Fundamental Computer Science Lecture 4 SAT and its variants

Denis Trystram
MoSIG1 and M1Info - University Grenoble-Alpes

March, 2021

Content

Variants of SAT

- 2SAT
- NAE-SAT
- 3SAT
- max2SAT

Recall about the satisfiability problem

- $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$: set of variables
- $C=\left\{C_{1}, C_{2}, \ldots, C_{m}\right\}$: set of clauses
- $\mathcal{F}=C_{1} \wedge C_{2} \wedge \ldots \wedge C_{m}$

$$
\mathrm{SAT}=\{\langle\mathcal{F}\rangle \mid \mathcal{F} \text { is a satisfiable Boolean formula }\}
$$

kSAT

- k SAT: each clause has exactly k literals
- example of 2SAT: $\left(x_{1} \vee \bar{x}_{2}\right) \wedge\left(x_{2} \vee x_{3}\right) \wedge\left(x_{2} \vee \bar{x}_{3}\right)$
- example of 3SAT: $\left(x_{1} \vee \bar{x}_{2} \vee x_{4}\right) \wedge\left(x_{2} \vee x_{3} \vee \bar{x}_{4}\right)$

kSAT

- k SAT: each clause has exactly k literals
- example of 2 SAT: $\left(x_{1} \vee \bar{x}_{2}\right) \wedge\left(x_{2} \vee x_{3}\right) \wedge\left(x_{2} \vee \bar{x}_{3}\right)$
- example of 3SAT: $\left(x_{1} \vee \bar{x}_{2} \vee x_{4}\right) \wedge\left(x_{2} \vee x_{3} \vee \bar{x}_{4}\right)$
- $2 \mathrm{SAT} \in \mathcal{P}$
- 3 SAT $\in \mathcal{N P}$

$2 \mathrm{SAT} \in \mathcal{P}$

The idea is to transform the problem in a path algorithm in graph.

- Construct the graph G as follows
- add a vertex for each literal $x \in X \cup \bar{X}$
- for each clause $x \vee y$, add the arcs (\bar{x}, y) and ($\bar{y}, x)$ correspond to implications $\bar{x} \Rightarrow y$ and $\bar{y} \Rightarrow x$

$2 \mathrm{SAT} \in \mathcal{P}$

$$
\mathcal{F}=\left(x_{1} \vee \bar{x}_{2}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{3}\right) \wedge\left(x_{1} \vee x_{2}\right) \wedge\left(\bar{x}_{3} \vee x_{4}\right) \wedge\left(\bar{x}_{1} \vee x_{4}\right)
$$

We want $\left(\bar{x}_{1} \vee x_{4}\right)=$ TRUE

- $\operatorname{arc}\left(x_{1}, x_{4}\right)$ means:
- if $x_{1}=\mathrm{T}$ then x_{4} should be T
- if $x_{4}=\mathrm{F}$ then x_{1} should be F
- $\operatorname{arc}\left(\bar{x}_{4}, \bar{x}_{1}\right)$ means:
- if $\bar{x}_{4}=\mathrm{T}$ then \bar{x}_{1} should be T
- if $\bar{x}_{1}=\mathrm{F}$ then \bar{x}_{4} should be F

$2 \mathrm{SAT} \in \mathcal{P}$

Lemma

If there is a path from x to y in G, then there is also a path from \bar{y} to \bar{x}.
Proof:

- By construction:
- we add an arc (a, b) if $(\bar{a} \vee b)$ exists in \mathcal{F}
- but if $(\bar{a} \vee b)$ exists in \mathcal{F}, then we add also the $\operatorname{arc}(\bar{b}, \bar{a})$
- Apply the argument for all arcs in the path from x to y

$2 \mathrm{SAT} \in \mathcal{P}$

Lemma

If there is a variable x such that G has both a path from x to \bar{x} and a path from \bar{x} to x, then \mathcal{F} is not satisfiable.

$$
\mathcal{F}=\left(x_{1} \vee \bar{x}_{2}\right) \wedge\left(x_{2} \vee \bar{x}_{3}\right) \wedge\left(x_{3} \vee \bar{x}_{4}\right) \wedge\left(x_{4} \vee \bar{x}_{1}\right) \wedge\left(\bar{x}_{4} \vee \bar{x}_{1}\right) \wedge\left(x_{2} \vee x_{3}\right)
$$

$$
\text { If } x_{1}=\text { TRUE, then }
$$

$$
x_{4} \text { should be TRUE, and then }
$$ ($\bar{x}_{4} \vee \bar{x}_{1}$) is not satisfiable

If $x_{1}=$ FALSE, then x_{2} should be FALSE, and then \bar{x}_{3} should be FALSE, and then $\left(x_{2} \vee x_{3}\right)$ is not satisfiable

$2 \mathrm{SAT} \in \mathcal{P}$

Lemma

If there is a variable x such that G has both a path from x to \bar{x} and a path from \bar{x} to x, then \mathcal{F} is not satisfiable.

Proof:

- assume that \mathcal{F} is satisfiable (for contradiction)

$2 \mathrm{SAT} \in \mathcal{P}$

Lemma

If there is a variable x such that G has both a path from x to \bar{x} and a path from \bar{x} to x, then \mathcal{F} is not satisfiable.

Proof:

- assume that \mathcal{F} is satisfiable (for contradiction)
- case 1: $x=$ TRUE

There should be an $\operatorname{arc}(a, b)$ with $a=\mathrm{T}$ and $b=\mathrm{F}$.

$2 \mathrm{SAT} \in \mathcal{P}$

Lemma

If there is a variable x such that G has both a path from x to \bar{x} and a path from \bar{x} to x, then \mathcal{F} is not satisfiable.

Proof:

- assume that \mathcal{F} is satisfiable (for contradiction)
- case 1: $x=$ TRUE

There should be an arc (a, b) with $a=\mathrm{T}$ and $b=\mathrm{F}$. That is, $(\bar{a} \vee b)$ is not satisfiable.

$2 \mathrm{SAT} \in \mathcal{P}$

Lemma

If there is a variable x such that G has both a path from x to \bar{x} and a path from \bar{x} to x, then \mathcal{F} is not satisfiable.

Proof:

- assume that \mathcal{F} is satisfiable (for contradiction)
- case 1: $x=$ TRUE

There should be an arc (a, b) with $a=\mathrm{T}$ and $b=\mathrm{F}$.
That is, $(\bar{a} \vee b)$ is not satisfiable.
Hence, x cannot be TRUE.

$2 \mathrm{SAT} \in \mathcal{P}$

Lemma

If there is a variable x such that G has both a path from x to \bar{x} and a path from \bar{x} to x, then \mathcal{F} is not satisfiable.

Proof:

- assume that \mathcal{F} is satisfiable (for contradiction)
- case 1: $x=$ TRUE

There should be an $\operatorname{arc}(a, b)$ with $a=\mathrm{T}$ and $b=\mathrm{F}$.
That is, $(\bar{a} \vee b)$ is not satisfiable.
Hence, x cannot be TRUE.

- case 2: $x=$ FALSE

Same arguments give that x cannot be FALSE.

$2 \mathrm{SAT} \in \mathcal{P}$

Lemma

If there is a variable x such that G has both a path from x to \bar{x} and a path from \bar{x} to x, then \mathcal{F} is not satisfiable.

Proof:

- assume that \mathcal{F} is satisfiable (for contradiction)
- case 1: $x=$ TRUE

There should be an $\operatorname{arc}(a, b)$ with $a=\mathrm{T}$ and $b=\mathrm{F}$.
That is, $(\bar{a} \vee b)$ is not satisfiable.
Hence, x cannot be TRUE.

- case 2: $x=$ FALSE

Same arguments give that x cannot be FALSE.

- Then, \mathcal{F} is not satisfiable, a contradiction.

$2 \mathrm{SAT} \in \mathcal{P}$

Algorithm

1. while there are non-assigned variables do
2. Select a literal a for which there is not a path from a to \bar{a}.
3. Set $a=$ TRUE.
4. Assign TRUE to all reachable literals from a.
5. Eliminate all assigned variables from G.

$2 \mathrm{SAT} \in \mathcal{P}$

$$
\mathcal{F}=\left(x_{1} \vee \bar{x}_{2}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{3}\right) \wedge\left(x_{1} \vee x_{2}\right) \wedge\left(\bar{x}_{3} \vee x_{4}\right) \wedge\left(\bar{x}_{1} \vee x_{4}\right)
$$

Select \bar{x}_{2} and set $\bar{x}_{2}=$ TRUE

$2 \mathrm{SAT} \in \mathcal{P}$

$$
\mathcal{F}=\left(x_{1} \vee \bar{x}_{2}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{3}\right) \wedge\left(x_{1} \vee x_{2}\right) \wedge\left(\bar{x}_{3} \vee x_{4}\right) \wedge\left(\bar{x}_{1} \vee x_{4}\right)
$$

Select \bar{x}_{2} and set $\bar{x}_{2}=$ TRUE

T
\bar{x}_{2}
x_{2}

F T

F

T

$2 \mathrm{SAT} \in \mathcal{P}$

Lemma (Correctness of the algorithm)

Consider a literal a selected in Line 2 of the algorithm. There is no path from a to both b and \bar{b}.

Proof:

- Assume there are paths from a to b and from a to \bar{b}.

$2 \mathrm{SAT} \in \mathcal{P}$

Lemma (Correctness of the algorithm)

Consider a literal a selected in Line 2 of the algorithm. There is no path from a to both b and \bar{b}.

Proof:

- Assume there are paths from a to b and from a to \bar{b}.
- Then, there are paths from \bar{b} to \bar{a} and from b to \bar{a} (by the first lemma)

$2 \mathrm{SAT} \in \mathcal{P}$

Lemma (Correctness of the algorithm)

Consider a literal a selected in Line 2 of the algorithm. There is no path from a to both b and \bar{b}.

Proof:

- Assume there are paths from a to b and from a to \bar{b}.
- Then, there are paths from \bar{b} to \bar{a} and from b to \bar{a} (by the first lemma)
- Thus, there are paths from a to \bar{a} (passing through b) and from \bar{a} to a (passing through \bar{b})

$2 \mathrm{SAT} \in \mathcal{P}$

Lemma (Correctness of the algorithm)

Consider a literal a selected in Line 2 of the algorithm. There is no path from a to both b and \bar{b}.

Proof:

- Assume there are paths from a to b and from a to \bar{b}.
- Then, there are paths from \bar{b} to \bar{a} and from b to \bar{a} (by the first lemma)
- Thus, there are paths from a to \bar{a} (passing through b) and from \bar{a} to a (passing through \bar{b})
- a cannot be selected by the algorithm, a contradiction.

3 SAT \in NP-COMPLETE

$3 \mathrm{SAT} \in \mathcal{N P}$

- given an assignment of variables, scan all clauses to check if they evaluate to TRUE

$3 \mathrm{SAT} \in$ NP-COMPLETE

3 SAT $\in \mathcal{N P}$

- given an assignment of variables, scan all clauses to check if they evaluate to TRUE
$\mathrm{SAT} \leq_{\mathrm{P}} 3$ SAT
- given any formula \mathcal{F} of SAT, we construct a formula $\tau(\mathcal{F})$ of 3SAT
- replace each clause $\left(a_{1} \vee a_{2} \vee \ldots \vee a_{\ell}\right)$ in \mathcal{F}

3 SAT \in NP-COMPLETE

3 SAT $\in \mathcal{N P}$

- given an assignment of variables, scan all clauses to check if they evaluate to TRUE

SAT $\leq_{\mathrm{P}} 3$ SAT

- given any formula \mathcal{F} of SAT, we construct a formula $\tau(\mathcal{F})$ of 3SAT
- replace each clause ($a_{1} \vee a_{2} \vee \ldots \vee a_{\ell}$) in \mathcal{F}
- if $\ell=2$, add an extra variable z :
$\left(a_{1} \vee a_{2}\right)=\left(a_{1} \vee a_{2} \vee z\right) \wedge\left(a_{1} \vee a_{2} \vee \bar{z}\right)$

$3 \mathrm{SAT} \in$ NP-COMPLETE

3 SAT $\in \mathcal{N P}$

- given an assignment of variables, scan all clauses to check if they evaluate to TRUE

SAT $\leq_{\mathrm{P}} 3$ SAT

- given any formula \mathcal{F} of SAT, we construct a formula $\tau(\mathcal{F})$ of 3SAT
- replace each clause $\left(a_{1} \vee a_{2} \vee \ldots \vee a_{\ell}\right)$ in \mathcal{F}
- if $\ell=2$, add an extra variable z :
$\left(a_{1} \vee a_{2}\right)=\left(a_{1} \vee a_{2} \vee z\right) \wedge\left(a_{1} \vee a_{2} \vee \bar{z}\right)$
Similarly for $\ell=1$ by adding two variables

$3 \mathrm{SAT} \in \mathrm{NP}-\mathrm{COMPLETE}$

3 SAT $\in \mathcal{N P}$

- given an assignment of variables, scan all clauses to check if they evaluate to TRUE

SAT \leq P 3 SAT

- given any formula \mathcal{F} of SAT, we construct a formula $\tau(\mathcal{F})$ of 3SAT
- replace each clause $\left(a_{1} \vee a_{2} \vee \ldots \vee a_{\ell}\right)$ in \mathcal{F}
- if $\ell=2$, add an extra variable z :
$\left(a_{1} \vee a_{2}\right)=\left(a_{1} \vee a_{2} \vee z\right) \wedge\left(a_{1} \vee a_{2} \vee \bar{z}\right)$
Similarly for $\ell=1$ by adding two variables
- if $\ell>3$, add $\ell-3$ variables z_{i} and replace the clause by the $\ell-2$ following clauses

$$
\left(a_{1} \vee a_{2} \vee z_{1}\right) \wedge\left(\bar{z}_{1} \vee a_{3} \vee z_{2}\right) \wedge\left(\bar{z}_{2} \vee a_{4} \vee z_{3}\right) \wedge \ldots \wedge\left(\bar{z}_{\ell-3} \vee a_{\ell-1} \vee a_{\ell}\right)
$$

Proof (1)

\mathcal{F} is satisfiable iff $\tau(\mathcal{F})$ is satisfiable
(\Rightarrow)

- assume that \mathcal{F} is satisfiable
- then some a_{i} is TRUE for all clauses
- use the same assignment for the common variables of \mathcal{F} and $\tau(\mathcal{F})$
- set $z_{j}=$ TRUE for $1 \leq j \leq i-2$
- set $z_{j}=$ FALSE for $i-1 \leq j \leq \ell-3$
- all the clauses of $\tau(\mathcal{F})$ are satisfied

Proof (2)

\mathcal{F} is satisfiable iff $\mathcal{F}^{\prime}=\tau(\mathcal{F})$ is satisfiable
(\Leftarrow)

- assume that \mathcal{F}^{\prime} is satisfiable
- at least one of the literals a_{i} should be TRUE for each clause
- if not, then z_{1} should be TRUE which implies that z_{2} should be TRUE, etc.
- hence, the clause ($\bar{z}_{\ell-3} \vee a_{\ell-1} \vee a_{\ell}$) is not satisfiable, contradiction
- then there is an assignment that satisfies \mathcal{F}

Exercise 3SAT-NAE

SAT not all equal.
Prove that 3SAT-NAE \in NP-COMPLETE, where
SAT-NAE $=\{\langle\mathcal{F}\rangle \mid \mathcal{F}$ is a satisfiable with at least one true literal and at least one false literal in each clause\}

Tip for the reduction:

- Show first that: $3 S A T \leq_{P} 4$ SAT-NAE (add an extra boolean variable in each clause)
- 4SAT-NAE $\leq_{P} 3$ SAT-NAE (break each 4-clause into 2 3-clauses)

MAX-2SAT \in NP-COMPLETE

MAX-2SAT $=\{\langle\mathcal{F}, k\rangle \mid \mathcal{F}$ is a formula with k TRUE clauses $\}$

MAX-2SAT \in NP-COMPLETE

MAX-2SAT $=\{\langle\mathcal{F}, k\rangle \mid \mathcal{F}$ is a formula with k TRUE clauses $\}$

MAX-2SAT $\in \mathcal{N} \mathcal{P}$

- given an assignment of variables, scan all clauses to check if there are at least k of them evaluated to TRUE

MAX-2SAT \in NP-COMPLETE

MAX-2SAT $=\{\langle\mathcal{F}, k\rangle \mid \mathcal{F}$ is a formula with k TRUE clauses $\}$

MAX-2SAT $\in \mathcal{N} \mathcal{P}$

- given an assignment of variables, scan all clauses to check if there are at least k of them evaluated to TRUE

3 SAT $\leq_{\text {P }}$ MAX- 2 SAT

1. given any formula \mathcal{F} of 3 SAT, we construct a formula \mathcal{F}^{\prime} of MAX-2SAT

- replace each clause ($x \vee y \vee z$) by the 10 following clauses

$$
(x) \wedge(y) \wedge(z) \wedge(\bar{x} \vee \bar{y}) \wedge(\bar{y} \vee \bar{z}) \wedge(\bar{z} \vee \bar{x}) \wedge(w) \wedge(\bar{w} \vee x) \wedge(\bar{w} \vee y) \wedge(\bar{w} \vee z)
$$

- $k=7 m$ (m is the number of clauses)

MAX-2SAT \in NP-COMPLETE

MAX-2SAT $=\{\langle\mathcal{F}, k\rangle \mid \mathcal{F}$ is a formula with k TRUE clauses $\}$

MAX-2SAT $\in \mathcal{N} \mathcal{P}$

- given an assignment of variables, scan all clauses to check if there are at least k of them evaluated to TRUE

3 SAT $\leq_{\text {P MAX }}$ MSAT

1. given any formula \mathcal{F} of 3 SAT , we construct a formula \mathcal{F}^{\prime} of MAX-2SAT

- replace each clause ($x \vee y \vee z$) by the 10 following clauses

$$
(x) \wedge(y) \wedge(z) \wedge(\bar{x} \vee \bar{y}) \wedge(\bar{y} \vee \bar{z}) \wedge(\bar{z} \vee \bar{x}) \wedge(w) \wedge(\bar{w} \vee x) \wedge(\bar{w} \vee y) \wedge(\bar{w} \vee z)
$$

- $k=7 m$ (m is the number of clauses)

2. \mathcal{F}^{\prime} has $O(n+m)$ variables and $O(m)$ clauses

MAX-2SAT \in NP-COMPLETE

$3 \mathrm{SAT} \leq_{\mathrm{P}}$ MAX-2SAT

Recall replace each clause ($x \vee y \vee z$) by

$$
(x) \wedge(y) \wedge(z) \wedge(\bar{x} \vee \bar{y}) \wedge(\bar{y} \vee \bar{z}) \wedge(\bar{z} \vee \bar{x}) \wedge(w) \wedge(\bar{w} \vee x) \wedge(\bar{w} \vee y) \wedge(\bar{w} \vee z)
$$

3. \mathcal{F} is satisfiable iff \mathcal{F}^{\prime} has at least k satisfied clauses

- assume that \mathcal{F} is satisfiable
- if $x=\mathrm{T}, y=\mathrm{F}$ and $z=\mathrm{F}$, then set $w=\mathrm{F}: 7$ satisfied clauses
- if $x=\mathrm{T}, y=\mathrm{T}$ and $z=\mathrm{F}$, then set $w=\mathrm{F}: 7$ satisfied clauses
- if $x=\mathrm{T}, y=\mathrm{T}$ and $z=\mathrm{T}$, then set $w=\mathrm{T}: 7$ satisfied clauses
- in all cases, there are 7 satisfied clauses in \mathcal{F}^{\prime} for each clause of \mathcal{F}

MAX-2SAT \in NP-COMPLETE

$3 \mathrm{SAT} \leq_{\mathrm{P}}$ MAX-2SAT

Recall replace each clause ($x \vee y \vee z$) by

$$
(x) \wedge(y) \wedge(z) \wedge(\bar{x} \vee \bar{y}) \wedge(\bar{y} \vee \bar{z}) \wedge(\bar{z} \vee \bar{x}) \wedge(w) \wedge(\bar{w} \vee x) \wedge(\bar{w} \vee y) \wedge(\bar{w} \vee z)
$$

3. \mathcal{F} is satisfiable iff \mathcal{F}^{\prime} has at least k satisfied clauses

- assume that \mathcal{F} is satisfiable
- if $x=\mathrm{T}, y=\mathrm{F}$ and $z=\mathrm{F}$, then set $w=\mathrm{F}: 7$ satisfied clauses
- if $x=\mathrm{T}, y=\mathrm{T}$ and $z=\mathrm{F}$, then set $w=\mathrm{F}: 7$ satisfied clauses
- if $x=\mathrm{T}, y=\mathrm{T}$ and $z=\mathrm{T}$, then set $w=\mathrm{T}: 7$ satisfied clauses
- in all cases, there are 7 satisfied clauses in \mathcal{F}^{\prime} for each clause of \mathcal{F}
- contrapositive: assume that \mathcal{F} is not satisfiable
- there is one clause for which $x=y=z=\mathrm{F}$
- then, in \mathcal{F}^{\prime} we correspondingly have:
-4 satisfied clauses if $w=\mathrm{T}$
-6 satisfied clauses if $w=\mathrm{F}$
- hence, in \mathcal{F}^{\prime} there are less than k clauses that are satisfied

