
Fundamental Computer Science
Lecture 3: first steps in complexity

Complexity classes

Denis Trystram
MoSIG1 and M1Info – University Grenoble-Alpes

February, 2021

Summary of the previous lecture

I Turing Machines
I universal computational model
I non-determinism

decide the same languages as the deterministic TM... but not using
the same number of steps

I all variants of the model are equivalent w.r.t. decidability
I the RAM is a good trade-off

Agenda

I A focus on decidability

I Classifying the problems in complexity classes

I time complexity:
I space complexity

Focus on decidable languages (that correspond to solvable problems)

Time complexity class

Let f : N→ N be a function. We define the time complexity class

TIME(f(n)) = {L | L is a language decided by a Turing Machine
in O(f(n)) time, where n is the size of the input}

Example: L = {0k1k | k ≥ 0}

Time complexity class

Let f : N→ N be a function. We define the time complexity class

TIME(f(n)) = {L | L is a language decided by a Turing Machine
in O(f(n)) time, where n is the size of the input}

Example: L = {0k1k | k ≥ 0}

Example (1)

L = {0k1k | k ≥ 0}

M1 = “On input w:

1. Scan the tape and reject if a ”0” is found on the right of a ”1”.

2. Repeatedly scan the tape deleting each time a single 0 and a
single 1.

3. If no 0’s and no 1’s remain in the tape then accept, else reject.”

L ∈ TIME(n2)

The length of the input is n = 2k

Example (1)

L = {0k1k | k ≥ 0}

M1 = “On input w:

1. Scan the tape and reject if a ”0” is found on the right of a ”1”.

2. Repeatedly scan the tape deleting each time a single 0 and a
single 1.

3. If no 0’s and no 1’s remain in the tape then accept, else reject.”

L ∈ TIME(n2)

The length of the input is n = 2k

Example (2)

L = {0k1k | k ≥ 0}

An enhanced Turing Machine:

M2 = “On input w:

1. Scan the tape and reject if a ”0” is found on the right of a ”1”.

2. Repeat:
I scan the tape deleting every second 0 and then every second 1.

3. If no 0’s and no 1’s remain in the tape then accept, else reject.”

L ∈ TIME(n log2 n)

Example (2)

L = {0k1k | k ≥ 0}

An enhanced Turing Machine:

M2 = “On input w:

1. Scan the tape and reject if a ”0” is found on the right of a ”1”.

2. Repeat:
I scan the tape deleting every second 0 and then every second 1.

3. If no 0’s and no 1’s remain in the tape then accept, else reject.”

L ∈ TIME(n log2 n)

The class P

A Turing Machine M = (K,Σ,Γ, δ, s,H) is called polynomially
bounded if there is a polynomial p and for any input w there is no

configuration C such that (s,tw) `p(|w|)M C.

A language is called polynomially decidable if there is a polynomially
bounded Turing Machine that decides it.

P is the class of polynomially decidable languages.

P =
⋃
k

TIME(nk)

The class P

A Turing Machine M = (K,Σ,Γ, δ, s,H) is called polynomially
bounded if there is a polynomial p and for any input w there is no

configuration C such that (s,tw) `p(|w|)M C.

A language is called polynomially decidable if there is a polynomially
bounded Turing Machine that decides it.

P is the class of polynomially decidable languages.

P =
⋃
k

TIME(nk)

Recall: languages versus problems

I Decision problem: a problem whose answer is yes/no.

I Example
I PATH
I Input: Given a graph G = (V,E) and two nodes s, t ∈ V
I Question: is there a path from s to t?

I Is PATH a language? No

I How to define the language corresponding to PATH?

PATH = {〈G, s, t〉 | G is a graph that has a path from s to t}
I 〈G, s, t〉 is the input string
I |〈G, s, t〉| is the size of the input1

I PATH ∈ P?
I Yes (i.e., Breadth First Search in O(|V |+ |E|))

1defined at a polynomal

Recall: languages versus problems

I Decision problem: a problem whose answer is yes/no.

I Example
I PATH
I Input: Given a graph G = (V,E) and two nodes s, t ∈ V
I Question: is there a path from s to t?

I Is PATH a language?

No

I How to define the language corresponding to PATH?

PATH = {〈G, s, t〉 | G is a graph that has a path from s to t}
I 〈G, s, t〉 is the input string
I |〈G, s, t〉| is the size of the input1

I PATH ∈ P?
I Yes (i.e., Breadth First Search in O(|V |+ |E|))

1defined at a polynomal

Recall: languages versus problems

I Decision problem: a problem whose answer is yes/no.

I Example
I PATH
I Input: Given a graph G = (V,E) and two nodes s, t ∈ V
I Question: is there a path from s to t?

I Is PATH a language? No

I How to define the language corresponding to PATH?

PATH = {〈G, s, t〉 | G is a graph that has a path from s to t}
I 〈G, s, t〉 is the input string
I |〈G, s, t〉| is the size of the input1

I PATH ∈ P?
I Yes (i.e., Breadth First Search in O(|V |+ |E|))

1defined at a polynomal

Recall: languages versus problems

I Decision problem: a problem whose answer is yes/no.

I Example
I PATH
I Input: Given a graph G = (V,E) and two nodes s, t ∈ V
I Question: is there a path from s to t?

I Is PATH a language? No

I How to define the language corresponding to PATH?

PATH = {〈G, s, t〉 | G is a graph that has a path from s to t}
I 〈G, s, t〉 is the input string
I |〈G, s, t〉| is the size of the input1

I PATH ∈ P?
I Yes (i.e., Breadth First Search in O(|V |+ |E|))

1defined at a polynomal

Recall: languages versus problems

I Decision problem: a problem whose answer is yes/no.

I Example
I PATH
I Input: Given a graph G = (V,E) and two nodes s, t ∈ V
I Question: is there a path from s to t?

I Is PATH a language? No

I How to define the language corresponding to PATH?

PATH = {〈G, s, t〉 | G is a graph that has a path from s to t}
I 〈G, s, t〉 is the input string
I |〈G, s, t〉| is the size of the input1

I PATH ∈ P?

I Yes (i.e., Breadth First Search in O(|V |+ |E|))

1defined at a polynomal

Recall: languages versus problems

I Decision problem: a problem whose answer is yes/no.

I Example
I PATH
I Input: Given a graph G = (V,E) and two nodes s, t ∈ V
I Question: is there a path from s to t?

I Is PATH a language? No

I How to define the language corresponding to PATH?

PATH = {〈G, s, t〉 | G is a graph that has a path from s to t}
I 〈G, s, t〉 is the input string
I |〈G, s, t〉| is the size of the input1

I PATH ∈ P?
I Yes (i.e., Breadth First Search in O(|V |+ |E|))

1defined at a polynomal

Enhanced Turing Machine models

I Does the definition of the class P remains the same if we use
multiple tapes?

YES

I Recall: if a multiple tape Turing Machine halts on input w after t
steps, then the corresponding single tape Turing Machine halts after
O
(
t(|w|+ t)

)
steps.

Example: L = {0k1k | k ≥ 0}

M3 = “On input w:

1. Scan the tape and reject if a ”0” is found on the right of a ”1”.

2. Copy the 0’s in tape 2.

3. Scan tapes 1 & 2 simultaneously and delete a single 0 from tape 2
and a single 1 from tape 1.

4. If no 0’s and no 1’s remain then accept, else reject.”

I complexity: O(n) ⇒ L ∈ TIME(n2) ⇒ L ∈ P

Enhanced Turing Machine models

I Does the definition of the class P remains the same if we use
multiple tapes? YES

I Recall: if a multiple tape Turing Machine halts on input w after t
steps, then the corresponding single tape Turing Machine halts after
O
(
t(|w|+ t)

)
steps.

Example: L = {0k1k | k ≥ 0}

M3 = “On input w:

1. Scan the tape and reject if a ”0” is found on the right of a ”1”.

2. Copy the 0’s in tape 2.

3. Scan tapes 1 & 2 simultaneously and delete a single 0 from tape 2
and a single 1 from tape 1.

4. If no 0’s and no 1’s remain then accept, else reject.”

I complexity: O(n) ⇒ L ∈ TIME(n2) ⇒ L ∈ P

Enhanced Turing Machine models

I Does the definition of the class P remains the same if we use
multiple tapes? YES

I Recall: if a multiple tape Turing Machine halts on input w after t
steps, then the corresponding single tape Turing Machine halts after
O
(
t(|w|+ t)

)
steps.

Example: L = {0k1k | k ≥ 0}

M3 = “On input w:

1. Scan the tape and reject if a ”0” is found on the right of a ”1”.

2. Copy the 0’s in tape 2.

3. Scan tapes 1 & 2 simultaneously and delete a single 0 from tape 2
and a single 1 from tape 1.

4. If no 0’s and no 1’s remain then accept, else reject.”

I complexity: O(n) ⇒ L ∈ TIME(n2) ⇒ L ∈ P

Enhanced Turing Machine models

I Does the definition of the class P remains the same if we use
multiple tapes? YES

I Recall: if a multiple tape Turing Machine halts on input w after t
steps, then the corresponding single tape Turing Machine halts after
O
(
t(|w|+ t)

)
steps.

Example: L = {0k1k | k ≥ 0}

M3 = “On input w:

1. Scan the tape and reject if a ”0” is found on the right of a ”1”.

2. Copy the 0’s in tape 2.

3. Scan tapes 1 & 2 simultaneously and delete a single 0 from tape 2
and a single 1 from tape 1.

4. If no 0’s and no 1’s remain then accept, else reject.”

I complexity: O(n) ⇒ L ∈ TIME(n2) ⇒ L ∈ P

Enhanced Turing Machine models

I Does the definition of the class P remains the same if we use
multiple tapes? YES

I Recall: if a multiple tape Turing Machine halts on input w after t
steps, then the corresponding single tape Turing Machine halts after
O
(
t(|w|+ t)

)
steps.

Example: L = {0k1k | k ≥ 0}

M3 = “On input w:

1. Scan the tape and reject if a ”0” is found on the right of a ”1”.

2. Copy the 0’s in tape 2.

3. Scan tapes 1 & 2 simultaneously and delete a single 0 from tape 2
and a single 1 from tape 1.

4. If no 0’s and no 1’s remain then accept, else reject.”

I complexity: O(n) ⇒ L ∈ TIME(n2) ⇒ L ∈ P

A pictorial definition of Complexity

Let consider a Turing Machine:

A pictorial definition of Complexity

Synthesis and Extension to space complexity

The time-complexity is the number of elementary transitions before
reaching a halting state (f(n)) where n is the size of the input.

I Memory is also a critical resource.

I In complexity theory, memory is often referred as space.

I How to measure the memory used by an algorithm?

The space-complexity is the number of distinct elementary cells involved
before reaching a halting state (f ′(n)).

Synthesis and Extension to space complexity

The time-complexity is the number of elementary transitions before
reaching a halting state (f(n)) where n is the size of the input.

I Memory is also a critical resource.

I In complexity theory, memory is often referred as space.

I How to measure the memory used by an algorithm?

The space-complexity is the number of distinct elementary cells involved
before reaching a halting state (f ′(n)).

Synthesis and Extension to space complexity

The time-complexity is the number of elementary transitions before
reaching a halting state (f(n)) where n is the size of the input.

I Memory is also a critical resource.

I In complexity theory, memory is often referred as space.

I How to measure the memory used by an algorithm?

The space-complexity is the number of distinct elementary cells involved
before reaching a halting state (f ′(n)).

A pictorial view of space complexity

PSPACE

Definition

Let f : N→ N be a function. We define the space complexity class

SPACE(f(n)) = {L | L is a language decided by a Turing Machine
using O(f(n)) cells on a TM, where n is the size of the input}

We are interested in the characterization of the languages –problems–
that are decided in polynomial space.

PSPACE is defined similarly to P
PSPACE is the class of polynomially decidable languages.

PSPACE =
⋃
k

SPACE(nk)

PolyLog Space classes

The class PSPACE is very large.

We are looking for a restricted class where the number of cells visited
during an execution of the TM is bounded by a poly-logarithmic function.
We do not count the cells used for coding the input word.

Let us change slightly the definition.

Definition

Let f : N→ N be a function.

SPACE(f(n)) = {L | L is a language decided by a 2-tapes TM –where
the first tape can not be modified (read only) and the second one is the
working tape– using O(f(n)) cells on the second tape of this TM, where
n is the size of the input}

This does not change the previous definition of PSPACE but it is
important for the more refined space classes.

LogSPACE

LogSPACE is defined as PSPACE(logn)

We will come back later on this class.

Non-deterministic time complexity class

Let f : N→ N be a function. We define the non-deterministic time
complexity class

NTIME(f(n)) = {L | L is a language decided by a non-deterministic
Turing Machine in O(f(n)) time, where n is the
size of the input}

Example:
HPATH = {〈G, s, t〉 | G is a graph with a Hamiltonian path from s to t}

M = “On input 〈G, s, t〉:
1. Non-deterministically generate a permutation of the vertex set,
v1, v2, . . . , vn.

2. If v1 = s, vn = t and (vi, vi+1) ∈ E for each i = 1, 2, . . . n− 1, then
accept, else reject.”

I M decides HPATH
I f(n) = O

(
n2
)

⇒ HPATH ∈ NTIME(n2)

Non-deterministic time complexity class

Let f : N→ N be a function. We define the non-deterministic time
complexity class

NTIME(f(n)) = {L | L is a language decided by a non-deterministic
Turing Machine in O(f(n)) time, where n is the
size of the input}

Example:
HPATH = {〈G, s, t〉 | G is a graph with a Hamiltonian path from s to t}
M = “On input 〈G, s, t〉:

1. Non-deterministically generate a permutation of the vertex set,
v1, v2, . . . , vn.

2. If v1 = s, vn = t and (vi, vi+1) ∈ E for each i = 1, 2, . . . n− 1, then
accept, else reject.”

I M decides HPATH
I f(n) = O

(
n2
)

⇒ HPATH ∈ NTIME(n2)

Non-deterministic time complexity class

Let f : N→ N be a function. We define the non-deterministic time
complexity class

NTIME(f(n)) = {L | L is a language decided by a non-deterministic
Turing Machine in O(f(n)) time, where n is the
size of the input}

Example:
HPATH = {〈G, s, t〉 | G is a graph with a Hamiltonian path from s to t}
M = “On input 〈G, s, t〉:

1. Non-deterministically generate a permutation of the vertex set,
v1, v2, . . . , vn.

2. If v1 = s, vn = t and (vi, vi+1) ∈ E for each i = 1, 2, . . . n− 1, then
accept, else reject.”

I M decides HPATH
I f(n) = O

(
n2
)

⇒ HPATH ∈ NTIME(n2)

Certificates and Verifiers

I “non-deterministically generate” a string

I check if the generated string has a certain property of the language

I if this input is in the language, then at least one such string exists

I we call this string a certificate

I Examples of certificates

I COMPOSITES: 〈p, q〉 such that x = p · q
I HPATH: 〈v1, v2, . . . , vn〉 such that s = v1 → v2 → . . .→ vn = t is

a Hamiltonian path from s to t

I A verifier for a language L is an algorithm V where

L = {w | V accepts 〈w, c〉 for each certificate c}

I A polynomial time verifier runs in polynomial time with respect to
the length of the input w

Certificates and Verifiers

I “non-deterministically generate” a string

I check if the generated string has a certain property of the language

I if this input is in the language, then at least one such string exists

I we call this string a certificate

I Examples of certificates

I COMPOSITES: 〈p, q〉 such that x = p · q
I HPATH: 〈v1, v2, . . . , vn〉 such that s = v1 → v2 → . . .→ vn = t is

a Hamiltonian path from s to t

I A verifier for a language L is an algorithm V where

L = {w | V accepts 〈w, c〉 for each certificate c}

I A polynomial time verifier runs in polynomial time with respect to
the length of the input w

Certificates and Verifiers

I “non-deterministically generate” a string

I check if the generated string has a certain property of the language

I if this input is in the language, then at least one such string exists

I we call this string a certificate

I Examples of certificates

I COMPOSITES: 〈p, q〉 such that x = p · q
I HPATH: 〈v1, v2, . . . , vn〉 such that s = v1 → v2 → . . .→ vn = t is

a Hamiltonian path from s to t

I A verifier for a language L is an algorithm V where

L = {w | V accepts 〈w, c〉 for each certificate c}

I A polynomial time verifier runs in polynomial time with respect to
the length of the input w

Certificates and Verifiers

I “non-deterministically generate” a string

I check if the generated string has a certain property of the language

I if this input is in the language, then at least one such string exists

I we call this string a certificate

I Examples of certificates

I COMPOSITES: 〈p, q〉 such that x = p · q
I HPATH: 〈v1, v2, . . . , vn〉 such that s = v1 → v2 → . . .→ vn = t is

a Hamiltonian path from s to t

I A verifier for a language L is an algorithm V where

L = {w | V accepts 〈w, c〉 for each certificate c}

I A polynomial time verifier runs in polynomial time with respect to
the length of the input w

Equivalence of Verifiers and Non-deterministic TM

Theorem

A language L has a polynomial time verifier V if and only if there is a
polynomial time Non-deterministic Turing Machine NDTM which
decides it.

Proof: (⇒) Consider a polynomial time verifier V for L

NDTM =

“On input w of length n:

1. Non-deterministically generate a string c of length nk.

2. Run V on input 〈w, c〉.
3. If V accepts, then accept, else reject.”

Equivalence of Verifiers and Non-deterministic TM

Theorem

A language L has a polynomial time verifier V if and only if there is a
polynomial time Non-deterministic Turing Machine NDTM which
decides it.

Proof: (⇒) Consider a polynomial time verifier V for L

NDTM = “On input w of length n:

1. Non-deterministically generate a string c of length nk.

2. Run V on input 〈w, c〉.
3. If V accepts, then accept, else reject.”

Equivalence of Verifiers and Non-deterministic TM

Theorem

A language L has a polynomial time verifier V if and only if there is a
polynomial time Non-deterministic Turing Machine NDTM which
decides it.

Proof: (⇐) Consider a polynomial time Non-deterministic Turing
Machine NDTM that decides L

V =

“On input 〈w, c〉:
1. Simulate NDTM on input w using each symbol of c as the

non-deterministically choice in order to decide the next step.

2. If this branch of computation accepts, then accept, else reject.”

Equivalence of Verifiers and Non-deterministic TM

Theorem

A language L has a polynomial time verifier V if and only if there is a
polynomial time Non-deterministic Turing Machine NDTM which
decides it.

Proof: (⇐) Consider a polynomial time Non-deterministic Turing
Machine NDTM that decides L

V = “On input 〈w, c〉:
1. Simulate NDTM on input w using each symbol of c as the

non-deterministically choice in order to decide the next step.

2. If this branch of computation accepts, then accept, else reject.”

The class NP

A non-deterministic Turing Machine M = (K,Σ,Γ,∆, s,H) is called
polynomially bounded if there is a polynomial p and for any input w

there is no configuration C such that (s,tw) `p(|w|)M C.

A language is called non-deterministically polynomially decidable if
there is a polynomially bounded Turing Machine that decides it.

NP is the class of non-deterministic polynomially decidable languages.

NP =
⋃
k

NTIME(nk)

equivalently

NP is the class of languages that have a polynomial time verifier.

The class NP

A non-deterministic Turing Machine M = (K,Σ,Γ,∆, s,H) is called
polynomially bounded if there is a polynomial p and for any input w

there is no configuration C such that (s,tw) `p(|w|)M C.

A language is called non-deterministically polynomially decidable if
there is a polynomially bounded Turing Machine that decides it.

NP is the class of non-deterministic polynomially decidable languages.

NP =
⋃
k

NTIME(nk)

equivalently

NP is the class of languages that have a polynomial time verifier.

The class NP

A non-deterministic Turing Machine M = (K,Σ,Γ,∆, s,H) is called
polynomially bounded if there is a polynomial p and for any input w

there is no configuration C such that (s,tw) `p(|w|)M C.

A language is called non-deterministically polynomially decidable if
there is a polynomially bounded Turing Machine that decides it.

NP is the class of non-deterministic polynomially decidable languages.

NP =
⋃
k

NTIME(nk)

equivalently

NP is the class of languages that have a polynomial time verifier.

P versus NP

Be careful !!

NP means “non-deterministic polynomial” and NOT “non-polynomial”

NP

P
or P = NP

What do we know? NP ⊆ EXPTIME =
⋃
k

TIME
(
2n

k)

P versus NP

Be careful !!

NP means “non-deterministic polynomial” and NOT “non-polynomial”

NP

P
or P = NP

What do we know? NP ⊆ EXPTIME =
⋃
k

TIME
(
2n

k)

P versus NP

Be careful !!

NP means “non-deterministic polynomial” and NOT “non-polynomial”

NP

P
or P = NP

What do we know? NP ⊆ EXPTIME =
⋃
k

TIME
(
2n

k)

Coming back to the space complexity: NPSPACE

Definition

Let f : N→ N be a function. We define the space complexity class

NSPACE(f(n)) = {L | L is a language decided using O(f(n)) cells on a
NDTM, where n is the size of the input}

We are interested in the characterization of the languages –problems–
that are decided in polynomial space in non-deterministic TMs.

NPSPACE is the class of polynomially decidable languages.

NPSPACE =
⋃
k

NSPACE(nk)

Coming back to the space complexity: NPSPACE

Definition

Let f : N→ N be a function. We define the space complexity class

NSPACE(f(n)) = {L | L is a language decided using O(f(n)) cells on a
NDTM, where n is the size of the input}

We are interested in the characterization of the languages –problems–
that are decided in polynomial space in non-deterministic TMs.

NPSPACE is the class of polynomially decidable languages.

NPSPACE =
⋃
k

NSPACE(nk)

Some important properties

NTIME(f(n)) ⊂
⋃
k

TIME(cf(n))

where c is the cardinal of the alphabet.

NTIME(f(n)) ⊂
⋃
k

SPACE(f(n))

Both proofs are intuitive and they are skipped.

Some important properties

NTIME(f(n)) ⊂
⋃
k

TIME(cf(n))

where c is the cardinal of the alphabet.

NTIME(f(n)) ⊂
⋃
k

SPACE(f(n))

Both proofs are intuitive and they are skipped.

Non-deterministic Turing Machines

•
•
•
•
•
•
...

•
•

start

accept or reject

f(n)

deterministic computation

•
• •
• • •

...

•
• •

• •
• •

...

•
• reject

accept

f(n)

non-deterministic computation

The running time of a non-deterministic Turing Machine which decides
a language is a function f : N→ N, where f(n) is the maximum number
of steps on any branch of the computation on any input of length n.

Non-deterministic Turing Machines

•
•
•
•
•
•
...

•
•

start

accept or reject

f(n)f(n)

deterministic computation

•
• •
• • •

...

•
• •

• •
• •

...

•
• reject

accept

f(n)f(n)

non-deterministic computation

The running time of a non-deterministic Turing Machine which decides
a language is a function f : N→ N, where f(n) is the maximum number
of steps on any branch of the computation on any input of length n.

non-deterministic space vs time (1)

Let consider again the problem PATH (also called REACH):

I REACH

I Input: a graph G and two vertices s and t

I Question: Is there a path between s and t in G?

Clearly, REACH ∈ P

It will play a major role in the class LogSPACE.

non-deterministic space vs time (1)

Let consider again the problem PATH (also called REACH):

I REACH

I Input: a graph G and two vertices s and t

I Question: Is there a path between s and t in G?

Clearly, REACH ∈ P

It will play a major role in the class LogSPACE.

non-deterministic space vs time (2)

I The idea is to associate a graph to all possible transitions where ω is
the input word.
This graph has O(cf(n)) vertices.

I Then apply REACH on (Gω,Kω, H)
Let us assume WLOG that there is only one acceptance state.

I Accept ω if and only if there exists a path between the original
configuration and H

REACH ∈ O(n2) in time

It will play a major role in the class LogSPACE.

deterministic vs non-deterministic space

I REACH ∈ SPACE(log2(n))
The proof is based on a very smart way to progress in the paths.

Savitch Theorem

NTIME(f(n)) ⊂
⋃
k

SPACE(f(n))

Corollary

PSPACE = NPSPACE

deterministic vs non-deterministic space

I REACH ∈ SPACE(log2(n))
The proof is based on a very smart way to progress in the paths.

Savitch Theorem

NTIME(f(n)) ⊂
⋃
k

SPACE(f(n))

Corollary

PSPACE = NPSPACE

Synthesis

We have the following series of inclusions:

LogSPACE ⊆ P ⊆ NP ⊆ PSPACE = NPSPACE ⊆ EXPTIME

Co-NP

Definition

This is the class of languages L whose complements (Σ∗ − L) are in NP

Let consider the following problem:

I Prime

I Instance: an integer N

I question: Is N a prime?

Coding the input

I There exists a well-known algorithm for solving this problem

I The Erathostenes’ sieve
whose running time is in O(

√
N)

Is the problem clearly in P?

Not clearly!

A natural coding of Prime consists in writing N in binary using log2(N)
bits.
This means that the complexity of this algorithm is exponential!

Prime is an example of a problem that is hard to give a certifier...
Hard to prove that it is in NP (but its complement –recognize that an
integer is NOT a prime– is very simple by multiplying its divisers).

Coding the input

I There exists a well-known algorithm for solving this problem

I The Erathostenes’ sieve
whose running time is in O(

√
N)

Is the problem clearly in P? Not clearly!

A natural coding of Prime consists in writing N in binary using log2(N)
bits.
This means that the complexity of this algorithm is exponential!

Prime is an example of a problem that is hard to give a certifier...
Hard to prove that it is in NP (but its complement –recognize that an
integer is NOT a prime– is very simple by multiplying its divisers).

Coding the input

I There exists a well-known algorithm for solving this problem

I The Erathostenes’ sieve
whose running time is in O(

√
N)

Is the problem clearly in P? Not clearly!

A natural coding of Prime consists in writing N in binary using log2(N)
bits.
This means that the complexity of this algorithm is exponential!

Prime is an example of a problem that is hard to give a certifier...
Hard to prove that it is in NP (but its complement –recognize that an
integer is NOT a prime– is very simple by multiplying its divisers).

Co-NP

Let us remark that if a problem is in NP, its complement is not
necessarily in NP...

Why?

We are dealing here with non-deterministic machines and thus, it is not
obvious to invert the answer given by such a machine!

I A NDTM accepts a language if there exists an execution that is
accepted.

I It refuses if all the executions refuse, that is not verifiable by a
NDTM.

For deterministic TM, we have P = co-P

An open question

P = ? NP
⋂

co-NP

Co-NP

Let us remark that if a problem is in NP, its complement is not
necessarily in NP...

Why?
We are dealing here with non-deterministic machines and thus, it is not
obvious to invert the answer given by such a machine!

I A NDTM accepts a language if there exists an execution that is
accepted.

I It refuses if all the executions refuse, that is not verifiable by a
NDTM.

For deterministic TM, we have P = co-P

An open question

P = ? NP
⋂

co-NP

Co-NP

Let us remark that if a problem is in NP, its complement is not
necessarily in NP...

Why?
We are dealing here with non-deterministic machines and thus, it is not
obvious to invert the answer given by such a machine!

I A NDTM accepts a language if there exists an execution that is
accepted.

I It refuses if all the executions refuse, that is not verifiable by a
NDTM.

For deterministic TM, we have P = co-P

An open question

P = ? NP
⋂

co-NP

