Fundamental Computer Science Lecture 4 SAT and its variants

Denis Trystram MoSIG1 and M1Info – University Grenoble-Alpes

March, 2021

Content

Variants of SAT

- ► 2SAT
- ► NAE-SAT
- ► 3SAT
- ► max2SAT

Recall about the satisfiability problem

- $X = \{x_1, x_2, \dots, x_n\}$: set of variables
- $C = \{C_1, C_2, \dots, C_m\}$: set of clauses

$$\blacktriangleright \mathcal{F} = C_1 \wedge C_2 \wedge \ldots \wedge C_m$$

 $SAT = \{ \langle \mathcal{F} \rangle \mid \mathcal{F} \text{ is a satisfiable Boolean formula } \}$

• kSAT: each clause has exactly k literals

- example of 2SAT: $(x_1 \lor \bar{x}_2) \land (x_2 \lor x_3) \land (x_2 \lor \bar{x}_3)$
- example of 3SAT: $(x_1 \lor \bar{x}_2 \lor x_4) \land (x_2 \lor x_3 \lor \bar{x}_4)$

• kSAT: each clause has exactly k literals

- example of 2SAT: $(x_1 \lor \bar{x}_2) \land (x_2 \lor x_3) \land (x_2 \lor \bar{x}_3)$
- example of 3SAT: $(x_1 \lor \bar{x}_2 \lor x_4) \land (x_2 \lor x_3 \lor \bar{x}_4)$
- ▶ $2SAT \in \mathcal{P}$
- ▶ $3SAT \in \mathcal{NP}$

$2SAT \in \mathcal{P}$

The idea is to transform the problem in a path algorithm in graph.

- Construct the graph G as follows
 - add a vertex for each literal $x \in X \cup \overline{X}$
 - For each clause x ∨ y, add the arcs (x̄, y) and (ȳ, x) correspond to implications x̄ ⇒ y and ȳ ⇒ x

 $2SAT \in \mathcal{P}$

$$\mathcal{F} = (x_1 \lor \bar{x}_2) \land (\bar{x}_1 \lor \bar{x}_3) \land (x_1 \lor x_2) \land (\bar{x}_3 \lor x_4) \land (\bar{x}_1 \lor x_4)$$

We want $(\bar{x}_1 \lor x_4) = \text{TRUE}$

- arc (x_1, x_4) means:
 - if $x_1 = T$ then x_4 should be T
 - if $x_4 = F$ then x_1 should be F
- ▶ arc (\bar{x}_4, \bar{x}_1) means:
 - if $\bar{x}_4 = T$ then \bar{x}_1 should be T
 - if $\bar{x}_1 = F$ then \bar{x}_4 should be F

If there is a path from x to y in G, then there is also a path from \overline{y} to \overline{x} .

- ► By construction:
 - we add an arc (a, b) if $(\bar{a} \lor b)$ exists in \mathcal{F}
 - but if $(\bar{a} \lor b)$ exists in \mathcal{F} , then we add also the arc (\bar{b}, \bar{a})
- \blacktriangleright Apply the argument for all arcs in the path from x to y

If there is a variable x such that G has both a path from x to \bar{x} and a path from \bar{x} to x, then \mathcal{F} is not satisfiable.

$$\mathcal{F} = (x_1 \vee \bar{x}_2) \land (x_2 \vee \bar{x}_3) \land (x_3 \vee \bar{x}_4) \land (x_4 \vee \bar{x}_1) \land (\bar{x}_4 \vee \bar{x}_1) \land (x_2 \vee x_3)$$

If $x_1 = \text{TRUE}$, then x_4 should be TRUE, and then $(\bar{x}_4 \lor \bar{x}_1)$ is not satisfiable

If $x_1 = \text{FALSE}$, then x_2 should be FALSE, and then \bar{x}_3 should be FALSE, and then $(x_2 \lor x_3)$ is not satisfiable

If there is a variable x such that G has both a path from x to \bar{x} and a path from \bar{x} to x, then \mathcal{F} is not satisfiable.

Proof:

▶ assume that *F* is satisfiable (for contradiction)

If there is a variable x such that G has both a path from x to \bar{x} and a path from \bar{x} to x, then \mathcal{F} is not satisfiable.

Proof:

- ▶ assume that *F* is satisfiable (for contradiction)
- ▶ case 1: x = TRUE

$$\begin{array}{cccc} x \longrightarrow \cdots \longrightarrow a \longrightarrow b \longrightarrow \cdots \longrightarrow \bar{x} \\ T & T & F & F \end{array}$$

There should be an arc (a, b) with a = T and b = F.

If there is a variable x such that G has both a path from x to \bar{x} and a path from \bar{x} to x, then \mathcal{F} is not satisfiable.

Proof:

- ▶ assume that *F* is satisfiable (for contradiction)
- ▶ case 1: x = TRUE

$$\begin{array}{cccc} x \longrightarrow \cdots \longrightarrow a \longrightarrow b \longrightarrow \cdots \longrightarrow \bar{x} \\ T & T & F & F \end{array}$$

There should be an arc (a, b) with a = T and b = F. That is, $(\bar{a} \lor b)$ is not satisfiable.

If there is a variable x such that G has both a path from x to \bar{x} and a path from \bar{x} to x, then \mathcal{F} is not satisfiable.

Proof:

- assume that \mathcal{F} is satisfiable (for contradiction)
- ▶ case 1: x = TRUE

$$\begin{array}{cccc} x \longrightarrow \cdots \longrightarrow a \longrightarrow b \longrightarrow \cdots \longrightarrow \bar{x} \\ T & T & F & F \end{array}$$

There should be an arc (a, b) with a = T and b = F. That is, $(\bar{a} \lor b)$ is not satisfiable. Hence, x cannot be TRUE.

If there is a variable x such that G has both a path from x to \bar{x} and a path from \bar{x} to x, then \mathcal{F} is not satisfiable.

Proof:

- assume that \mathcal{F} is satisfiable (for contradiction)
- ▶ case 1: x = TRUE

There should be an arc (a, b) with a = T and b = F. That is, $(\bar{a} \lor b)$ is not satisfiable. Hence, x cannot be TRUE.

case 2: x = FALSE
 Same arguments give that x cannot be FALSE.

If there is a variable x such that G has both a path from x to \bar{x} and a path from \bar{x} to x, then \mathcal{F} is not satisfiable.

Proof:

- assume that \mathcal{F} is satisfiable (for contradiction)
- ▶ case 1: x = TRUE

There should be an arc (a, b) with a = T and b = F. That is, $(\bar{a} \lor b)$ is not satisfiable. Hence, x cannot be TRUE.

- case 2: x = FALSE
 Same arguments give that x cannot be FALSE.
- Then, \mathcal{F} is not satisfiable, a contradiction.

$2SAT \in \mathcal{P}$

Algorithm

- 1. while there are non-assigned variables \mathbf{do}
- 2. Select a literal a for which there is not a path from a to \bar{a} .
- 3. Set a = TRUE.
- 4. Assign TRUE to all reachable literals from a.
- 5. Eliminate all assigned variables from G.

$$\mathcal{F} = (x_1 \lor \bar{x}_2) \land (\bar{x}_1 \lor \bar{x}_3) \land (x_1 \lor x_2) \land (\bar{x}_3 \lor x_4) \land (\bar{x}_1 \lor x_4)$$

Select \bar{x}_2 and set $\bar{x}_2 = \text{TRUE}$

$$\mathcal{F} = (x_1 \lor \bar{x}_2) \land (\bar{x}_1 \lor \bar{x}_3) \land (x_1 \lor x_2) \land (\bar{x}_3 \lor x_4) \land (\bar{x}_1 \lor x_4)$$

Select \bar{x}_2 and set $\bar{x}_2 = \text{TRUE}$

Consider a literal a selected in Line 2 of the algorithm. There is no path from a to both b and \overline{b} .

Proof:

• Assume there are paths from a to b and from a to \overline{b} .

Consider a literal a selected in Line 2 of the algorithm. There is no path from a to both b and \bar{b} .

- Assume there are paths from a to b and from a to \overline{b} .
- ▶ Then, there are paths from \bar{b} to \bar{a} and from b to \bar{a} (by the first lemma)

Consider a literal a selected in Line 2 of the algorithm. There is no path from a to both b and \overline{b} .

- Assume there are paths from a to b and from a to \overline{b} .
- ▶ Then, there are paths from \bar{b} to \bar{a} and from b to \bar{a} (by the first lemma)
- ▶ Thus, there are paths from a to \bar{a} (passing through b) and from \bar{a} to a (passing through \bar{b})

Consider a literal a selected in Line 2 of the algorithm. There is no path from a to both b and \overline{b} .

- Assume there are paths from a to b and from a to \overline{b} .
- ▶ Then, there are paths from \bar{b} to \bar{a} and from b to \bar{a} (by the first lemma)
- ▶ Thus, there are paths from a to \bar{a} (passing through b) and from \bar{a} to a (passing through \bar{b})
- \blacktriangleright *a* cannot be selected by the algorithm, a contradiction.

$3SAT \in \mathcal{NP}$

 \blacktriangleright given an assignment of variables, scan all clauses to check if they evaluate to TRUE

$3SAT \in \mathcal{NP}$

 \blacktriangleright given an assignment of variables, scan all clauses to check if they evaluate to TRUE

$SAT \leq_P 3SAT$

- ▶ given any formula \mathcal{F} of SAT, we construct a formula $\tau(\mathcal{F})$ of 3SAT
 - replace each clause $(a_1 \lor a_2 \lor \ldots \lor a_\ell)$ in \mathcal{F}

$3SAT \in \mathcal{NP}$

 \blacktriangleright given an assignment of variables, scan all clauses to check if they evaluate to TRUE

$SAT \leq_P 3SAT$

- ▶ given any formula \mathcal{F} of SAT, we construct a formula $\tau(\mathcal{F})$ of 3SAT
 - replace each clause $(a_1 \lor a_2 \lor \ldots \lor a_\ell)$ in \mathcal{F}
 - ▶ if $\ell = 2$, add an extra variable z: $(a_1 \lor a_2) = (a_1 \lor a_2 \lor z) \land (a_1 \lor a_2 \lor \bar{z})$

$3SAT \in \mathcal{NP}$

 \blacktriangleright given an assignment of variables, scan all clauses to check if they evaluate to TRUE

$SAT \leq_P 3SAT$

- ▶ given any formula \mathcal{F} of SAT, we construct a formula $\tau(\mathcal{F})$ of 3SAT
 - replace each clause $(a_1 \lor a_2 \lor \ldots \lor a_\ell)$ in \mathcal{F}
 - if $\ell = 2$, add an extra variable z: $(a_1 \lor a_2) = (a_1 \lor a_2 \lor z) \land (a_1 \lor a_2 \lor \overline{z})$ Similarly for $\ell = 1$ by adding two variables

$3SAT \in \mathcal{NP}$

 \blacktriangleright given an assignment of variables, scan all clauses to check if they evaluate to TRUE

$SAT \leq_P 3SAT$

- ▶ given any formula \mathcal{F} of SAT, we construct a formula $\tau(\mathcal{F})$ of 3SAT
 - replace each clause $(a_1 \lor a_2 \lor \ldots \lor a_\ell)$ in \mathcal{F}
 - if $\ell = 2$, add an extra variable z: $(a_1 \lor a_2) = (a_1 \lor a_2 \lor z) \land (a_1 \lor a_2 \lor \bar{z})$ Similarly for $\ell = 1$ by adding two variables
 - if $\ell > 3$, add $\ell 3$ variables z_i and replace the clause by the $\ell 2$ following clauses

 $(a_1 \lor a_2 \lor z_1) \land (\bar{z}_1 \lor a_3 \lor z_2) \land (\bar{z}_2 \lor a_4 \lor z_3) \land \ldots \land (\bar{z}_{\ell-3} \lor a_{\ell-1} \lor a_\ell)$

Proof (1)

 ${\mathcal F}$ is satisfiable iff $\tau({\mathcal F})$ is satisfiable

(\Rightarrow)

- \blacktriangleright assume that ${\cal F}$ is satisfiable
- then some a_i is TRUE for all clauses
- \blacktriangleright use the same assignment for the common variables of ${\mathcal F}$ and $\tau({\mathcal F})$

• set
$$z_j = \text{TRUE}$$
 for $1 \le j \le i-2$

- set $z_j = \text{FALSE}$ for $i 1 \le j \le \ell 3$
- \blacktriangleright all the clauses of $\tau(\mathcal{F})$ are satisfied

Proof (2)

 ${\mathcal F}$ is satisfiable iff ${\mathcal F}'=\tau({\mathcal F})$ is satisfiable

(\Leftarrow)

- \blacktriangleright assume that \mathcal{F}' is satisfiable
- ▶ at least one of the literals a_i should be TRUE for each clause
- ▶ if not, then z_1 should be TRUE which implies that z_2 should be TRUE, etc.
- ▶ hence, the clause $(\bar{z}_{\ell-3} \lor a_{\ell-1} \lor a_{\ell})$ is not satisfiable, contradiction
- \blacktriangleright then there is an assignment that satisfies ${\cal F}$

Exercise 3SAT-NAE

SAT not all equal. Prove that $3SAT\text{-}NAE \in NP\text{-}COMPLETE$, where

$$\begin{split} \mathrm{SAT-NAE} = \{ \langle \mathcal{F} \rangle \mid \mathcal{F} \text{ is a satisfiable with at least one true literal and at} \\ \text{least one false literal in each clause} \} \end{split}$$

Tip for the reduction:

- ▶ Show first that: $3SAT \leq_P 4SAT$ -NAE (add an extra boolean variable in each clause)
- ▶ 4SAT-NAE ≤_P 3SAT-NAE (break each 4-clause into 2 3-clauses)

$MAX-2SAT \in NP-COMPLETE$

MAX-2SAT = { $\langle \mathcal{F}, k \rangle \mid \mathcal{F}$ is a formula with k TRUE clauses}

$MAX-2SAT \in NP-COMPLETE$

 $MAX-2SAT = \{ \langle \mathcal{F}, k \rangle \mid \mathcal{F} \text{ is a formula with } k \text{ TRUE clauses} \}$

$MAX\text{-}2SAT \in \mathcal{NP}$

▶ given an assignment of variables, scan all clauses to check if there are at least k of them evaluated to TRUE

MAX-2SAT \in NP-complete

MAX-2SAT = { $\langle \mathcal{F}, k \rangle \mid \mathcal{F}$ is a formula with k TRUE clauses}

$MAX\text{-}2SAT \in \mathcal{NP}$

▶ given an assignment of variables, scan all clauses to check if there are at least k of them evaluated to TRUE

$3SAT \leq_P MAX\text{-}2SAT$

- 1. given any formula ${\cal F}$ of ${\rm 3SAT},$ we construct a formula ${\cal F}'$ of ${\rm MAX\text{-}2SAT}$
 - \blacktriangleright replace each clause $(x \lor y \lor z)$ by the 10 following clauses

 $(x) \wedge (y) \wedge (z) \wedge (\bar{x} \vee \bar{y}) \wedge (\bar{y} \vee \bar{z}) \wedge (\bar{z} \vee \bar{x}) \wedge (w) \wedge (\bar{w} \vee x) \wedge (\bar{w} \vee y) \wedge (\bar{w} \vee z)$

• k = 7m (m is the number of clauses)

MAX-2SAT \in NP-complete

MAX-2SAT = { $\langle \mathcal{F}, k \rangle \mid \mathcal{F}$ is a formula with k TRUE clauses}

$MAX\text{-}2SAT \in \mathcal{NP}$

▶ given an assignment of variables, scan all clauses to check if there are at least k of them evaluated to TRUE

$3SAT \leq_P MAX\text{-}2SAT$

- 1. given any formula ${\cal F}$ of ${\rm 3SAT},$ we construct a formula ${\cal F}'$ of ${\rm MAX\text{-}2SAT}$
 - \blacktriangleright replace each clause $(x \lor y \lor z)$ by the 10 following clauses

 $(x) \wedge (y) \wedge (z) \wedge (\bar{x} \vee \bar{y}) \wedge (\bar{y} \vee \bar{z}) \wedge (\bar{z} \vee \bar{x}) \wedge (w) \wedge (\bar{w} \vee x) \wedge (\bar{w} \vee y) \wedge (\bar{w} \vee z)$

- k = 7m (m is the number of clauses)
- 2. \mathcal{F}' has O(n+m) variables and O(m) clauses

$3SAT \leq_P MAX\text{-}2SAT$

Recall replace each clause $(x \lor y \lor z)$ by

 $(x) \land (y) \land (z) \land (\bar{x} \lor \bar{y}) \land (\bar{y} \lor \bar{z}) \land (\bar{z} \lor \bar{x}) \land (w) \land (\bar{w} \lor x) \land (\bar{w} \lor y) \land (\bar{w} \lor z)$

- 3. ${\mathcal F}$ is satisfiable iff ${\mathcal F}'$ has at least k satisfied clauses
 - ► assume that *F* is satisfiable
 - ▶ if x = T, y = F and z = F, then set w = F: 7 satisfied clauses
 - ▶ if x = T, y = T and z = F, then set w = F: 7 satisfied clauses
 - if x = T, y = T and z = T, then set w = T: 7 satisfied clauses
 - \blacktriangleright in all cases, there are 7 satisfied clauses in \mathcal{F}' for each clause of \mathcal{F}

$3SAT \leq_P MAX\text{-}2SAT$

Recall replace each clause $(x \lor y \lor z)$ by

 $(x) \wedge (y) \wedge (z) \wedge (\bar{x} \vee \bar{y}) \wedge (\bar{y} \vee \bar{z}) \wedge (\bar{z} \vee \bar{x}) \wedge (w) \wedge (\bar{w} \vee x) \wedge (\bar{w} \vee y) \wedge (\bar{w} \vee z)$

- 3. ${\mathcal F}$ is satisfiable iff ${\mathcal F}'$ has at least k satisfied clauses
 - ► assume that *F* is satisfiable
 - ▶ if x = T, y = F and z = F, then set w = F: 7 satisfied clauses
 - ▶ if x = T, y = T and z = F, then set w = F: 7 satisfied clauses
 - ▶ if x = T, y = T and z = T, then set w = T: 7 satisfied clauses
 - \blacktriangleright in all cases, there are 7 satisfied clauses in \mathcal{F}' for each clause of \mathcal{F}
 - contrapositive: assume that \mathcal{F} is not satisfiable
 - there is one clause for which x = y = z = F
 - then, in \mathcal{F}' we correspondingly have:
 - 4 satisfied clauses if w = T
 - 6 satisfied clauses if w = F
 - \blacktriangleright hence, in \mathcal{F}' there are less than k clauses that are satisfied