frac{m-1}{m} p_k$$
$$\leq Load + \frac{m-1}{m} p_{m+1} \leq OPT + \frac{m-1}{m} \cdot \frac{OPT}{2}$$

- $k \ge m+1$ and $p_k \le p_{m+1}$ (due to LPT rule)
- there are at least m+1 jobs
- ► in the optimal solution: there is a machine to which are assigned at least two jobs in {J₁, J₂,..., J_{m+1}}
- $OPT \ge 2p_{m+1}$
- ► as in LS:

$$C_{\max} \leq \frac{1}{m} \sum_{J_j \neq J_k} p_j + p_k \leq \frac{1}{m} \sum_{J_j} p_j + \frac{m-1}{m} p_k$$

$$\leq Load + \frac{m-1}{m} p_{m+1} \leq OPT + \frac{m-1}{m} \cdot \frac{OPT}{2}$$

$$\leq \left(\frac{3}{2} - \frac{1}{2m}\right) OPT$$

• if there are at least two jobs in M_i

- $k \ge m+1$ and $p_k \le p_{m+1}$ (due to LPT rule)
- there are at least m+1 jobs
- ▶ in the optimal solution: there is a machine to which are assigned at least two jobs in {J₁, J₂,..., J_{m+1}}
- $OPT \ge 2p_{m+1}$
- ► as in LS:

$$C_{\max} \leq \frac{1}{m} \sum_{J_j \neq J_k} p_j + p_k \leq \frac{1}{m} \sum_{J_j} p_j + \frac{m-1}{m} p_k$$

$$\leq Load + \frac{m-1}{m} p_{m+1} \leq OPT + \frac{m-1}{m} \cdot \frac{OPT}{2}$$

$$\leq \left(\frac{3}{2} - \frac{1}{2m}\right) OPT$$

 Can we provide a better analysis of LPT? See the Lab. session of today.

$P2 \mid prec \mid C_{\max}$

This is an optimization problem. Let consider the decision version.

- Definition
- Complexity
- ► Approximation

$P2 \mid prec \mid C_{\max}$

Input: a set \mathcal{J} of n jobs, 2 identical machines, a processing time $p_j \in \mathbb{N}^+$ for each job $J_j \in \mathcal{J}$, a directed graph G = (V, E) describing precedence relations between jobs, and a positive integer C_{\max}

Question: is there a schedule of all jobs on the two machines s.t. (i) no machine executes two jobs at the same time, (ii) for each two jobs J_j and $J_{j'}$, if there is an arc $(J_j, J_{j'})$, then $J_{j'}$ cannot start its execution before the completion of J_j , and (iii) all jobs are completed before time C_{\max} ?

Compexity of $P2 \mid prec \mid C_{\max}$

- ▶ $P2 \mid prec \mid C_{max}$ is NP-COMPLETE as generalization of $P2 \mid \mid C_{max}$
 - however, in the weak sense

Compexity of $P2 \mid prec \mid C_{\max}$

- ▶ $P2 \mid prec \mid C_{max}$ is NP-COMPLETE as generalization of $P2 \mid \mid C_{max}$
 - however, in the weak sense
- \blacktriangleright We will prove that it is also strongly $\operatorname{NP-COMPLETE}$

Compexity of $P2 \mid prec \mid C_{\max}$

- ▶ $P2 \mid prec \mid C_{max}$ is NP-COMPLETE as generalization of $P2 \mid \mid C_{max}$
 - however, in the weak sense
- \blacktriangleright We will prove that it is also strongly $\operatorname{NP-COMPLETE}$
- $P \mid prec \mid C_{max}$ is strongly NP-COMPLETE
 - as generalization of $P2 \mid prec \mid C_{\max}$

Complexity of $P2 \mid prec \mid C_{\max}$

Let prove that the problem is strongly $\operatorname{NP-COMPLETE}.$ What can be a reference problem?

Complexity of $P2 \mid prec \mid C_{\max}$

Let prove that the problem is strongly $\operatorname{NP-COMPLETE}.$ What can be a reference problem?

Reduction from $3\text{-}\mathrm{PARTITION}$

The idea is:

- ► to construct an adequate graph
- ▶ to relate its execution to successive equal-sized intervals

Exercise: write the detailed proof.

Idea of the reduction

Let consider the following gadget:

We concatenate n-1 such gadgets:

Its execution creates n idle intervals of length B where 3n remaining tasks will be scheduled according to an instance of 3-PARTITION.

3-PARTITION

- Input: A positive integer B and a set $\mathcal J$ of 3n integers denoted by p_j with values in the interval [B/4,B/2] and $\Sigma_{j\in\mathcal J}p_j=n\cdot B$
- Question: is there a partition into n multi-sets (each containing exactly 3 integers) such that the integers within each set sums up to B?

The 3n integers of $3\mathchar`-PARTITION$ remain the same, they correspond to independent tasks.

The transformed instance adds the previous precedence graph.

 $C_{\max} = n \cdot B + n - 1$

3-PARTITION $\leq_P P2 \mid prec \mid C_{\max}$

▶ (⇒)

This is the easy part since the solution of $3\mathchar`-PARTITION$ fits perfectly into the n intervals.

Thus, the schedule is valid and optimal.

▶ (⇐)

- ► The makespan of a solution of P2 | prec | C_{max} is n · B + n 1 and there is no other solution than the schedule with the previous shape.
- ► Thus, the 3n independent tasks should be scheduled into the n intervals of length B that is a solution of 3-PARTITION

List Scheduling (LS)

each time a machine becomes idle, schedule on it any ready job, i.e. a job whose predecessors are already completed

→ time

List Scheduling (LS)

time

List Scheduling (LS)

List Scheduling (LS)

List Scheduling (LS)

List Scheduling (LS)

List Scheduling (LS)

List Scheduling (LS)

List Scheduling (LS)

full intervals bounded by total load

- full intervals bounded by total load
- ▶ non-full intervals: there is a path in the precedence graph covering them $(J_1 \rightarrow J_5 \rightarrow J_9)$
- ► OPT ≥ maximum path (known as critical path)

Analysis:

$C_{\max} \leq \text{Load} + \text{Critical Path} \leq 2 \cdot OPT$

Analysis:

$$C_{\max} \leq \text{Load} + \text{Critical Path} \leq 2 \cdot OPT$$

this ratio is tight (we cannot improve the analysis)

Analysis:

$$C_{\max} \leq \text{Load} + \text{Critical Path} \leq 2 \cdot OPT$$

this ratio is tight (we cannot improve the analysis)

► there is no algorithm for P | prec | C_{max} with approximation ratio smaller than 2 [Svensson 2007]

Analysis:

$$C_{\max} \leq \text{Load} + \text{Critical Path} \leq 2 \cdot OPT$$

this ratio is tight (we cannot improve the analysis)

- ► there is no algorithm for P | prec | C_{max} with approximation ratio smaller than 2 [Svensson 2007]
- how to show in-approximability results?

Gap reductions

- Π_1 : a decision problem
- ▶ Π_2 : a minimization problem
- f, α : two functions

A gap-introducing reduction transforms an instance I_1 of Π_1 to an instance I_2 of Π_2 such that

- if I_1 has a solution, then $OPT(I_2) \leq f(I_2)$
- ▶ if I_1 has no solution, then $OPT(I_2) > \alpha(|I_2|) \cdot f(I_2)$

Gap reductions

- Π_1 : a decision problem
- Π_2 : a minimization problem
- f, α : two functions

A gap-introducing reduction transforms an instance I_1 of Π_1 to an instance I_2 of Π_2 such that

- if I_1 has a solution, then $OPT(I_2) \leq f(I_2)$
- if I_1 has no solution, then $OPT(I_2) > \alpha(|I_2|) \cdot f(I_2)$

usage

- Π_1 : an NP-COMPLETE problem
- ▶ Π₂: our problem
- α: the gap

▶ meaning: based on the value of the solution of our problem we can decide Π₁ which is NP-COMPLETE (contradiction) BIN-PACKING

- Input: a set of items A, a size s(a) for each $a \in A$, a positive integer capacity C, and a positive integer k
- Question: is there a partition of A into disjoint sets A_1, A_2, \ldots, A_k such that the total size of the elements in each set A_j does not exceed the capacity C, i.e., $\sum_{a \in A_i} s(a) \leq C$?

Let us first prove that BINPACKING is in NP-COMPLETE. This is easy by a simple reduction from 2PARTITION.

 $B{\rm INPACKING}$ can not be approximated by a factor better than 3/2

$B{\rm INPACKING}$ can not be approximated by a factor better than 3/2

The proof is by contradiction:

- \blacktriangleright assume by contradiction that it can be approximated by $\rho < 3/2$
- \blacktriangleright apply the gap reduction to a positive instance of < A, C, 2 >

$B{\rm INPACKING}$ can not be approximated by a factor better than 3/2

The proof is by contradiction:

- \blacktriangleright assume by contradiction that it can be approximated by $\rho < 3/2$
- ▶ apply the gap reduction to a positive instance of < A, C, 2 >
- \blacktriangleright As the number of bins is an integer, the approximation also leads to an integer value <3
- ► Thus, solving this problem corresponds to solve 2PARTITION in polynomial time, unless $\mathcal{P} = \mathcal{NP}$