Fundamental Computer Science Lecture 4: Complexity NP-completeness

Denis Trystram MoSIG1 and M1Info – University Grenoble-Alpes

March, 2021

Last lecture

- Definition of time complexity classes
 - \mathcal{P} : problems solvable in $O(n^k)$ time
 - \mathcal{NP} : problems verifiable in $O(n^k)$ time
 - space complexity
- \blacktriangleright Prove that a problem belongs to \mathcal{NP}
 - provide a polynomial-time verifier
- ▶ Reduction from problem A to problem B $(A \leq_P B)$
 - 1. transform an instance I_{A} of A to an instance I_{B} of B
 - 2. show that the reduction is of polynomial size
 - 3. prove that:

"there is a solution for the problem A on the instance $I_{\rm A}$ if and only if

there is a solution for the problem ${\rm B}$ on the instance ${\it I}_{\rm B}{\it ''}$

- ► Definition of the class NP-complete
- ► The SAT problem
- Cook-Levin theorem
- Use reductions to prove NP-completeness
- ► A detailed example: VERTEX COVER
- \blacktriangleright Variants of SAT

COMPLETENESS

Let $\ensuremath{\mathcal{C}}$ be a set of languages.

Definition

- A language B is $\mathcal C\text{-complete}$ if
 - $\blacktriangleright \ B \in \mathcal{C} \text{, and}$
 - every language A in C is polynomially reducible to B.

NP-COMPLETENESS

Definition

A language B is NP-COMPLETE if

- $\blacktriangleright \ B \in \mathcal{NP} \text{, and}$
- every language A in \mathcal{NP} is polynomially reducible to B.

NP-COMPLETENESS

Definition

A language B is NP-COMPLETE if

- ▶ $B \in \mathcal{NP}$, and
- every language A in \mathcal{NP} is polynomially reducible to B.

Theorem

If B is NP-COMPLETE and $B \in \mathcal{P}$, then $\mathcal{P} = \mathcal{NP}$

Proof:

direct from the definition of reducibility

NP-COMPLETENESS

Definition

A language B is NP-COMPLETE if

- $\blacktriangleright \ B \in \mathcal{NP}, \text{ and }$
- every language $A \in \mathcal{NP}$ is polynomially reducible to B.

Theorem

If B is NP-COMPLETE and $B \leq_P C$ for $C \in \mathcal{NP}$, then C is NP-COMPLETE

Proof:

- \blacktriangleright initially, $C\in\mathcal{NP}$
- we need to show: every $A \in \mathcal{NP}$ polynomially reduces to C
 - every language $\in \mathcal{NP}$ polynomially reduces to B
 - ► B polynomially reduces to C

The next step

Prove that there are some problems in $\operatorname{NP-COMPLETE}$

Stephen Cook proved in 1971 that $SAT \in \text{NP-COMPLETE}$

- x_i : a Boolean variable, values TRUE or FALSE
- \bar{x}_i : negation of x_i logical NOT
- x_i, \bar{x}_i : literals

- x_i : a Boolean variable, values TRUE or FALSE
- \bar{x}_i : negation of x_i logical NOT
- x_i, \bar{x}_i : literals
- \blacktriangleright \lor : logical OR
- ► ∧: logical AND

- x_i : a Boolean variable, values TRUE or FALSE
- \bar{x}_i : negation of x_i logical NOT
- ▶ x_i, \bar{x}_i : literals
- ► ∨: logical OR
- ► ∧: logical AND
- $(x_1 \lor \bar{x}_3 \lor x_4)$: clause, a set of literals in disjunction

- x_i : a Boolean variable, values TRUE or FALSE
- \bar{x}_i : negation of x_i logical NOT
- ▶ x_i, \bar{x}_i : literals
- ► ∨: logical OR
- ► ∧: logical AND
- $(x_1 \lor \bar{x}_3 \lor x_4)$: clause, a set of literals in disjunction
- F = (x₁ ∨ x₂ ∨ x̄₃) ∧ (x̄₄) ∧ (x₁ ∨ x₄):
 a Boolean formula in Conjunctive Normal Form (CNF), a set of clauses in conjunction
 - every formula can be written in CNF (thus, focus on CNF formulas)

- x_i : a Boolean variable, values TRUE or FALSE
- \bar{x}_i : negation of x_i logical NOT
- x_i, \bar{x}_i : literals
- ► ∨: logical OR
- ► ∧: logical AND
- $(x_1 \lor \bar{x}_3 \lor x_4)$: clause, a set of literals in disjunction
- F = (x₁ ∨ x₂ ∨ x̄₃) ∧ (x̄₄) ∧ (x₁ ∨ x₄):
 a Boolean formula in Conjunctive Normal Form (CNF), a set of clauses in conjunction
 - every formula can be written in CNF (thus, focus on CNF formulas)
- ► *assignment*: give TRUE or FALSE value to variables

- x_i : a Boolean variable, values TRUE or FALSE
- \bar{x}_i : negation of x_i logical NOT
- x_i, \bar{x}_i : literals
- ► ∨: logical OR
- ► ∧: logical AND
- $(x_1 \lor \bar{x}_3 \lor x_4)$: clause, a set of literals in disjunction
- F = (x₁ ∨ x₂ ∨ x̄₃) ∧ (x̄₄) ∧ (x₁ ∨ x₄):
 a Boolean formula in Conjunctive Normal Form (CNF), a set of clauses in conjunction
 - every formula can be written in CNF (thus, focus on CNF formulas)
- ► assignment: give TRUE or FALSE value to variables
- ► a formula is *satisfiable* if there is an assignment evaluating to TRUE
 - ▶ i.e, $(x_1, x_2, x_3, x_4) = (T, T, T, F)$ for the above formula \mathcal{F}

The satisfiability problem SAT

•
$$X = \{x_1, x_2, \dots, x_n\}$$
: set of variables

• $C = \{C_1, C_2, \dots, C_m\}$: set of clauses

$$\blacktriangleright \mathcal{F} = C_1 \wedge C_2 \wedge \ldots \wedge C_m$$

 $SAT = \{ \langle \mathcal{F} \rangle \mid \mathcal{F} \text{ is a satisfiable Boolean formula } \}$

The problem version of SAT:

- SAT
- Instance. m clauses C_i expressed using n literals
- Question. Is the formula $\mathcal{F} = C_1 \wedge C_2 \wedge ... \wedge C_m$ satisfiable?

Example: Vertex Cover

We will show in a separate lesson that $VC \in NP$ -COMPLETE