Fundamental Computer Science Lecture 4: Complexity Pseudo-polynomial algorithms

Denis Trystram MoSIG1 and M1Info – University Grenoble-Alpes

March, 2021

- ► Deal with numerical problems
- ► Refine the notion of NP-completeness
 - pseudo-polynomial problems
 - weakly and strongly NP-hardness

SUBSETSUM

Let us introduce a new problem:

SubsetSum

Input: a set of positive integers $A = \{a_1, a_2, \dots, a_k\}$ $t \in \mathbb{N}$ Question: is there a set $B \subseteq A$ such that $\sum_{a_i \in B} a_i = t$?

$SUBSETSUM \in NP$ -complete

First, SubsetSum $\in \mathcal{NP}$

Verifier

 \blacktriangleright given the set $B\subseteq A,$ create the sum of the elements in B and compare with t

First, SubsetSum $\in \mathcal{NP}$

Verifier

 \blacktriangleright given the set $B\subseteq A,$ create the sum of the elements in B and compare with t

We will show next: $3SAT \leq_P SUBSETSUM$

Construction of the reduction from 3SAT

- 1. for each variable x_i create two decimal numbers y_i and z_i
 - intuition:
 - select one of y_i , z_i in B
 - if y_i is in B, then $x_i = \text{TRUE}$
 - if z_i is in B, then $x_i = \text{FALSE}$

Construction of the reduction from 3SAT

- 1. for each variable x_i create two decimal numbers y_i and z_i
 - intuition:
 - select one of y_i , z_i in B
 - if y_i is in B, then $x_i = \text{TRUE}$
 - if z_i is in B, then $x_i = \text{FALSE}$
 - each y_i , z_i has two parts:
 - a variable part (see above)
 - another part built from the clause it appears in
- 2. for each clause C_j , we create two decimal numbers g_j and h_j

	x_1	x_2	x_3		x_n	C_1	C_2		C_m
y_1	1	0	0		0				
z_1	1	0	0		0				
y_2	0	1	0		0				
z_2	0	1	0		0				
y_3	0	0	1		0				
z_3	0	0	1		0				
÷	:	÷		·	÷				
y_n	0	0	0	0	1				
z_n	0	0	0	0	1				
g_1						1	0		0
h_1						2	0		0
g_2						0	1		0
h_2						0	2		0
÷						:		·	÷
g_m						0	0	0	1
h_m						0	0	0	2

	x_1	x_2	x_3		x_n	C_1	C_2		C_m
y_1	1	0	0		0	1	0		0
z_1	1	0	0		0	0	0		1
y_2	0	1	0		0	0	1		0
z_2	0	1	0		0	1	0		0
y_3	0	0	1		0	1	1		0
z_3	0	0	1		0	0	0		1
÷	÷	÷		·	÷	÷		·	÷
y_n	0	0	0	0	1	0	0		1
z_n	0	0	0	0	1	0	0		0
g_1						1	0		0
h_1						2	0		0
g_2						0	1		0
h_2						0	2		0
÷						÷		·	÷
g_m						0	0	0	1
h_m						0	0	0	2

	x_1	x_2	x_3		x_n	C_1	C_2		C_m
y_1	1	0	0		0	1	0		0
z_1	1	0	0		0	0	0		1
y_2	0	1	0		0	0	1		0
z_2	0	1	0		0	1	0		0
y_3	0	0	1		0	1	1		0
z_3	0	0	1		0	0	0		1
÷	:	÷		·	÷	÷		·	÷
y_n	0	0	0	0	1	0	0		1
z_n	0	0	0	0	1	0	0		0
g_1						1	0		0
h_1						2	0		0
g_2						0	1		0
h_2						0	2		0
÷						÷		·	÷
g_m						0	0	0	1
h_m						0	0	0	2
t	1	1	1		1	4	4		4

Example

 $(x_1 \vee \bar{x}_2 \vee x_3) \land (x_2 \vee x_3 \vee x_4) \land (\bar{x}_1 \vee \bar{x}_3 \vee x_4)$

	x_1	x_2	x_3	x_4	C_1	C_2	C_3
y_1	1	0	0	0	1	0	0
z_1	1	0	0	0	0	0	1
y_2		1	0	0	0	1	0
z_2		1	0	0	1	0	0
y_3			1	0	1	1	0
z_3			1	0	0	0	1
y_4				1	0	1	1
z_4				1	0	0	0
g_1					1	0	0
h_1					2	0	0
g_2						1	0
h_2						2	0
g_3							1
h_3							2
W	1	1	1	1	4	4	4

- Size of the created instance:
 - $\bullet |A| = 2n + 2m$
 - each created integer has at most n + m digits (including t)
 - \rightarrow integers in the interval $[0, 10^{n+m}]$
 - \rightarrow binary representation: at most $\log_2 10^{n+m} = O(n+m)$ bits

- ► Size of the created instance:
 - $\bullet |A| = 2n + 2m$
 - each created integer has at most n + m digits (including t)
 - \rightarrow integers in the interval $[0, 10^{n+m}]$
 - \rightarrow binary representation: at most $\log_2 10^{n+m} = O(n+m)$ bits

On the example $(x_1 \lor \overline{x}_2 \lor x_3) \land (x_2 \lor x_3 \lor x_4) \land (\overline{x}_1 \lor \overline{x}_3 \lor x_4)$ a feasible assignment is: $x_1 = x_4 = T$, $x_2 = x_3 = F$

- ► B contains: 1000100, 100100, 10001, 1011 200, 10, 20, 2
- ► *t* = 1111444

- ► Size of the created instance:
 - $\bullet |A| = 2n + 2m$
 - each created integer has at most n + m digits (including t)
 - \rightarrow integers in the interval $[0, 10^{n+m}]$
 - \rightarrow binary representation: at most $\log_2 10^{n+m} = O(n+m)$ bits

On the example $(x_1 \lor \overline{x}_2 \lor x_3) \land (x_2 \lor x_3 \lor x_4) \land (\overline{x}_1 \lor \overline{x}_3 \lor x_4)$ a feasible assignment is: $x_1 = x_4 = T$, $x_2 = x_3 = F$

- ► B contains: 1000100, 100100, 10001, 1011 200, 10, 20, 2
- ► *t* = 1111444

▶
$$\mathcal{F}$$
 is satisfiable iff there is a set $B \subseteq A$ with $\sum_{a_i \in B} a_i = t$

 (\Rightarrow)

 \blacktriangleright assume that ${\cal F}$ is satisfiable

(\Rightarrow)

- \blacktriangleright assume that ${\cal F}$ is satisfiable
- ▶ for each x_i : - if $x_i = \text{TRUE}$, then add y_i to B- if $x_i = \text{FALSE}$, then add z_i to B
- for each C_j :
 - if 1 literal is TRUE, then add both g_j and h_j in B
 - if 2 literals are TRUE, then add h_j in B
 - if 3 literals are TRUE, then add g_j in B

(\Rightarrow)

- \blacktriangleright assume that ${\cal F}$ is satisfiable
- for each x_i:
 if x_i = TRUE, then add y_i to B
 if x_i = FALSE, then add z_i to B
 for each C_i:
 - if 1 literal is TRUE, then add both g_j and h_j in B
 - if 2 literals are TRUE, then add h_j in B
 - if 3 literals are TRUE, then add g_j in B

► *B* is a SUBSETSUM

- left part of t: we select only one of y_i and $z_i,$ for each $1\leq i\leq n$
- right part of $t\!\!:$ we select g_j and h_j in order to have exactly 4 for each clause

- 3. \mathcal{F} is satisfiable iff there is a set $B \subseteq A$ with $\sum_{a_i \in B} a_i = t$ (\Leftarrow)
 - \blacktriangleright assume there is a set B such that $\sum_{a_i \in B} a_i = t$
 - each column contains at most 6 ones (3 at the top and 3 at the bottom)

- 3. \mathcal{F} is satisfiable iff there is a set $B \subseteq A$ with $\sum_{a_i \in B} a_i = t$ (\Leftarrow)
 - \blacktriangleright assume there is a set B such that $\sum_{a_i \in B} a_i = t$
 - each column contains at most 6 ones (3 at the top and 3 at the bottom)
 - ► there is no other way to have 1 in the variable-left part of t except from selecting exactly one of each y_i and z_i

- 3. \mathcal{F} is satisfiable iff there is a set $B \subseteq A$ with $\sum_{a_i \in B} a_i = t$ (\Leftarrow)
 - \blacktriangleright assume there is a set B such that $\sum_{a_i \in B} a_i = t$
 - each column contains at most 6 ones (3 at the top and 3 at the bottom)
 - there is no other way to have 1 in the variable-left part of t except from selecting exactly one of each y_i and z_i
 - then, set:
 - $-x_i = \text{TRUE}, \text{ if } y_i \in B$
 - $-x_i = \text{FALSE}, \text{ if } z_i \in B$

- 3. \mathcal{F} is satisfiable iff there is a set $B \subseteq A$ with $\sum_{a_i \in B} a_i = t$ (\Leftarrow)
 - \blacktriangleright assume there is a set B such that $\sum_{a_i \in B} a_i = t$
 - each column contains at most 6 ones (3 at the top and 3 at the bottom)
 - there is no other way to have 1 in the variable-left part of t except from selecting exactly one of each y_i and z_i
 - then, set:
 - $-x_i = \text{TRUE}, \text{ if } y_i \in B$
 - $-x_i = \text{FALSE}, \text{ if } z_i \in B$
 - ► there is no way to have 4 in the clause-right part of t by selecting only g_j and h_j

- 3. \mathcal{F} is satisfiable iff there is a set $B \subseteq A$ with $\sum_{a_i \in B} a_i = t$ (\Leftarrow)
 - \blacktriangleright assume there is a set B such that $\sum_{a_i \in B} a_i = t$
 - each column contains at most 6 ones (3 at the top and 3 at the bottom)
 - ► there is no other way to have 1 in the variable-left part of t except from selecting exactly one of each y_i and z_i
 - then, set:
 - $-x_i = \text{TRUE}, \text{ if } y_i \in B$
 - $-x_i = \text{FALSE}, \text{ if } z_i \in B$
 - ► there is no way to have 4 in the clause-right part of t by selecting only g_j and h_j
 - thus, at least one literal (y_i, z_i) should be one for each clause column
 - therefore, this assignment satisfies ${\cal F}$

Dynamic Programming

- Dynamic Programming
- ▶ consider the integers sorted in non-decreasing order: $a_1 \le a_2 \le \ldots \le a_n$

 $\blacktriangleright S[i,q] = \begin{cases} True, & \text{if there is a SUBSETSUM among the } i \text{ first} \\ & \text{integers which sums up exactly to } q \\ False, & \text{otherwise} \end{cases}$

- Dynamic Programming
- ▶ consider the integers sorted in non-decreasing order: $a_1 \le a_2 \le \ldots \le a_n$
- $\blacktriangleright S[i,q] = \begin{cases} True, & \text{if there is a SUBSETSUM among the } i \text{ first} \\ & \text{integers which sums up exactly to } q \\ False, & \text{otherwise} \end{cases}$

Algorithm

1: Initialization: $-S[i,0] = \text{True}, \text{ for any } i \ge 1$ $-S[1,q] = \begin{cases} \text{True}, & \text{if } q = a_1 \\ \text{False}, & \text{otherwise} \end{cases}$

- Dynamic Programming
- ▶ consider the integers sorted in non-decreasing order: $a_1 \le a_2 \le \ldots \le a_n$
- $\blacktriangleright S[i,q] = \left\{ \begin{array}{ll} {\rm True}, & {\rm if \ there \ is \ a \ SUBSETSUM \ among \ the \ i \ first} \\ & {\rm integers \ which \ sums \ up \ exactly \ to \ } q \\ {\rm False}, & {\rm otherwise} \end{array} \right.$

Algorithm

1: Initialization: $-S[i,0] = \text{True}, \text{ for any } i \ge 1$ $-S[1,q] = \begin{cases} \text{True}, & \text{if } q = a_1 \\ \text{False}, & \text{otherwise} \end{cases}$ 2: for i = 1 to n do 3: for q = 1 to t do 4: S[i,q] = S[i-1,q] or $S[i-1,q-a_i]$

• Example: $A = \{2, 3, 4, 6, 8\}$ and t = 11

• Example: $A = \{2, 3, 4, 6, 8\}$ and t = 11

 $S[i,0] = \text{True, for any } i \geq 1$

• Example:
$$A = \{2, 3, 4, 6, 8\}$$
 and $t = 11$

• Example:
$$A = \{2, 3, 4, 6, 8\}$$
 and $t = 11$

$$\begin{split} S[i,q] &= S[i-1,q] \text{ or } S[i-1,q-a_i] \\ S[2,2] &= S[1,2] \text{ or } S[1,-1] \end{split}$$

• Example:
$$A = \{2, 3, 4, 6, 8\}$$
 and $t = 11$

$$\begin{split} S[i,q] &= S[i-1,q] \text{ or } S[i-1,q-a_i] \\ S[2,3] &= S[1,3] \text{ or } S[1,0] \end{split}$$

• Example:
$$A = \{2, 3, 4, 6, 8\}$$
 and $t = 11$

$$\begin{split} S[i,q] &= S[i-1,q] \text{ or } S[i-1,q-a_i] \\ S[2,5] &= S[1,5] \text{ or } S[1,2] \end{split}$$

• Example:
$$A = \{2, 3, 4, 6, 8\}$$
 and $t = 11$

 $S[i,q] = S[i-1,q] \text{ or } S[i-1,q-a_i]$

• Example:
$$A = \{2, 3, 4, 6, 8\}$$
 and $t = 11$

$$\begin{split} S[i,q] &= S[i-1,q] \text{ or } S[i-1,q-a_i] \\ S[3,4] &= S[2,4] \text{ or } S[2,0] \end{split}$$

• Example:
$$A = \{2, 3, 4, 6, 8\}$$
 and $t = 11$

$$\begin{split} S[i,q] &= S[i-1,q] \text{ or } S[i-1,q-a_i] \\ S[3,6] &= S[2,6] \text{ or } S[2,2] \end{split}$$

• Example: $A = \{2, 3, 4, 6, 8\}$ and t = 11

 $S[i,q] = S[i-1,q] \text{ or } S[i-1,q-a_i]$

• Example: $A = \{2, 3, 4, 6, 8\}$ and t = 11

 $S[i,q] = S[i-1,q] \text{ or } S[i-1,q-a_i]$

• Example: $A = \{2, 3, 4, 6, 8\}$ and t = 11

		$\begin{smallmatrix}&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&$											
		0	1	2	3	4	5	6	7	8	9	10	11
	1	Т	F	Т	F	F	F	F	F	F	F	F	F
	2	Т	\mathbf{F}	Т	Т	\mathbf{F}	Т	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}
i	3	Т	\mathbf{F}	Т	Т	Т	Т	Т	Т	\mathbf{F}	Т	F	\mathbf{F}
	4	Т	\mathbf{F}	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
	5	T	F	Т	Т	Т	Т	Т	Т	Т	Т	F F F T T	Т

▶ there is a TRUE in column q = 11, hence $\langle A, t \rangle \in SUBSETSUM$

• Example: $A = \{2, 3, 4, 6, 8\}$ and t = 11

		$\begin{bmatrix} & & & & & & & & \\ 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \end{bmatrix}$											
		0	1	2	3	4	5	6	7	8	9	10	11
	1	Т	F	Т	F	F	F	F	F	F	F	F	F
	2	Т	\mathbf{F}	Т	Т	\mathbf{F}	Т	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}
i	3	Т	\mathbf{F}	Т	Т	Т	Т	Т	Т	\mathbf{F}	Т	\mathbf{F}	\mathbf{F}
	4	Т	\mathbf{F}	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
	5	Т	F	Т	Т	Т	Т	Т	Т	Т	Т	F F F T T	Т

• how to construct the set B ?

		$\parallel \qquad q$											
		0	1						7				11
	1	Т	F	Т	F	F	F	F	F	F	F	F	F F F T T
	2	Т	\mathbf{F}	Т	Т	\mathbf{F}	Т	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}
i	3	Т	\mathbf{F}	Т	Т	Т	Т	Т	Т	\mathbf{F}	Т	F	\mathbf{F}
	4	Т	\mathbf{F}	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
	5	Т	\mathbf{F}	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т

- how to construct the set B ?
- ▶ S[5,11] = S[4,11] or S[4,3]
 - $\blacktriangleright S[4,11]: a_5 \not\in B$
 - ▶ S[4,3]: $a_5 \in B$

		q 0 1 2 3 4 5 6 7 8 9 10 11											
		0	1	2	3	4	5	6	7	8	9	10	11
	1	Т	F	Т	F	F	F	F	F	F	F	F	F F F T T
	2	Т	\mathbf{F}	Т	Т	\mathbf{F}	Т	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}
i	3	Т	\mathbf{F}	Т	Т	Т	Т	Т	Т	\mathbf{F}	Т	\mathbf{F}	\mathbf{F}
	4	Т	\mathbf{F}	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
	5	Т	\mathbf{F}	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т

- how to construct the set B ?
- ▶ S[5,11] = S[4,11] or S[4,3]
 - $\blacktriangleright S[4,11]: a_5 \not\in B$
 - ► S[4,3]: $a_5 \in B$
- S[4,3] = S[3,3] or S[3,-3], so $a_4 \notin B$

		q 0 1 2 3 4 5 6 7 8 9 10 11											
		0	1	2	3	4	5	6	7	8	9	10	11
	1	Т	F	Т	F	F	F	F	F	F	F	F	F F F T T
	2	Т	\mathbf{F}	Т	Т	\mathbf{F}	Т	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}
i	3	Т	\mathbf{F}	Т	Т	Т	Т	Т	Т	\mathbf{F}	Т	\mathbf{F}	\mathbf{F}
	4	Т	\mathbf{F}	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
	5	Т	\mathbf{F}	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т

- how to construct the set B ?
- ▶ S[5,11] = S[4,11] or S[4,3]
 - ► S[4,11]: $a_5 \notin B$
 - $S[4,3]: a_5 \in B$
- S[4,3] = S[3,3] or S[3,-3], so $a_4 \notin B$
- S[3,3] = S[2,3] or S[2,-1], so $a_3 \notin B$

		q 0 1 2 3 4 5 6 7 8 9 10 11											
		0	1	2	3	4	5	6	7	8	9		11
	1	Т	F	Т	F	F	F	F	F	F	F	F	F F F T T
	2	Т	\mathbf{F}	Т	Т	\mathbf{F}	Т	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}
i	3	Т	\mathbf{F}	Т	Т	Т	Т	Т	Т	\mathbf{F}	Т	F	\mathbf{F}
	4	Т	\mathbf{F}	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
	5	Т	\mathbf{F}	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т

- how to construct the set B ?
- ▶ S[5,11] = S[4,11] or S[4,3]
 - ► S[4,11]: $a_5 \notin B$
 - $S[4,3]: a_5 \in B$
- S[4,3] = S[3,3] or S[3,-3], so $a_4 \notin B$
- S[3,3] = S[2,3] or S[2,-1], so $a_3 \notin B$
- S[2,3] = S[1,3] or S[1,0], so $a_2 \in B$, $a_1 \notin B$

• Complexity in $O(n \cdot t)$

- \blacktriangleright Complexity in $O(n \cdot t)$
- ► Is this polynomial?

- \blacktriangleright Complexity in $O(n \cdot t)$
- ► Is this polynomial?
- ▶ **NO!** if yes, then P = NP
- \blacktriangleright input: $I=\langle A,t\rangle$
- ► size of the input:

$$|I| = \log_2 t + \sum_{a_i \in A} \log_2 a_i$$

- \blacktriangleright Complexity in $O(n \cdot t)$
- ► Is this polynomial?
- ▶ **NO!** if yes, then P = NP
- \blacktriangleright input: $I=\langle A,t\rangle$
- ► size of the input:

$$|I| = \log_2 t + \sum_{a_i \in A} \log_2 a_i = O(\log_2 t)$$

- \blacktriangleright Complexity in $O(n \cdot t)$
- ► Is this polynomial?
- ▶ **NO!** if yes, then P = NP
- ▶ input: $I = \langle A, t \rangle$
- ► size of the input:

$$|I| = \log_2 t + \sum_{a_i \in A} \log_2 a_i = O(\log_2 t)$$

complexity of the algorithm:

$$O(n \cdot t) = O(n \cdot 2^{|I|})$$

- \blacktriangleright Complexity in $O(n \cdot t)$
- ► Is this polynomial?
- ▶ **NO!** if yes, then P = NP
- ▶ input: $I = \langle A, t \rangle$
- ► size of the input:

$$|I| = \log_2 t + \sum_{a_i \in A} \log_2 a_i = O(\log_2 t)$$

complexity of the algorithm:

$$O(n \cdot t) = O(n \cdot 2^{|I|})$$

that is, exponential to the size of the input !

• $|I|_1$: the encoding of the input in unary

- $|I|_1$: the encoding of the input in unary
- ► example: SUBSETSUM

$$|I|_1 = t + \sum_{a_i \in A} a_i$$

- $|I|_1$: the encoding of the input in unary
- ► example: SUBSETSUM

$$|I|_1 = t + \sum_{a_i \in A} a_i$$

then the complexity of the algorithm is polynomial:

$$O(n \cdot t) = O(n \cdot |I|_1)$$

- $|I|_1$: the encoding of the input in unary
- ► example: SUBSETSUM

$$|I|_1 = t + \sum_{a_i \in A} a_i$$

then the complexity of the algorithm is polynomial:

$$O(n \cdot t) = O(n \cdot |I|_1)$$

Definition: we call an algorithm pseudo-polynomial if its complexity is polynomial to the size of the input, when this is encoded in unary.

- $|I|_1$: the encoding of the input in unary
- ► example: SUBSETSUM

$$|I|_1 = t + \sum_{a_i \in A} a_i$$

then the complexity of the algorithm is polynomial:

$$O(n \cdot t) = O(n \cdot |I|_1)$$

- Definition: we call an algorithm pseudo-polynomial if its complexity is polynomial to the size of the input, when this is encoded in unary.
- Definition: NP-COMPLETE problems that admit a pseudo-polynomial algorithm are called weakly NP-COMPLETE.

- $|I|_1$: the encoding of the input in unary
- ► example: SUBSETSUM

$$|I|_1 = t + \sum_{a_i \in A} a_i$$

then the complexity of the algorithm is polynomial:

$$O(n \cdot t) = O(n \cdot |I|_1)$$

- Definition: we call an algorithm pseudo-polynomial if its complexity is polynomial to the size of the input, when this is encoded in unary.
- Definition: NP-COMPLETE problems that admit a pseudo-polynomial algorithm are called weakly NP-COMPLETE.
- ► Definition: we call a problem **strong** or **unary** NP-COMPLETE if it remains NP-COMPLETE even when the input is encoded in unary.

► where is the problem with the reduction of SUBSETSUM if the input is encoded in unary?

- ► where is the problem with the reduction of SUBSETSUM if the input is encoded in unary?
 - each created integer has at most n + m digits (including t)
 - \rightarrow integers in the interval $[0, 10^{n+m}]$
 - \rightarrow unary representation: 10^{n+m} symbols per integer
 - the size of the created input is **not** polynomial with respect to the size of the initial input

- ► where is the problem with the reduction of SUBSETSUM if the input is encoded in unary?
 - each created integer has at most n + m digits (including t)
 - \rightarrow integers in the interval $[0, 10^{n+m}]$
 - \rightarrow unary representation: 10^{n+m} symbols per integer
 - the size of the created input is **not** polynomial with respect to the size of the initial input
- \blacktriangleright are there numerical problems that are strongly $\rm NP\text{-}COMPLETE?$

- ► where is the problem with the reduction of SUBSETSUM if the input is encoded in unary?
 - each created integer has at most n + m digits (including t)
 - \rightarrow integers in the interval $[0, 10^{n+m}]$
 - \rightarrow unary representation: 10^{n+m} symbols per integer
 - the size of the created input is **not** polynomial with respect to the size of the initial input
- \blacktriangleright are there numerical problems that are strongly $\rm NP\text{-}COMPLETE?$
 - YES
 - ▶ 3-PARTITION, BIN-PACKING, ...

- ► where is the problem with the reduction of SUBSETSUM if the input is encoded in unary?
 - each created integer has at most n + m digits (including t)
 - \rightarrow integers in the interval $[0, 10^{n+m}]$
 - \rightarrow unary representation: 10^{n+m} symbols per integer
 - the size of the created input is **not** polynomial with respect to the size of the initial input
- \blacktriangleright are there numerical problems that are strongly $\mathrm{NP\text{-}COMPLETE}?$
 - YES
 - ▶ 3-PARTITION, BIN-PACKING, ...
- ▶ Attention! if $A \leq_P B$ and A is weakly NP-COMPLETE, then we only prove that B is weakly NP-COMPLETE

Exercise: 3-PARTITION problem

3-PARTITION

Input: a set of positive integers
$$S = \{s_1, s_2, \dots, s_{3n}\}$$
,
where $\sum_{s_i \in S} = n \cdot t$ and $\frac{t}{4} \leq s_i \leq \frac{t}{2}$ for each $s_i \in A$
Question: can S be partitioned into n disjoint sets S_1, S_2, \dots, S_n
such that $\sum_{s_i \in S_j} s_i = t$, for $1 \leq j \leq n$?

Exercise: 3-PARTITION problem

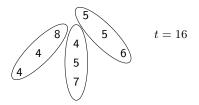
3-PARTITION

Input: a set of positive integers
$$S = \{s_1, s_2, \dots, s_{3n}\}$$
,
where $\sum_{s_i \in S} = n \cdot t$ and $\frac{t}{4} \leq s_i \leq \frac{t}{2}$ for each $s_i \in A$
Question: can S be partitioned into n disjoint sets S_1, S_2, \dots, S_n
such that $\sum_{s_i \in S_j} s_i = t$, for $1 \leq j \leq n$?

Example

 $S = \{4, 4, 4, 5, 5, 5, 6, 7, 8\}$ with the target: t = 16

▶ observation: each S_j should have exactly 3 integers. Here is a solution:



▶ Show that 3-PARTITION is NP-COMPLETE in the strong sense

A problem A is $\operatorname{NP-HARD}$ if any problem $B\in\mathcal{NP}$ is polynomially time reducible to A.

A problem A is NP-HARD if any problem $B \in \mathcal{NP}$ is polynomially time reducible to A.

- A is not necessarily in \mathcal{NP} !
- ► A is not necessarily a *decision* problem
- \blacktriangleright it is enough to show that there is a $B\in\mathcal{NP}$ such that $B\leq_{\mathcal{P}}A$

A problem A is NP-HARD if any problem $B \in \mathcal{NP}$ is polynomially time reducible to A.

- A is not necessarily in \mathcal{NP} !
- ► A is not necessarily a *decision* problem
- \blacktriangleright it is enough to show that there is a $B\in\mathcal{NP}$ such that $B\leq_{\mathcal{P}}A$

