Fundamental Computer Science Lecture 3: first steps in complexity Reductions

Denis Trystram
MoSIG1 and M1Info - University Grenoble-Alpes

February, 2021

Agenda

- Reduction
- Goal: to classify the problems in complexity classes
- A focus on randomized algorithms
- (if enough time): The class NP-complete (Cook's Theorem)

Reductions

Definition

A function $f: \Sigma^{*} \rightarrow \Sigma^{*}$ is called polynomial time computable if there is a polynomially bounded Turing Machine that computes it.

Reductions

Definition

A function $f: \Sigma^{*} \rightarrow \Sigma^{*}$ is called polynomial time computable if there is a polynomially bounded Turing Machine that computes it.

A language A is polynomial time reducible to language B, denoted $A \leq_{\mathrm{P}} B$, if there is a polynomial time computable function $f: \Sigma^{*} \rightarrow \Sigma^{*}$, where for every input w, it holds that

$$
w \in A \Longleftrightarrow f(w) \in B
$$

This function f is called a polynomial time reduction from A to B.

Reductions

Theorem
If $A \leq_{\mathrm{P}} B$ and $B \in \mathcal{P}$, then $A \in \mathcal{P}$.

Proof:

Reductions

Theorem

If $A \leq_{\mathrm{P}} B$ and $B \in \mathcal{P}$, then $A \in \mathcal{P}$.

Proof:

- M: a polynomially bounded Turing Machine deciding B
- f : a polynomial time reduction from A to B
- Create a polynomially bounded Turing Machine M^{\prime} deciding A

Reductions

Theorem

If $A \leq_{\mathrm{P}} B$ and $B \in \mathcal{P}$, then $A \in \mathcal{P}$.

Proof:

- M: a polynomially bounded Turing Machine deciding B
- f : a polynomial time reduction from A to B
- Create a polynomially bounded Turing Machine M^{\prime} deciding A
$M^{\prime}=$ "On input w :

1. Compute $f(w)$.
2. Run M on $f(w)$ and output whatever M outputs."

A first straightforward example

HPATH $=\{\langle G, s, t\rangle \mid G$ is a graph with a Hamiltonian path from s to $t\}$
HCYCLE $=\{\langle G\rangle \mid G$ is a graph with a Hamiltonian cycle $\}$
Show that HPATH is polynomial time reducible to HCYCLE.

Solution:

- input of HPATH: a graph $G=(V, E)$ and two vertices $s, t \in V$
- create an instance of HCYCLE
- $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ where $V^{\prime}=V \cup\left\{v_{0}\right\}$ and $E^{\prime}=E \cup\left\{\left(v_{0}, s\right),\left(v_{0}, t\right)\right\}$

Solution:

- input of HPATH: a graph $G=(V, E)$ and two vertices $s, t \in V$
- create an instance of HCYCLE
- $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ where $V^{\prime}=V \cup\left\{v_{0}\right\}$ and $E^{\prime}=E \cup\left\{\left(v_{0}, s\right),\left(v_{0}, t\right)\right\}$

- The transformation (reduction) is clearly polynomial

Solution:

- input of HPATH: a graph $G=(V, E)$ and two vertices $s, t \in V$
- create an instance of HCYCLE
- $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ where $V^{\prime}=V \cup\left\{v_{0}\right\}$ and $E^{\prime}=E \cup\left\{\left(v_{0}, s\right),\left(v_{0}, t\right)\right\}$

- The transformation (reduction) is clearly polynomial

We are not done!!!

Solution (cont'd)

There is a Hamiltonian Path from s to t in G if and only if there is a Hamiltonian Cycle in G^{\prime}

Solution (cont'd)

There is a Hamiltonian Path from s to t in G if and only if there is a Hamiltonian Cycle in G^{\prime}
(\Rightarrow)

- consider a Hamiltonian Path from s to t in G :

$$
s \rightarrow v_{2} \rightarrow \ldots \rightarrow v_{n-1} \rightarrow t
$$

Solution (cont'd)

There is a Hamiltonian Path from s to t in G if and only if there is a Hamiltonian Cycle in G^{\prime}
(\Rightarrow)

- consider a Hamiltonian Path from s to t in G :
$s \rightarrow v_{2} \rightarrow \ldots \rightarrow v_{n-1} \rightarrow t$
- then $v_{0} \rightarrow s \rightarrow v_{2} \rightarrow \ldots \rightarrow v_{n-1} \rightarrow t \rightarrow v_{0}$ is a Hamiltonian Cycle in G^{\prime}

Solution (cont'd)

There is a Hamiltonian Path from s to t in G if and only if there is a Hamiltonian Cycle in G^{\prime}
(\Rightarrow)

- consider a Hamiltonian Path from s to t in G :
$s \rightarrow v_{2} \rightarrow \ldots \rightarrow v_{n-1} \rightarrow t$
- then $v_{0} \rightarrow s \rightarrow v_{2} \rightarrow \ldots \rightarrow v_{n-1} \rightarrow t \rightarrow v_{0}$ is a Hamiltonian Cycle in G^{\prime}
(\Leftarrow)
- consider a Hamiltonian Cycle in G^{\prime}

Solution (cont'd)

There is a Hamiltonian Path from s to t in G if and only if there is a Hamiltonian Cycle in G^{\prime}
(\Rightarrow)

- consider a Hamiltonian Path from s to t in G :
$s \rightarrow v_{2} \rightarrow \ldots \rightarrow v_{n-1} \rightarrow t$
- then $v_{0} \rightarrow s \rightarrow v_{2} \rightarrow \ldots \rightarrow v_{n-1} \rightarrow t \rightarrow v_{0}$ is a Hamiltonian Cycle in G^{\prime}
(\Leftarrow)
- consider a Hamiltonian Cycle in G^{\prime}
- this cycle should pass from v_{0}

Solution (cont'd)

There is a Hamiltonian Path from s to t in G if and only if there is a Hamiltonian Cycle in G^{\prime}
(\Rightarrow)

- consider a Hamiltonian Path from s to t in G :
$s \rightarrow v_{2} \rightarrow \ldots \rightarrow v_{n-1} \rightarrow t$
- then $v_{0} \rightarrow s \rightarrow v_{2} \rightarrow \ldots \rightarrow v_{n-1} \rightarrow t \rightarrow v_{0}$ is a Hamiltonian Cycle in G^{\prime}
(\Leftarrow)
- consider a Hamiltonian Cycle in G^{\prime}
- this cycle should pass from v_{0}
- there are only two edges incident to $v_{0}:\left(s, v_{0}\right)$ and $\left(t, v_{0}\right)$
- both $\left(s, v_{0}\right)$ and $\left(t, v_{0}\right)$ should be part of the Hamiltonian Cycle

Solution (cont'd)

There is a Hamiltonian Path from s to t in G if and only if there is a Hamiltonian Cycle in G^{\prime}
(\Rightarrow)

- consider a Hamiltonian Path from s to t in G : $s \rightarrow v_{2} \rightarrow \ldots \rightarrow v_{n-1} \rightarrow t$
- then $v_{0} \rightarrow s \rightarrow v_{2} \rightarrow \ldots \rightarrow v_{n-1} \rightarrow t \rightarrow v_{0}$ is a Hamiltonian Cycle in G^{\prime}
(\Leftarrow)
- consider a Hamiltonian Cycle in G^{\prime}
- this cycle should pass from v_{0}
- there are only two edges incident to $v_{0}:\left(s, v_{0}\right)$ and $\left(t, v_{0}\right)$
- both $\left(s, v_{0}\right)$ and $\left(t, v_{0}\right)$ should be part of the Hamiltonian Cycle
- Hamiltonian Cycle in $G^{\prime}: t \rightarrow v_{0} \rightarrow s \rightarrow \ldots \rightarrow t$

Solution (cont'd)

There is a Hamiltonian Path from s to t in G if and only if there is a Hamiltonian Cycle in G^{\prime}
(\Rightarrow)

- consider a Hamiltonian Path from s to t in G :
$s \rightarrow v_{2} \rightarrow \ldots \rightarrow v_{n-1} \rightarrow t$
- then $v_{0} \rightarrow s \rightarrow v_{2} \rightarrow \ldots \rightarrow v_{n-1} \rightarrow t \rightarrow v_{0}$ is a Hamiltonian Cycle in G^{\prime}
(\Leftarrow)
- consider a Hamiltonian Cycle in G^{\prime}
- this cycle should pass from v_{0}
- there are only two edges incident to $v_{0}:\left(s, v_{0}\right)$ and $\left(t, v_{0}\right)$
- both $\left(s, v_{0}\right)$ and $\left(t, v_{0}\right)$ should be part of the Hamiltonian Cycle
- Hamiltonian Cycle in $G^{\prime}: t \rightarrow v_{0} \rightarrow s \rightarrow \ldots \rightarrow t$
- there is a Hamiltonian Path from s to t in G

Steps of a reduction

Reduction from A to B

1. transform an instance I_{A} of A to an instance I_{B} of B
2. show that the reduction is of polynomial size
3. prove that:
"there is a solution for the problem A on the instance I_{A}
if and only if
there is a solution for the problem B on the instance I_{B} "

Steps of a reduction

Reduction from A to B

1. transform an instance I_{A} of A to an instance I_{B} of B
2. show that the reduction is of polynomial size
3. prove that:
"there is a solution for the problem A on the instance I_{A}
if and only if
there is a solution for the problem B on the instance I_{B} "

Comments

- usually the one direction is trivial (due to the transformation)
- $\left|I_{\mathrm{B}}\right|$ is polynomially bounded by $\left|I_{\mathrm{A}}\right|$

A slightly modified problem

Let us extend our previous example:
HPATH $=\{\langle G\rangle \mid G$ is a graph with a Hamiltonian path $\}$

- HPATH
- Instance: A graph $G=(V, E)$
- Question Is there an hamiltonian path in G ?

We want to show that this problem reduces to $H C Y C L E$.

Example (cont'd)

Let us consider an instance $I_{\text {HPATH }}$, that is a graph G.

Example (cont'd)

Let us consider an instance I_{HPATH}, that is a graph G.

- We build a particular instance $\tau(G)=G^{\prime}$ of $H C Y C L E$ by adding a new vertex x that is linked with all the other vertices of G :
- $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ where $V^{\prime}=V \cup\{x\}$ and $E^{\prime}=E \cup\{x, y\} \forall y \in V$

Principle of the reduction from $H P A T H$ to $H C Y C L E$

Principle (cont'd)

A Hamiltonian path in G (left) leads to a cycle in $\tau(G)$ (right)

Proof

- The transformation τ is obviously polynomial.
- Let us show that it is a reduction:
G has an hamiltonian path if and only if $\tau(G)$ has an hamiltonian cycle.
- (\Rightarrow)

If G has an hamiltonian path (called φ), then, the cycle $x \rightarrow \varphi \rightarrow x$ is hamiltonian in $\tau(G)$.
Since x is linked with all the vertices in G.

- (\Rightarrow)

If G has an hamiltonian path (called φ), then, the cycle $x \rightarrow \varphi \rightarrow x$ is hamiltonian in $\tau(G)$.
Since x is linked with all the vertices in G.

- (\Leftarrow)

If G^{\prime} has an hamiltonian cycle, its sub-graph without x, G, has an hamiltonian path.

- consider a Hamiltonian Cycle in G^{\prime}
- (\Rightarrow)

If G has an hamiltonian path (called φ), then, the cycle $x \rightarrow \varphi \rightarrow x$ is hamiltonian in $\tau(G)$.
Since x is linked with all the vertices in G.

- (\Leftarrow)

If G^{\prime} has an hamiltonian cycle, its sub-graph without x, G, has an hamiltonian path.

- consider a Hamiltonian Cycle in G^{\prime}
- this hamiltonian cycle should pass through x that connects two vertices of $G:(s, x)$ and (t, x)
- (\Rightarrow)

If G has an hamiltonian path (called φ), then, the cycle $x \rightarrow \varphi \rightarrow x$ is hamiltonian in $\tau(G)$.
Since x is linked with all the vertices in G.

- (\Leftarrow)

If G^{\prime} has an hamiltonian cycle, its sub-graph without x, G, has an hamiltonian path.

- consider a Hamiltonian Cycle in G^{\prime}
- this hamiltonian cycle should pass through x that connects two vertices of $G:(s, x)$ and (t, x)
- the hamiltonian Cycle in G^{\prime} is $t \rightarrow x \rightarrow s \rightarrow \ldots \rightarrow t$
- (\Rightarrow)

If G has an hamiltonian path (called φ), then, the cycle $x \rightarrow \varphi \rightarrow x$ is hamiltonian in $\tau(G)$.
Since x is linked with all the vertices in G.

- (\Leftarrow)

If G^{\prime} has an hamiltonian cycle, its sub-graph without x, G, has an hamiltonian path.

- consider a Hamiltonian Cycle in G^{\prime}
- this hamiltonian cycle should pass through x that connects two vertices of $G:(s, x)$ and (t, x)
- the hamiltonian Cycle in G^{\prime} is $t \rightarrow x \rightarrow s \rightarrow \ldots \rightarrow t$
- there is a Hamiltonian Path from s to t in G

Exercise

It is also possible to establish the following reduction: HCYCLE \leq_{P} HPATH.

This result is not immediat, even if it is/seems easy to extract a path from a cycle...

What is the problem here?

Exercise

It is also possible to establish the following reduction: HCYCLE \leq_{P} HPATH.

This result is not immediat, even if it is/seems easy to extract a path from a cycle...

What is the problem here?
We can not have a characterization of the hamiltonian path (and particularly of its extremities...)

Principle of the reduction from HCYCLE to HPATH

τ transforms an instance G of HCYCLE to an instance $\tau(G)$ of HPATH:

- We duplicate one vertex (any one) x of G in $\left(x_{1}, x_{2}\right)$

- We duplicate one vertex (any one) x of G in $\left(x_{1}, x_{2}\right)$
- We link x_{1} and x_{2} respectively to two new vertices y_{1} and y_{2} as depicted in the figure.

Analysis

This transformation is polynomial.
Show that it is a reduction:
G has an hamiltonian cycle hamiltonian iif $\tau(G)$ has a hamiltonian path.

Analysis

This transformation is polynomial.
Show that it is a reduction: G has an hamiltonian cycle hamiltonian iif $\tau(G)$ has a hamiltonian path.

- (\Rightarrow)

If G has an hamiltonian cycle, the path starting at $y_{1} \rightarrow x_{1}$, joining the cycle until reaching the neighbor of x_{1}, then, $x_{2} \rightarrow y_{2}$ is an hamiltonian path in $\tau(G)$.

- (\Leftarrow)
- If there is a hamiltonian path φ in $\tau(G)$, it is necessarily like $y_{1} \rightarrow x_{1} \rightarrow \psi \rightarrow x_{2} \rightarrow y_{2}$ since there is no other choice for y_{1} and y_{2}
- Then, $x \psi x$ is an hamiltonian cycle in G.

Exercise: TSP

We consider now the decision version of the Travel Saleswoman Person (D-TSP).

- D-TSP
- Instance. a set V of n cities with the distance matrix $\left(d_{i, j}\right)$ and an integer k.
- Question. is there an itinerary of length at most k passing through each city exactly once?

Show HCYCLE \leq_{P} D-TSP

Illustration on an instance

Principle of the reduction

The set of the cities corresponds to the vertices of the graph G, the distances are given by the particular matrix $d_{i, j}=1$ if i and j are linked, 2 otherwise.
The constant k is equal to n (number of cities).
This transformation is polynomial, show that it is a reduction.

