Fundamental Computer Science Lecture 5: Approximation (1)

Denis Trystram
MoSIG1 and M1Info - University Grenoble-Alpes

March, 2021

Agenda

- Introduction to Approximation
- A new problem: scheduling
- Complexity analysis Studying two variants
- A path for discussing the various aspects of approximation

Some NP-COMPLETE problems

Dealing with NP-HARD (optimization) problems

There are multiple ways to solve a NP-hard problem...

- exact algorithms
- exact optimal solution but non-polynomial complexity
- efficient for small instances
- methodology: dynamic programming, branch-and-bound, pseudo-polynomial algorithms
- study special cases
- could be polynomially solvable
- examples: $2-\mathrm{SAT}$
- heuristics
- non-optimal solution in polynomial time
- without guarantees but good performance in practice
- randomized algorithms
- polynomial-time complexity
- produce the optimal with high probability

Dealing with NP-HARD (optimization) problems

Another -trade-off- solution is the following:

- exact algorithms
- study special cases
- approximation algorithms
- non-optimal solution
- running in polynomial time
- theoretical worst case guarantees: the solution of the algorithm is not too far from the optimal
- heuristics
- randomized algorithms

Approximation ratio

- consider a problem Π and an algorithm \mathcal{A} for solving this problem
- $O P T_{I}$: the objective value of an optimal solution for the instance I of the problem Π
- $S O L_{I}$: the objective value of the solution of our algorithm \mathcal{A} for the instance I of the problem Π

Approximation ratio

- consider a problem Π and an algorithm \mathcal{A} for solving this problem
- $O P T_{I}$: the objective value of an optimal solution for the instance I of the problem Π
- $S O L_{I}$: the objective value of the solution of our algorithm \mathcal{A} for the instance I of the problem Π

approximation ratio (for a minimization problem)

$$
\rho=\max _{I \in \text { Instances }}\left\{\frac{S O L_{I}}{O P T_{I}}\right\}
$$

- for each instance $I: \quad O P T_{I} \leq S O L_{I} \leq \rho \cdot O P T_{I}$
- $\rho>1$

Approximation ratio

approximation ratio (for a maximization problem)

$$
\rho=\max _{I \in \text { lnstances }}\left\{\frac{O P T_{I}}{S O L_{I}}\right\}
$$

- for each instance $I: \quad O P T_{I} \geq S O L_{I} \geq \frac{1}{\rho} \cdot O P T_{I}=\rho^{\prime} \cdot O P T_{I}$
- $\rho>1, \rho^{\prime}<1$

Case study on scheduling

Scheduling on parallel machines

Input: a set \mathcal{J} of n jobs, a set \mathcal{M} of m identical machines, a processing time $p_{j} \in \mathbb{N}^{+}$for each job $J_{j} \in \mathcal{J}$, and a positive integer $C_{\text {max }}$
Question: is there a schedule of all jobs on the machines such that no machine executes two jobs at the same time and all jobs are completed before time $C_{\max }$?

Scheduling on parallel machines

Input: a set \mathcal{J} of n jobs, a set \mathcal{M} of m identical machines, a processing time $p_{j} \in \mathbb{N}^{+}$for each job $J_{j} \in \mathcal{J}$, and a positive integer $C_{\text {max }}$
Question: is there a schedule of all jobs on the machines such that no machine executes two jobs at the same time and all jobs are completed before time $C_{\max }$?

- all jobs are available at time zero
- C_{j} : completion time of job J_{j}
- $C_{\max }=\max _{J_{j} \in \mathcal{J}}\left\{C_{j}\right\}$
- optimization version: minimize the maximum completion time over all jobs (makespan or schedule's length)

Scheduling on parallel machines

Input: a set \mathcal{J} of n jobs, a set \mathcal{M} of m identical machines, a processing time $p_{j} \in \mathbb{N}^{+}$for each job $J_{j} \in \mathcal{J}$, and a positive integer $C_{\text {max }}$
Question: is there a schedule of all jobs on the machines such that no machine executes two jobs at the same time and all jobs are completed before time $C_{\max }$?

- all jobs are available at time zero
- C_{j} : completion time of job J_{j}
- $C_{\max }=\max _{J_{j} \in \mathcal{J}}\left\{C_{j}\right\}$
- optimization version: minimize the maximum completion time over all jobs (makespan or schedule's length)
- denoted in short by: $P \| C_{\max }$

Three-field notation for scheduling: $\alpha|\beta| \gamma$

α : machine environment

- 1: single machine
- P : identical parallel machines
- P2: two identical parallel machines
- Q: related parallel machines
- R : unrelated parallel machines

Three-field notation for scheduling: $\alpha|\beta| \gamma$

α : machine environment

- 1: single machine
- P : identical parallel machines
- P2: two identical parallel machines
- Q: related parallel machines
- R : unrelated parallel machines
β : jobs characteristics / constraints
- r_{j} : release date of J_{j}
- pmtn: preemptions and migrations are allowed, dup duplication
- prec: precedence constraints
- w_{j} : weight implying priority or p_{j} processing times of J_{j}

Three-field notation for scheduling: $\alpha|\beta| \gamma$

α : machine environment

- 1: single machine
- P : identical parallel machines
- P2: two identical parallel machines
- Q: related parallel machines
- R: unrelated parallel machines
β : jobs characteristics / constraints
- r_{j} : release date of J_{j}
- pmtn: preemptions and migrations are allowed, dup duplication
- prec: precedence constraints
- w_{j} : weight implying priority or p_{j} processing times of J_{j}
γ : objective
- $C_{\max }=\max _{j \in \mathcal{J}}\left\{C_{j}\right\}$: schedule's length or makespan
- $\sum C_{j}$: average completion time
- $F_{\max }=\max _{j \in \mathcal{J}}\left\{C_{j}-r_{j}\right\}$: maximum flow-time
- $\sum F_{j}=\sum_{j \in \mathcal{J}}\left(C_{j}-r_{j}\right):$ average flow-time

Gantt chart

- J_{2} is non-preemptively executed $\left(p_{2}=4\right)$
- J_{3} is preempted $\left(p_{3}=8\right)$
- J_{1} is preempted and migrated $\left(p_{1}=9\right)$
- makespan: $C_{\max }=C_{10}=14$

Related questions

- $P \mid$ pmtn $\mid C_{\text {max }}$: polynomial or NP-COMPLETE?

Related questions

- $P \mid$ pmtn $\mid C_{\text {max }}$: polynomial or NP-COMPLETE?
- P2 || $C_{\text {max }}$: polynomial or NP-COMPLETE?
- $P 2\left|p_{j}=1\right| C_{\text {max }}$: polynomial or NP-COMPLETE?
- P2 \mid prec $\mid C_{\text {max }}$: polynomial or NP-COMPLETE?

Related questions

- $P \mid$ pmtn $\mid C_{\text {max }}$: polynomial or NP-COMPLETE?
- $P 2 \| C_{\text {max }}$: polynomial or NP-COMPLETE?
- P2 $\left|p_{j}=1\right| C_{\max }$: polynomial or NP-COMPLETE?
- P2 | prec $\mid C_{\text {max }}$: polynomial or NP-COMPLETE?
- P3 \| $C_{\text {max }}$: polynomial or NP-COMPLETE?
- $P 3\left|p_{j}=1\right| C_{\max }$: polynomial or NP-COMPLETE?

Related questions

- $P \mid$ pmtn $\mid C_{\text {max }}$: polynomial or NP-COMPLETE?
- $P 2 \| C_{\text {max }}$: polynomial or NP-COMPLETE?
- P2 $\left|p_{j}=1\right| C_{\text {max }}$: polynomial or NP-COMPLETE?
- P2 \mid prec $\mid C_{\text {max }}$: polynomial or NP-COMPLETE?
- P3 \| $C_{\text {max }}$: polynomial or NP-COMPLETE?
- $P 3\left|p_{j}=1\right| C_{\max }$: polynomial or NP-COMPLETE?
- $P \| C_{\max }$: polynomial or NP-COMPLETE?

Analysis of two scheduling problems

- $P \| C_{\text {max }}$
- P2 | prec $\mid C_{\text {max }}$

$P \| C_{\max }$: complexity analysis

- $P 2 \| C_{\max }$ is weakly NP-complete by a straight forward reduction from 2Partition
- Thus, $P \| C_{\text {max }}$ is also NP-complete (in the weak sense) since $P 2 \| C_{\text {max }}$ is a particular sub-problem

$P \| C_{\max }:$ complexity analysis

- $P 2 \| C_{\text {max }}$ is weakly NP-complete by a straight forward reduction from 2Partition
- Thus, $P \| C_{\text {max }}$ is also NP-complete (in the weak sense) since $P 2 \| C_{\text {max }}$ is a particular sub-problem
- Can we expect a more precise result?

$P \| C_{\max }:$ complexity analysis

- $P 2 \| C_{\max }$ is weakly NP-complete by a straight forward reduction from 2Partition
- Thus, $P \| C_{\text {max }}$ is also NP-complete (in the weak sense) since $P 2 \| C_{\text {max }}$ is a particular sub-problem
- Can we expect a more precise result?

Yes!

It is NP-complete in the strong sense.
We will show this result by a reduction from 3-Partition:
3 -Partition $\leq_{P} P \| C_{\text {max }}$

Proof of the reduction

3-Partition
Input: A positive integer B and a set \mathcal{J} of $3 n$ integers denoted by p_{j} with values in the interval $[B / 4, B / 2]$ and $\Sigma_{j \in \mathcal{J}} p_{j}=n \cdot B$
Question: is there a partition into n multi-sets (each containing exactly 3 integers) such that the integers within each set sums up to B ?

Transformation

Consider an instance of 3-Partition $\langle B, \mathcal{J}\rangle$ we define an instance of $P \| C_{\max }$ as follows:

- $m=|\mathcal{J}| / 3$
- For each item j of \mathcal{J}, define one task whose processing time is p_{j}
- $C_{\max }=B$

Proof

We prove now that an instance of 3-Partition is positive iff the transformed instance for $P \| C_{\text {max }}$ is positive
(\Rightarrow) Start by a positive instance of 3-Partition.
We assign each of these sets to one machine, the makespan is B, thus, the instance is positive.
(\Leftarrow) Assume now that the instance of $P \| C_{\max }$ is positive.

- Since $\Sigma_{j \in \mathcal{J}}=n$, each of the m machines has a load of at least B in this schedule.
- Thus, partitioning the numbers into sets corresponding to the sets of tasks delivers a partition as required.
- It is a positive instance of 3-Partition as well.

$P \| C_{\max }$: a first approximation algorithm

List Scheduling (LS) [Graham]

- consider the jobs in an arbitrary order, $J_{1}, J_{2}, \ldots, J_{n}$
- each time a machine becomes idle, schedule on it the first non-scheduled job according to the above order

$P \| C_{\max }$: a first approximation algorithm

List Scheduling (LS) [Graham]

- consider the jobs in an arbitrary order, $J_{1}, J_{2}, \ldots, J_{n}$
- each time a machine becomes idle, schedule on it the first non-scheduled job according to the above order

$P \| C_{\max }$: a first approximation algorithm

List Scheduling (LS) [Graham]

- consider the jobs in an arbitrary order, $J_{1}, J_{2}, \ldots, J_{n}$
- each time a machine becomes idle, schedule on it the first non-scheduled job according to the above order

$P \| C_{\max }$: a first approximation algorithm

List Scheduling (LS) [Graham]

- consider the jobs in an arbitrary order, $J_{1}, J_{2}, \ldots, J_{n}$
- each time a machine becomes idle, schedule on it the first non-scheduled job according to the above order

$P \| C_{\max }$: a first approximation algorithm

List Scheduling (LS) [Graham]

- consider the jobs in an arbitrary order, $J_{1}, J_{2}, \ldots, J_{n}$
- each time a machine becomes idle, schedule on it the first non-scheduled job according to the above order

$P \| C_{\max }$: a first approximation algorithm

List Scheduling (LS) [Graham]

- consider the jobs in an arbitrary order, $J_{1}, J_{2}, \ldots, J_{n}$
- each time a machine becomes idle, schedule on it the first non-scheduled job according to the above order

M_{1}	J_{1}		
M_{2}	J_{2}		
M_{3}	J_{3}		

$P \| C_{\max }$: a first approximation algorithm

List Scheduling (LS) [Graham]

- consider the jobs in an arbitrary order, $J_{1}, J_{2}, \ldots, J_{n}$
- each time a machine becomes idle, schedule on it the first non-scheduled job according to the above order

$P \| C_{\max }$: a first approximation algorithm

List Scheduling (LS) [Graham]

- consider the jobs in an arbitrary order, $J_{1}, J_{2}, \ldots, J_{n}$
- each time a machine becomes idle, schedule on it the first non-scheduled job according to the above order

| M_{1} | J_{1} | | |
| :--- | :--- | :--- | :--- | :--- |

$P \| C_{\max }$: a first approximation algorithm

List Scheduling (LS) [Graham]

- consider the jobs in an arbitrary order, $J_{1}, J_{2}, \ldots, J_{n}$
- each time a machine becomes idle, schedule on it the first non-scheduled job according to the above order

$P \| C_{\max }$: a first approximation algorithm

List Scheduling (LS) [Graham]

- consider the jobs in an arbitrary order, $J_{1}, J_{2}, \ldots, J_{n}$
- each time a machine becomes idle, schedule on it the first non-scheduled job according to the above order

$P \| C_{\max }$: a first approximation algorithm

List Scheduling (LS) [Graham]

- consider the jobs in an arbitrary order, $J_{1}, J_{2}, \ldots, J_{n}$
- each time a machine becomes idle, schedule on it the first non-scheduled job according to the above order

$P \| C_{\max }$: a first approximation algorithm

List Scheduling (LS) [Graham]

- consider the jobs in an arbitrary order, $J_{1}, J_{2}, \ldots, J_{n}$
- each time a machine becomes idle, schedule on it the first non-scheduled job according to the above order

- how to calculate the objective function of the optimal solution?
- we cannot (because the problem is NP-COMPLETE...)

$P \| C_{\max }$: a first approximation algorithm

- how to calculate the objective function of the optimal solution?
- we cannot (because the problem is NP-complete...)
- use estimations (lower bounds): $O P T \geq L B$

$$
S O L \leq \rho \cdot L B
$$

$P \| C_{\max }$: a first approximation algorithm

- how to calculate the objective function of the optimal solution?
- we cannot (because the problem is NP-complete...)
- use estimations (lower bounds): $O P T \geq L B$

$$
S O L \leq \rho \cdot L B \leq \rho \cdot O P T
$$

$P \| C_{\max }$: a first approximation algorithm

- how to calculate the objective function of the optimal solution?
- we cannot (because the problem is NP-complete...)
- use estimations (lower bounds): $O P T \geq L B$

$$
S O L \leq \rho \cdot L B \leq \rho \cdot O P T
$$

- what lower bounds can we use for $P \| C_{\max }$?

$P \| C_{\max }$: a first approximation algorithm

- how to calculate the objective function of the optimal solution?
- we cannot (because the problem is NP-complete...)
- use estimations (lower bounds): $O P T \geq L B$

$$
S O L \leq \rho \cdot L B \leq \rho \cdot O P T
$$

- what lower bounds can we use for $P \| C_{\max }$?
- total load:

$$
\text { Load }=\frac{1}{m} \sum_{J_{j} \in \mathcal{J}} p_{j} \leq O P T
$$

$P \| C_{\max }$: a first approximation algorithm

- how to calculate the objective function of the optimal solution?
- we cannot (because the problem is NP-COMPLETE...)
- use estimations (lower bounds): $O P T \geq L B$

$$
S O L \leq \rho \cdot L B \leq \rho \cdot O P T
$$

- what lower bounds can we use for $P \| C_{\max }$?
- total load:

$$
\text { Load }=\frac{1}{m} \sum_{J_{j} \in \mathcal{J}} p_{j} \leq O P T
$$

- maximum processing time:

$$
p_{\max }=\max \left\{p_{j} \mid J_{j} \in \mathcal{J}\right\} \leq O P T
$$

$P \| C_{\max }$: a first approximation algorithm

$P \| C_{\max }$: a first approximation algorithm

- J_{k} : the job that completes last

$P \| C_{\max }$: a first approximation algorithm

- J_{k} : the job that completes last
$C_{\max } \leq \frac{1}{m} \sum_{J_{j} \neq J_{k}} p_{j}$

$P \| C_{\max }$: a first approximation algorithm

- J_{k} : the job that completes last
$C_{\max } \leq \frac{1}{m} \sum_{J_{j} \neq J_{k}} p_{j}+p_{k}$

$P \| C_{\max }$: a first approximation algorithm

- J_{k} : the job that completes last

$$
C_{\max } \leq \frac{1}{m} \sum_{J_{j} \neq J_{k}} p_{j}+p_{k}=\frac{1}{m} \sum_{J_{j}} p_{j}+\frac{m-1}{m} p_{k}
$$

$P \| C_{\max }$: a first approximation algorithm

- J_{k} : the job that completes last

$$
\begin{aligned}
C_{\max } & \leq \frac{1}{m} \sum_{J_{j} \neq J_{k}} p_{j}+p_{k}=\frac{1}{m} \sum_{J_{j}} p_{j}+\frac{m-1}{m} p_{k} \\
& \leq \text { Load }+\frac{m-1}{m} p_{\max }
\end{aligned}
$$

$P \| C_{\max }$: a first approximation algorithm

- J_{k} : the job that completes last

$$
\begin{aligned}
C_{\max } & \leq \frac{1}{m} \sum_{J_{j} \neq J_{k}} p_{j}+p_{k}=\frac{1}{m} \sum_{J_{j}} p_{j}+\frac{m-1}{m} p_{k} \\
& \leq \text { Load }+\frac{m-1}{m} p_{\max } \leq O P T+\frac{m-1}{m} O P T
\end{aligned}
$$

$P \| C_{\max }$: a first approximation algorithm

- J_{k} : the job that completes last

$$
\begin{aligned}
C_{\max } & \leq \frac{1}{m} \sum_{J_{j} \neq J_{k}} p_{j}+p_{k}=\frac{1}{m} \sum_{J_{j}} p_{j}+\frac{m-1}{m} p_{k} \\
& \leq \text { Load }+\frac{m-1}{m} p_{\max } \leq O P T+\frac{m-1}{m} O P T=\left(2-\frac{1}{m}\right) O P T
\end{aligned}
$$

Theorem
List Scheduling achieves an approximation ratio of $2-\frac{1}{m}$.

Theorem

List Scheduling achieves an approximation ratio of $2-\frac{1}{m}$.

Questions

- can we improve the analysis?
- is there a better approximation algorithm?
$P \| C_{\max }:$ can we improve the analysis of LS ?
- No!

$P \| C_{\max }$: can we improve the analysis of LS?

- No!
- consider the following instance
- $n=m(m-1)+1$ jobs
- $p_{1}=p_{2}=\ldots=p_{m(m-1)}=1 \quad$ and $\quad p_{m(m-1)+1}=m$

M_{1}	J_{1}	J_{m+1}		$J_{m(m-1)+1}$
LS M_{2}	J_{2}	J_{m+2}		
LS	:	:		
M_{m}	J_{m}	$J_{2 m}$	$\mid r^{\prime \prime}(m-1)$	

$P \| C_{\max }:$ can we improve the analysis of LS ?

- No!
- consider the following instance
- $n=m(m-1)+1$ jobs
- $p_{1}=p_{2}=\ldots=p_{m(m-1)}=1 \quad$ and $\quad p_{m(m-1)+1}=m$

$P \| C_{\max }$: can we improve the analysis of LS?

- No!
- consider the following instance
- $n=m(m-1)+1$ jobs
- $p_{1}=p_{2}=\ldots=p_{m(m-1)}=1 \quad$ and $\quad p_{m(m-1)+1}=m$

$P \| C_{\max }$: a refined algorithm

Longest Processing Time (LPT)
1: consider the jobs in non-increasing order of their processing times, i.e., $p_{1} \geq p_{2} \geq \ldots \geq p_{n}$

2: each time a machine becomes idle, schedule on it the first non-scheduled job according to the above order

$P \| C_{\max }$: a refined algorithm

Longest Processing Time (LPT)
1: consider the jobs in non-increasing order of their processing times, i.e., $p_{1} \geq p_{2} \geq \ldots \geq p_{n}$

2: each time a machine becomes idle, schedule on it the first non-scheduled job according to the above order

Analysis

- J_{k} : the job that completes last which is assigned to M_{i}

$P \| C_{\max }$: a refined algorithm

Longest Processing Time (LPT)
1: consider the jobs in non-increasing order of their processing times, i.e., $p_{1} \geq p_{2} \geq \ldots \geq p_{n}$

2: each time a machine becomes idle, schedule on it the first non-scheduled job according to the above order

Analysis

- J_{k} : the job that completes last which is assigned to M_{i}
- if J_{k} is the only job on its machine
- $J_{k}=J_{1}$
- $M_{i}=M_{1}$
- LPT creates the optimal schedule with

$$
C_{\max }=p_{1}=p_{\max }
$$

$P \| C_{\max }$: a refined algorithm

- if there are at least two jobs in M_{i}
- $k \geq m+1$ and $p_{k} \leq p_{m+1}$ (due to LPT rule)
- there are at least $m+1$ jobs
- in the optimal solution: there is a machine to which are assigned at least two jobs in $\left\{J_{1}, J_{2}, \ldots, J_{m+1}\right\}$
- $O P T \geq 2 p_{m+1}$
- as in LS:

$$
C_{\max } \leq \frac{1}{m} \sum_{J_{j} \neq J_{k}} p_{j}+p_{k} \leq \frac{1}{m} \sum_{J_{j}} p_{j}+\frac{m-1}{m} p_{k}
$$

$P \| C_{\max }$: a refined algorithm

- if there are at least two jobs in M_{i}
- $k \geq m+1$ and $p_{k} \leq p_{m+1}$ (due to LPT rule)
- there are at least $m+1$ jobs
- in the optimal solution: there is a machine to which are assigned at least two jobs in $\left\{J_{1}, J_{2}, \ldots, J_{m+1}\right\}$
- $O P T \geq 2 p_{m+1}$
- as in LS:

$$
\begin{aligned}
C_{\max } & \leq \frac{1}{m} \sum_{J_{j} \neq J_{k}} p_{j}+p_{k} \leq \frac{1}{m} \sum_{J_{j}} p_{j}+\frac{m-1}{m} p_{k} \\
& \leq \text { Load }+\frac{m-1}{m} p_{m+1}
\end{aligned}
$$

$P \| C_{\max }$: a refined algorithm

- if there are at least two jobs in M_{i}
- $k \geq m+1$ and $p_{k} \leq p_{m+1}$ (due to LPT rule)
- there are at least $m+1$ jobs
- in the optimal solution: there is a machine to which are assigned at least two jobs in $\left\{J_{1}, J_{2}, \ldots, J_{m+1}\right\}$
- $O P T \geq 2 p_{m+1}$
- as in LS:

$$
\begin{aligned}
C_{\max } & \leq \frac{1}{m} \sum_{J_{j} \neq J_{k}} p_{j}+p_{k} \leq \frac{1}{m} \sum_{J_{j}} p_{j}+\frac{m-1}{m} p_{k} \\
& \leq L o a d+\frac{m-1}{m} p_{m+1} \leq O P T+\frac{m-1}{m} \cdot \frac{O P T}{2}
\end{aligned}
$$

$P \| C_{\max }$: a refined algorithm

- if there are at least two jobs in M_{i}
- $k \geq m+1$ and $p_{k} \leq p_{m+1}$ (due to LPT rule)
- there are at least $m+1$ jobs
- in the optimal solution: there is a machine to which are assigned at least two jobs in $\left\{J_{1}, J_{2}, \ldots, J_{m+1}\right\}$
- $O P T \geq 2 p_{m+1}$
- as in LS:

$$
\begin{aligned}
C_{\max } & \leq \frac{1}{m} \sum_{J_{j} \neq J_{k}} p_{j}+p_{k} \leq \frac{1}{m} \sum_{J_{j}} p_{j}+\frac{m-1}{m} p_{k} \\
& \leq L o a d+\frac{m-1}{m} p_{m+1} \leq O P T+\frac{m-1}{m} \cdot \frac{O P T}{2} \\
& \leq\left(\frac{3}{2}-\frac{1}{2 m}\right) O P T
\end{aligned}
$$

$P \| C_{\max }$: a refined algorithm

- if there are at least two jobs in M_{i}
- $k \geq m+1$ and $p_{k} \leq p_{m+1}$ (due to LPT rule)
- there are at least $m+1$ jobs
- in the optimal solution: there is a machine to which are assigned at least two jobs in $\left\{J_{1}, J_{2}, \ldots, J_{m+1}\right\}$
- $O P T \geq 2 p_{m+1}$
- as in LS:

$$
\begin{aligned}
C_{\max } & \leq \frac{1}{m} \sum_{J_{j} \neq J_{k}} p_{j}+p_{k} \leq \frac{1}{m} \sum_{J_{j}} p_{j}+\frac{m-1}{m} p_{k} \\
& \leq L o a d+\frac{m-1}{m} p_{m+1} \leq O P T+\frac{m-1}{m} \cdot \frac{O P T}{2} \\
& \leq\left(\frac{3}{2}-\frac{1}{2 m}\right) O P T
\end{aligned}
$$

- Can we provide a better analysis of LPT? See the Lab. session of today.

P2 | prec $\mid C_{\max }$

This is an optimization problem.
Let consider the decision version.

- Definition
- Complexity
- Approximation

$P 2 \mid$ prec $\mid C_{\max }$

Input: a set \mathcal{J} of n jobs, 2 identical machines, a processing time $p_{j} \in \mathbb{N}^{+}$for each job $J_{j} \in \mathcal{J}$, a directed graph $G=(V, E)$ describing precedence relations between jobs, and a positive integer $C_{\text {max }}$
Question: is there a schedule of all jobs on the two machines s.t.
(i) no machine executes two jobs at the same time,
(ii) for each two jobs J_{j} and $J_{j^{\prime}}$, if there is an arc $\left(J_{j}, J_{j^{\prime}}\right)$, then $J_{j^{\prime}}$ cannot start its execution before the completion of J_{j}, and
(iii) all jobs are completed before time $C_{\max }$?

Compexity of $P 2 \mid$ prec $\mid C_{\text {max }}$

- P2 | prec $\mid C_{\text {max }}$ is NP-COMPLETE as generalization of $P 2 \| C_{\max }$
- however, in the weak sense

Compexity of $P 2 \mid$ prec $\mid C_{\text {max }}$

- P2 \mid prec $\mid C_{\text {max }}$ is NP-complete as generalization of $P 2 \| C_{\text {max }}$
- however, in the weak sense
- We will prove that it is also strongly NP-complete

Compexity of $P 2 \mid$ prec $\mid C_{\text {max }}$

- P2 \mid prec $\mid C_{\text {max }}$ is NP-complete as generalization of $P 2 \| C_{\text {max }}$
- however, in the weak sense
- We will prove that it is also strongly NP-complete
- $P \mid$ prec $\mid C_{\text {max }}$ is strongly NP-COMPLETE
- as generalization of $P 2|p r e c| C_{\text {max }}$

Complexity of $P 2 \mid$ prec $\mid C_{\max }$

Let prove that the problem is strongly NP-COMPLETE. What can be a reference problem?

Complexity of $P 2|p r e c| C_{\max }$

Let prove that the problem is strongly NP-COMPLETE.
What can be a reference problem?
Reduction from 3-Partition
The idea is:

- to construct an adequate graph
- to relate its execution to successive equal-sized intervals

Exercise: write the detailed proof.

Idea of the reduction

Let consider the following gadget:

We concatenate $n-1$ such gadgets:

Its execution creates n idle intervals of length B where $3 n$ remaining tasks will be scheduled according to an instance of 3-Partition.

Reduction

3-Partition
Input: A positive integer B and a set \mathcal{J} of $3 n$ integers denoted by p_{j} with values in the interval $[B / 4, B / 2]$ and $\Sigma_{j \in \mathcal{J}} p_{j}=n \cdot B$
Question: is there a partition into n multi-sets (each containing exactly 3 integers) such that the integers within each set sums up to B ?

Transformation

The $3 n$ integers of 3-PARTITION remain the same, they correspond to independent tasks.

The transformed instance adds the previous precedence graph.
$C_{\text {max }}=n \cdot B+n-1$

Proof

$$
3 \text {-Partition } \leq_{P} P 2|p r e c| C_{\max }
$$

- (\Rightarrow)

This is the easy part since the solution of 3-Partition fits perfectly into the n intervals.
Thus, the schedule is valid and optimal.

- (\Leftarrow)
- The makespan of a solution of $P 2 \mid$ prec $\mid C_{\text {max }}$ is $n \cdot B+n-1$ and there is no other solution than the schedule with the previous shape.
- Thus, the $3 n$ independent tasks should be scheduled into the n intervals of length B that is a solution of 3-Partition

$P \mid$ prec $\mid C_{\max }$: an approximation algorithm

List Scheduling (LS)

each time a machine becomes idle, schedule on it any ready job, i.e. a job whose predecessors are already completed

$P \mid$ prec $\mid C_{\max }$: an approximation algorithm

List Scheduling (LS)

each time a machine becomes idle, schedule on it any ready job, i.e. a job whose predecessors are already completed

$P \mid$ prec $\mid C_{\max }$: an approximation algorithm

List Scheduling (LS)

each time a machine becomes idle, schedule on it any ready job, i.e. a job whose predecessors are already completed

$P \mid$ prec $\mid C_{\max }$: an approximation algorithm

List Scheduling (LS)

each time a machine becomes idle, schedule on it any ready job, i.e. a job whose predecessors are already completed

$P \mid$ prec $\mid C_{\text {max }}$: an approximation algorithm

List Scheduling (LS)

each time a machine becomes idle, schedule on it any ready job, i.e. a job whose predecessors are already completed

$P \mid$ prec $\mid C_{\max }$: an approximation algorithm

List Scheduling (LS)

each time a machine becomes idle, schedule on it any ready job, i.e. a job whose predecessors are already completed

$P \mid$ prec $\mid C_{\max }$: an approximation algorithm

List Scheduling (LS)

each time a machine becomes idle, schedule on it any ready job, i.e. a job whose predecessors are already completed

$P \mid$ prec $\mid C_{\max }$: an approximation algorithm

List Scheduling (LS)

each time a machine becomes idle, schedule on it any ready job, i.e. a job whose predecessors are already completed

$P \mid$ prec $\mid C_{\max }$: an approximation algorithm

List Scheduling (LS)

each time a machine becomes idle, schedule on it any ready job, i.e. a job whose predecessors are already completed

$P \mid$ prec $\mid C_{\max }$: an approximation algorithm

	M_{1}					
	J_{1}	J_{2}	J_{5}	J_{8}	J_{9}	
	M_{2}	J_{3}	J_{6}			
M_{3}		J_{4}				J_{7}

$P|\operatorname{prec}| C_{\text {max }}:$ an approximation algorithm

- full intervals bounded by total load

$P|\operatorname{prec}| C_{\text {max }}:$ an approximation algorithm

- full intervals bounded by total load
- non-full intervals: there is a path in the precedence graph covering them $\left(J_{1} \rightarrow J_{5} \rightarrow J_{9}\right)$
- $O P T \geq$ maximum path (known as critical path)

$P \mid$ prec $\mid C_{\max }:$ an approximation algorithm

Analysis:

$$
C_{\max } \leq \text { Load }+ \text { Critical Path } \leq 2 \cdot O P T
$$

P|prec| $C_{\text {max }}$: an approximation algorithm

Analysis:

$$
C_{\max } \leq \text { Load }+ \text { Critical Path } \leq 2 \cdot O P T
$$

- this ratio is tight (we cannot improve the analysis)

$P \mid$ prec $\mid C_{\max }$: an approximation algorithm

Analysis:

$$
C_{\max } \leq \text { Load }+ \text { Critical Path } \leq 2 \cdot O P T
$$

- this ratio is tight (we cannot improve the analysis)
- there is no algorithm for $P \mid$ prec $\mid C_{\text {max }}$ with approximation ratio smaller than 2 [Svensson 2007]

$P \mid$ prec $\mid C_{\max }$: an approximation algorithm

Analysis:

$$
C_{\max } \leq \text { Load }+ \text { Critical Path } \leq 2 \cdot O P T
$$

- this ratio is tight (we cannot improve the analysis)
- there is no algorithm for $P \mid$ prec $\mid C_{\text {max }}$ with approximation ratio smaller than 2 [Svensson 2007]
- how to show in-approximability results?

Gap reductions

- Π_{1} : a decision problem
- Π_{2} : a minimization problem
- f, α : two functions

A gap-introducing reduction transforms an instance I_{1} of Π_{1} to an instance I_{2} of Π_{2} such that

- if I_{1} has a solution, then $O P T\left(I_{2}\right) \leq f\left(I_{2}\right)$
- if I_{1} has no solution, then $O P T\left(I_{2}\right)>\alpha\left(\left|I_{2}\right|\right) \cdot f\left(I_{2}\right)$

Gap reductions

- Π_{1} : a decision problem
- Π_{2} : a minimization problem
- f, α : two functions

A gap-introducing reduction transforms an instance I_{1} of Π_{1} to an instance I_{2} of Π_{2} such that

- if I_{1} has a solution, then $O P T\left(I_{2}\right) \leq f\left(I_{2}\right)$
- if I_{1} has no solution, then $O P T\left(I_{2}\right)>\alpha\left(\left|I_{2}\right|\right) \cdot f\left(I_{2}\right)$
- usage
- Π_{1} : an NP-COMPLETE problem
- Π_{2} : our problem
- α : the gap
- meaning: based on the value of the solution of our problem we can decide Π_{1} which is NP-complete (contradiction)

Application to BinPACKING

Bin-Packing
Input: a set of items A, a size $s(a)$ for each $a \in A$, a positive integer capacity C, and a positive integer k
Question: is there a partition of A into disjoint sets $A_{1}, A_{2}, \ldots, A_{k}$ such that the total size of the elements in each set A_{j} does not exceed the capacity C, i.e., $\sum_{a \in A_{j}} s(a) \leq C$?

Let us first prove that BinPacking is in NP-complete. This is easy by a simple reduction from 2Partition.

Application to BinPacking

BinPacking can not be approximated by a factor better than $3 / 2$

Application to BinPacking

BinPacking can not be approximated by a factor better than $3 / 2$

The proof is by contradiction:

- assume by contradiction that it can be approximated by $\rho<3 / 2$
- apply the gap reduction to a positive instance of $\langle A, C, 2\rangle$

Application to BinPacking

BinPacking can not be approximated by a factor better than $3 / 2$

The proof is by contradiction:

- assume by contradiction that it can be approximated by $\rho<3 / 2$
- apply the gap reduction to a positive instance of $\langle A, C, 2\rangle$
- As the number of bins is an integer, the approximation also leads to an integer value <3
- Thus, solving this problem corresponds to solve 2Partition in polynomial time, unless $\mathcal{P}=\mathcal{N} \mathcal{P}$

