Fundamental Computer Science Lecture 4: Complexity The Cook-Levin theorem

Denis Trystram
MoSIG1 and M1Info - University Grenoble-Alpes

March, 2021

Objective

- Exhibit a problem that belongs to NP-COMPLETE

The satisfiability problem

- $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$: set of variables
- $C=\left\{C_{1}, C_{2}, \ldots, C_{m}\right\}$: set of clauses
- $\mathcal{F}=C_{1} \wedge C_{2} \wedge \ldots \wedge C_{m}$

$$
\mathrm{SAT}=\{\langle\mathcal{F}\rangle \mid \mathcal{F} \text { is a satisfiable Boolean formula }\}
$$

Cook-Levin theorem

Theorem
(original formulation) $\mathrm{SAT} \in \mathcal{P}$ if and only if $\mathcal{P}=\mathcal{N} \mathcal{P}$.
equivalently: SAT is NP-complete.

SAT \in NP-COMPLETE

$S A T \in \mathcal{N P}$
Informally, given an assignment of variables, we scan all clauses to check if they evaluate to TRUE

The verifier:

1. Generate non-deterministically an interpretation function
2. Evaluate this function and if it is TRUE then accept

The cost is in $\Theta(n)$

The idea behind the reduction

Coding the execution of a NDTM by means of a boolean expression.

More precisely, we transform any language of $\mathcal{N P}$ to the encoding of the positive instances of SAT.
We extend here the transformation to a pair (word, language) ${ }^{1}$

- We exhibit such a transformation (reduction) that associates to each word ω and to each language L of $\mathcal{N P}$ an instance of SAT that is positive iff $\omega \in L$.
The technical point is to show how to code the data related to L : all the informations on the tape and also all the states and transitions.

Then, we will verify that it is polynomial in $|\omega|$ for any fixed language.

[^0]
How to proceed?

The only characterization of the languages in $\mathcal{N P}$ is to be accepted by a non-deterministic Turing Machine.

Thus, we will build such a transformation:

- given a NDTM $M(K, \Sigma, \Gamma, \Delta$, start, halt $)$ and an input word ω, it produces a positive instance of SAT iff M accepts ω

Express the execution as a SAT formula

$A \leq{ }_{\mathcal{P}}$ SAT for every language $A \in \mathcal{N} \mathcal{P}$

- M: a Non-Deterministic Turing Machine that decides A in polynomial time, say n^{k}
- Each configuration is described by a state, the position of the header and the content of the tape.
- An execution is thus fully described by three vectors/table.

Express the execution as a SAT formula

- Tape: create a table $T[i][j]$ of size $n^{k} \times n^{k}$, we donot count the initial state of the tape at row " 0 "
- each row $T[i]$ corresponds to a configuration of the tape
- the head is recorded into a vector called P
- the current state is on vector Q
- An extra vector is introduced for the (non-deterministic) choice of the transition
- a table is accepting if any row is an accepting configuration

We introduce the variable $x_{i j s}$ that means that the symbol s is in $T[i][j]$

SAT \in NP-COMPLETE

For each i, j, s, where $1 \leq i, j \leq n^{k}$ and $s \in \Gamma \cup \Sigma$, define a variable $x_{i, j, s}= \begin{cases}\text { TRUE } & \text { if the cell in row } i \text { and column } j \text { contains the symbol } s \\ \text { FALSE } & \text { otherwise }\end{cases}$

Define clauses to guarantee the calculation of M

SAT \in NP-COMPLETE

For each i, j, s, where $1 \leq i, j \leq n^{k}$ and $s \in \Gamma \cup \Sigma$, define a variable $x_{i, j, s}= \begin{cases}\text { TRUE } & \text { if the cell in row } i \text { and column } j \text { contains the symbol } s \\ \text { FALSE } & \text { otherwise }\end{cases}$

Define clauses to guarantee the calculation of M

- there is exactly one symbol in each cell

$$
\phi_{\text {cell }}=\bigwedge_{0 \leq i, j \leq n^{k}}\left[\left(\bigvee_{s \in \Gamma \cup \Sigma} x_{i, j, s}\right) \wedge\left(\bigwedge_{\substack{s, t \in \Gamma \cup \Sigma \\ s \neq t}}\left(\bar{x}_{i, j, s} \vee \bar{x}_{i, j, t}\right)\right)\right]
$$

We verify similarly that:

- there is a unique configuration
- the header is pointing only a unique cell
- there is a only one choice for a transition

These conditions are expressed as boolean CNF expressions.

Other conditions

- the first row corresponds to the starting configuration
- each configuration is obtained from the previous one by a transition $c_{i} \vdash_{M} c_{i+1}$
- there is an accepting state before n^{k} steps

Can you write these conditions as CNF expressions?

The first row corresponds to the starting configuration

The word ω is on the tape and all other cells are filled by \sqcup.
The header should be at the left of this input word.
The process starts at the first state.

$$
\phi_{\text {init }}=\left[\left(\bigwedge_{0 \leq j \leq n-1} x_{0, j, \omega_{n+1}}\right) \wedge\left(\bigwedge_{n \leq j \leq n^{k}}\left(x_{0, j, \sqcup}\right)\right)\right] \wedge p_{0,0} \wedge q_{0, \text { start }}
$$

- This boolean expression is in CNF and its length is in $O\left(n^{k}\right)$

There is an accepting state

- there is an accepting state

$$
\phi_{\text {accept }}=\bigvee_{1 \leq i \leq n^{k}} q_{i, \text { halt }}
$$

The hardest part

Proving that the successive configurations are valid (it is in accordance with the transition table).

This is done through two conditions

- All the cells of the tape that are not concerned by the header are not modified.
- The transformation from a step to the next is valid.

The not concerned cells are unchanged

$$
\phi_{\text {move }}=\bigwedge_{0 \leq i, j<n^{k}, s \in \Gamma \cup \Sigma}\left[\left(x_{i, j, s} \wedge \bar{p}_{i, j}\right) \Rightarrow x_{(i+1), j, s}\right]
$$

that can be written as a CNF as follows

$$
\phi_{\text {move }}=\bigwedge_{0 \leq i, j \leq n^{k}, s \in \Gamma \cup \Sigma}\left[\bar{x}_{i, j, s} \vee p_{i, j} \vee x_{(i+1), j, s}\right]
$$

The not concerned cells are unchanged

$$
\phi_{\text {move }}=\bigwedge_{0 \leq i, j<n^{k}, s \in \Gamma \cup \Sigma}\left[\left(x_{i, j, s} \wedge \bar{p}_{i, j}\right) \Rightarrow x_{(i+1), j, s}\right]
$$

that can be written as a CNF as follows

$$
\phi_{\text {move }}=\bigwedge_{0 \leq i, j \leq n^{k}, s \in \Gamma \cup \Sigma}\left[\bar{x}_{i, j, s} \vee p_{i, j} \vee x_{(i+1), j, s}\right]
$$

The last condition is left to the reader.

SAT \in NP-COMPLETE

Construct $\mathcal{F}=\phi_{\text {cell }} \wedge \phi_{\text {start }} \wedge \phi_{\text {accept }} \wedge \phi_{\text {move }}$

- \mathcal{F} has $O\left(n^{k}\right)$ variables and clauses

SAT \in NP-COMPLETE

Construct $\mathcal{F}=\phi_{\text {cell }} \wedge \phi_{\text {start }} \wedge \phi_{\text {accept }} \wedge \phi_{\text {move }}$

- \mathcal{F} has $O\left(n^{k}\right)$ variables and clauses

Theorem: \mathcal{F} is satisfiable if and only if A is decided by M

[^0]: ${ }^{1}$ usually, it is restricted to a word

