Fundamental Computer Science
 Lecture 4: Complexity NP-completeness

Denis Trystram
MoSIG1 and M1Info - University Grenoble-Alpes

March, 2021

Last lecture

- Definition of time complexity classes
- \mathcal{P} : problems solvable in $O\left(n^{k}\right)$ time
- $\mathcal{N P}$: problems verifiable in $O\left(n^{k}\right)$ time
- space complexity
- Prove that a problem belongs to $\mathcal{N P}$
- provide a polynomial-time verifier
- Reduction from problem A to problem $\mathrm{B} \quad\left(A \leq_{\mathrm{P}} B\right)$

1. transform an instance I_{A} of A to an instance I_{B} of B
2. show that the reduction is of polynomial size
3. prove that:
"there is a solution for the problem A on the instance I_{A} if and only if
there is a solution for the problem B on the instance $I_{\mathrm{B}}{ }^{\prime \prime}$

Agenda

- Definition of the class NP-complete
- The SAT problem
- Cook-Levin theorem
- Use reductions to prove NP-completeness
- A detailed example: Vertex Cover
- Variants of SAT

Completeness

Let \mathcal{C} be a set of languages.

Definition

A language B is \mathcal{C}-complete if

- $B \in \mathcal{C}$, and
- every language A in \mathcal{C} is polynomially reducible to B.

NP-COMPLETENESS

Definition

A language B is NP-COMPlete if

- $B \in \mathcal{N P}$, and
- every language A in $\mathcal{N P}$ is polynomially reducible to B.

NP-COMPLETENESS

Definition

A language B is NP-COMPLETE if

- $B \in \mathcal{N P}$, and
- every language A in $\mathcal{N P}$ is polynomially reducible to B.

Theorem

If B is NP-COMPLETE and $B \in \mathcal{P}$, then $\mathcal{P}=\mathcal{N} \mathcal{P}$
Proof:

- direct from the definition of reducibility

NP-COMPLETENESS

Definition

A language B is NP-COMPLETE if

- $B \in \mathcal{N P}$, and
- every language $A \in \mathcal{N} \mathcal{P}$ is polynomially reducible to B.

Theorem

If B is NP-complete and $B \leq_{P} C$ for $C \in \mathcal{N P}$, then C is NP-COMPLETE

Proof:

- initially, $C \in \mathcal{N P}$
- we need to show: every $A \in \mathcal{N} \mathcal{P}$ polynomially reduces to C
- every language $\in \mathcal{N} \mathcal{P}$ polynomially reduces to B
- B polynomially reduces to C

The next step

Prove that there are some problems in NP-Complete
Stephen Cook proved in 1971 that $S A T \in$ NP-complete

Recall on Logic: Boolean formulas

- x_{i} : a Boolean variable, values TRUE or FALSE
- \bar{x}_{i} : negation of x_{i} - logical NOT
- x_{i}, \bar{x}_{i} : literals

Recall on Logic: Boolean formulas

- x_{i} : a Boolean variable, values TRUE or FALSE
- \bar{x}_{i} : negation of x_{i} - logical NOT
- x_{i}, \bar{x}_{i} : literals
- V: logical OR
- \wedge : logical AND

Recall on Logic: Boolean formulas

- x_{i} : a Boolean variable, values TRUE or FALSE
- \bar{x}_{i} : negation of x_{i} - logical NOT
- x_{i}, \bar{x}_{i} : literals
- V: logical OR
- \wedge : logical AND
- $\left(x_{1} \vee \bar{x}_{3} \vee x_{4}\right)$: clause, a set of literals in disjunction

Recall on Logic: Boolean formulas

- x_{i} : a Boolean variable, values TRUE or FALSE
- \bar{x}_{i} : negation of x_{i} - logical NOT
- x_{i}, \bar{x}_{i} : literals
- V: logical OR
- \wedge : logical AND
- $\left(x_{1} \vee \bar{x}_{3} \vee x_{4}\right)$: clause, a set of literals in disjunction
- $\mathcal{F}=\left(x_{1} \vee x_{2} \vee \bar{x}_{3}\right) \wedge\left(\bar{x}_{4}\right) \wedge\left(x_{1} \vee x_{4}\right)$:
a Boolean formula in Conjunctive Normal Form (CNF), a set of clauses in conjunction
- every formula can be written in CNF (thus, focus on CNF formulas)

Recall on Logic: Boolean formulas

- x_{i} : a Boolean variable, values TRUE or FALSE
- \bar{x}_{i} : negation of x_{i} - logical NOT
- x_{i}, \bar{x}_{i} : literals
- V: logical OR
- \wedge : logical AND
- $\left(x_{1} \vee \bar{x}_{3} \vee x_{4}\right)$: clause, a set of literals in disjunction
- $\mathcal{F}=\left(x_{1} \vee x_{2} \vee \bar{x}_{3}\right) \wedge\left(\bar{x}_{4}\right) \wedge\left(x_{1} \vee x_{4}\right)$:
a Boolean formula in Conjunctive Normal Form (CNF), a set of clauses in conjunction
- every formula can be written in CNF (thus, focus on CNF formulas)
- assignment: give TRUE or FALSE value to variables

Recall on Logic: Boolean formulas

- x_{i} : a Boolean variable, values TRUE or FALSE
- \bar{x}_{i} : negation of x_{i} - logical NOT
- x_{i}, \bar{x}_{i} : literals
- V: logical OR
- \wedge : logical AND
- $\left(x_{1} \vee \bar{x}_{3} \vee x_{4}\right)$: clause, a set of literals in disjunction
- $\mathcal{F}=\left(x_{1} \vee x_{2} \vee \bar{x}_{3}\right) \wedge\left(\bar{x}_{4}\right) \wedge\left(x_{1} \vee x_{4}\right)$:
a Boolean formula in Conjunctive Normal Form (CNF), a set of clauses in conjunction
- every formula can be written in CNF (thus, focus on CNF formulas)
- assignment: give TRUE or FALSE value to variables
- a formula is satisfiable if there is an assignment evaluating to TRUE
- i.e, $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(\mathrm{T}, \mathrm{T}, \mathrm{T}, \mathrm{F})$ for the above formula \mathcal{F}

The satisfiability problem SAT

- $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$: set of variables
- $C=\left\{C_{1}, C_{2}, \ldots, C_{m}\right\}$: set of clauses
- $\mathcal{F}=C_{1} \wedge C_{2} \wedge \ldots \wedge C_{m}$

$$
\mathrm{SAT}=\{\langle\mathcal{F}\rangle \mid \mathcal{F} \text { is a satisfiable Boolean formula }\}
$$

The problem version of SAT:

- SAT
- Instance. m clauses C_{i} expressed using n literals
- Question. Is the formula $\mathcal{F}=C_{1} \wedge C_{2} \wedge \ldots \wedge C_{m}$ satisfiable?

Example: Vertex Cover

We will show in a separate lesson that $V C \in$ NP-complete

