Fundamental Computer Science Lecture 3: first steps in complexity Complexity classes

Denis Trystram MoSIG1 and M1Info – University Grenoble-Alpes

February, 2021

Summary of the previous lecture

Turing Machines

- universal computational model
- non-determinism decide the same languages as the deterministic TM... but not using the same number of steps
- ▶ all variants of the model are equivalent w.r.t. *decidability*
- ► the RAM is a good trade-off

- ► A focus on decidability
- Classifying the problems in complexity classes
 - time complexity:
 - space complexity

Focus on *decidable* languages (that correspond to *solvable* problems)

Let $f : \mathbb{N} \to \mathbb{N}$ be a function. We define the **time complexity class** TIME $(f(n)) = \{L \mid L \text{ is a language decided by a Turing Machine in <math>O(f(n))$ time, where n is the size of the input} Let $f : \mathbb{N} \to \mathbb{N}$ be a function. We define the **time complexity class** TIME $(f(n)) = \{L \mid L \text{ is a language decided by a Turing Machine in <math>O(f(n))$ time, where n is the size of the input}

Example: $L = \{0^k 1^k \mid k \ge 0\}$

Example (1)

 $L=\{0^k1^k\mid k\geq 0\}$

 $M_1 =$ "On input w:

- 1. Scan the tape and *reject* if a "0" is found on the right of a "1".
- 2. Repeatedly scan the tape deleting each time a single 0 and a single 1.
- 3. If no 0's and no 1's remain in the tape then accept, else reject."

Example (1)

 $L=\{0^k1^k\mid k\geq 0\}$

 $M_1 =$ "On input w:

- 1. Scan the tape and *reject* if a "0" is found on the right of a "1".
- 2. Repeatedly scan the tape deleting each time a single 0 and a single 1.
- 3. If no 0's and no 1's remain in the tape then accept, else reject."

$L \in \text{TIME}(n^2)$

The length of the input is n=2k

Example (2)

 $L=\{0^k1^k\mid k\geq 0\}$

An enhanced Turing Machine:

 $M_2 =$ "On input w:

- 1. Scan the tape and *reject* if a "0" is found on the right of a "1".
- 2. Repeat:
 - ► scan the tape deleting every second 0 and then every second 1.
- 3. If no 0's and no 1's remain in the tape then accept, else reject."

Example (2)

 $L=\{0^k1^k\mid k\geq 0\}$

An enhanced Turing Machine:

 $M_2 =$ "On input w:

- 1. Scan the tape and *reject* if a "0" is found on the right of a "1".
- 2. Repeat:
 - ▶ scan the tape deleting every second 0 and then every second 1.
- 3. If no 0's and no 1's remain in the tape then accept, else reject."

 $L \in \mathrm{TIME}(n \log_2 n)$

The class \mathcal{P}

A Turing Machine $M = (K, \Sigma, \Gamma, \delta, s, H)$ is called **polynomially bounded** if there is a polynomial p and for any input w there is no configuration C such that $(s, \underline{\sqcup}w) \vdash_{M}^{p(|w|)} C$.

A language is called **polynomially decidable** if there is a polynomially bounded Turing Machine that *decides* it.

A Turing Machine $M = (K, \Sigma, \Gamma, \delta, s, H)$ is called **polynomially bounded** if there is a polynomial p and for any input w there is no configuration C such that $(s, \underline{\sqcup}w) \vdash_{M}^{p(|w|)} C$.

A language is called **polynomially decidable** if there is a polynomially bounded Turing Machine that *decides* it.

 ${\mathcal P}$ is the class of *polynomially decidable* languages.

$$\mathcal{P} = \bigcup_k \text{TIME}(n^k)$$

- Decision problem: a problem whose answer is yes/no.
- Example
 - ► PATH
 - ▶ Input: Given a graph G = (V, E) and two nodes $s, t \in V$
 - Question: is there a path from s to t?

- Decision problem: a problem whose answer is yes/no.
- ► Example
 - ► PATH
 - ▶ Input: Given a graph G = (V, E) and two nodes $s, t \in V$
 - Question: is there a path from s to t?
- ► Is PATH a language?

- Decision problem: a problem whose answer is yes/no.
- ► Example
 - ► PATH
 - ▶ Input: Given a graph G = (V, E) and two nodes $s, t \in V$
 - Question: is there a path from s to t?
- ► Is PATH a language? No
- ▶ How to define the language corresponding to PATH?

¹defined at a polynomal

- Decision problem: a problem whose answer is yes/no.
- ► Example
 - ► PATH
 - ▶ Input: Given a graph G = (V, E) and two nodes $s, t \in V$
 - Question: is there a path from s to t?
- ► Is PATH a language? No
- ► How to define the language corresponding to PATH?
 PATH = {⟨G, s, t⟩ | G is a graph that has a path from s to t}
 - $\langle G, s, t \rangle$ is the input string
 - $|\langle G, s, t \rangle|$ is the size of the input¹

¹defined at a polynomal

- Decision problem: a problem whose answer is yes/no.
- ► Example
 - ► PATH
 - ▶ Input: Given a graph G = (V, E) and two nodes $s, t \in V$
 - Question: is there a path from s to t?
- ► Is PATH a language? No
- ► How to define the language corresponding to PATH?
 PATH = {⟨G, s, t⟩ | G is a graph that has a path from s to t}
 - $\langle G, s, t \rangle$ is the input string
 - $|\langle G, s, t \rangle|$ is the size of the input¹

▶ PATH $\in \mathcal{P}$?

¹defined at a polynomal

- Decision problem: a problem whose answer is yes/no.
- Example
 - ► PATH
 - ▶ Input: Given a graph G = (V, E) and two nodes $s, t \in V$
 - Question: is there a path from s to t?
- ► Is PATH a language? No
- ► How to define the language corresponding to PATH?
 PATH = {⟨G, s, t⟩ | G is a graph that has a path from s to t}
 - $\langle G, s, t \rangle$ is the input string
 - $|\langle G, s, t \rangle|$ is the size of the input¹
- ▶ PATH $\in \mathcal{P}$?
 - Yes (i.e., Breadth First Search in O(|V| + |E|))

Does the definition of the class P remains the same if we use multiple tapes?

- ► Does the definition of the class P remains the same if we use multiple tapes? YES
 - ► Recall: if a multiple tape Turing Machine *halts* on input w after t steps, then the corresponding single tape Turing Machine *halts* after O(t(|w| + t)) steps.

- ► Does the definition of the class P remains the same if we use multiple tapes? YES
 - ► Recall: if a multiple tape Turing Machine *halts* on input w after t steps, then the corresponding single tape Turing Machine *halts* after O(t(|w| + t)) steps.

Example: $L = \{0^k 1^k \mid k \ge 0\}$

- ► Does the definition of the class P remains the same if we use multiple tapes? YES
 - ► Recall: if a multiple tape Turing Machine *halts* on input w after t steps, then the corresponding single tape Turing Machine *halts* after O(t(|w| + t)) steps.

Example: $L = \{0^k 1^k \mid k \ge 0\}$

 $M_3 =$ "On input w:

- 1. Scan the tape and *reject* if a "0" is found on the right of a "1".
- 2. Copy the 0's in tape 2.
- Scan tapes 1 & 2 simultaneously and delete a single 0 from tape 2 and a single 1 from tape 1.
- 4. If no 0's and no 1's remain then accept, else reject."

- ► Does the definition of the class P remains the same if we use multiple tapes? YES
 - ► Recall: if a multiple tape Turing Machine *halts* on input w after t steps, then the corresponding single tape Turing Machine *halts* after O(t(|w| + t)) steps.

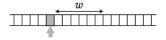
Example: $L = \{0^k 1^k \mid k \ge 0\}$

 $M_3 =$ "On input w:

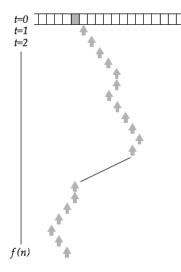
- 1. Scan the tape and *reject* if a "0" is found on the right of a "1".
- 2. Copy the 0's in tape 2.
- Scan tapes 1 & 2 simultaneously and delete a single 0 from tape 2 and a single 1 from tape 1.
- 4. If no 0's and no 1's remain then accept, else reject."

▶ complexity:
$$O(n) \Rightarrow L \in TIME(n^2) \Rightarrow L \in \mathcal{P}$$

Let consider a Turing Machine:



A pictorial definition of Complexity



Synthesis and Extension to space complexity

The time-complexity is the number of elementary transitions before reaching a halting state (f(n)) where n is the size of the input.

Synthesis and Extension to space complexity

The time-complexity is the number of elementary transitions before reaching a halting state (f(n)) where n is the size of the input.

- Memory is also a critical resource.
- ► In complexity theory, memory is often referred as *space*.
- How to measure the memory used by an algorithm?

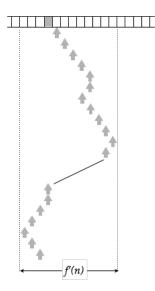
Synthesis and Extension to space complexity

The time-complexity is the number of elementary transitions before reaching a halting state (f(n)) where n is the size of the input.

- Memory is also a critical resource.
- ► In complexity theory, memory is often referred as *space*.
- How to measure the memory used by an algorithm?

The space-complexity is the number of distinct elementary cells involved before reaching a halting state (f'(n)).

A pictorial view of space complexity



PSPACE

Definition

Let $f : \mathbb{N} \to \mathbb{N}$ be a function. We define the **space complexity class** SPACE $(f(n)) = \{L \mid L \text{ is a language decided by a Turing Machine using <math>O(f(n))$ cells on a TM, where n is the size of the input $\}$

We are interested in the characterization of the languages -problemsthat are decided in polynomial space.

PSPACE is defined similarly to \mathcal{P}

PSPACE is the class of *polynomially decidable* languages.

$$PSPACE = \bigcup_{k} SPACE(n^k)$$

The class PSPACE is very large.

We are looking for a restricted class where the number of cells visited during an execution of the TM is bounded by a poly-logarithmic function. We do not count the cells used for coding the input word.

Let us change slightly the definition.

Definition

Let $f : \mathbb{N} \to \mathbb{N}$ be a function.

 $SPACE(f(n)) = \{L \mid L \text{ is a language decided by a 2-tapes TM -where the first tape can not be modified (read only) and the second one is the working tape- using <math>O(f(n))$ cells on the second tape of this TM, where n is the size of the input}

This does not change the previous definition of PSPACE but it is important for the more refined space classes.

LogSPACE

LogSPACE is defined as PSPACE(logn)

We will come back later on this class.

Non-deterministic time complexity class

Let $f:\mathbb{N}\to\mathbb{N}$ be a function. We define the non-deterministic time complexity class

$$\begin{split} \text{NTIME}(f(n)) &= \{L \mid L \text{ is a language } \textit{decided } \text{by a non-deterministic} \\ \text{Turing Machine in } O(f(n)) \text{ time, where } n \text{ is the} \\ \text{size of the input} \} \end{split}$$

Example: HPATH = { $\langle G, s, t \rangle \mid G$ is a graph with a Hamiltonian path from s to t} Let $f:\mathbb{N}\to\mathbb{N}$ be a function. We define the non-deterministic time complexity class

$$\begin{split} \text{NTIME}(f(n)) &= \{L \mid L \text{ is a language } \textit{decided } \text{by a non-deterministic} \\ \text{Turing Machine in } O(f(n)) \text{ time, where } n \text{ is the} \\ \text{size of the input} \} \end{split}$$

Example:

 $\mathrm{HPATH} = \{ \langle G, s, t \rangle \mid G \text{ is a graph with a Hamiltonian path from } s \text{ to } t \}$

- M = "On input $\langle G, s, t \rangle$:
 - 1. Non-deterministically generate a permutation of the vertex set, v_1, v_2, \ldots, v_n .
 - 2. If $v_1 = s$, $v_n = t$ and $(v_i, v_{i+1}) \in E$ for each i = 1, 2, ..., n-1, then *accept*, else *reject*."

Let $f:\mathbb{N}\to\mathbb{N}$ be a function. We define the non-deterministic time complexity class

$$\begin{split} \text{NTIME}(f(n)) &= \{L \mid L \text{ is a language } \textit{decided } \text{by a non-deterministic} \\ \text{Turing Machine in } O(f(n)) \text{ time, where } n \text{ is the} \\ \text{size of the input} \} \end{split}$$

Example:

 $\mathrm{HPATH} = \{ \langle G, s, t \rangle \mid G \text{ is a graph with a Hamiltonian path from } s \text{ to } t \}$

- M = "On input $\langle G, s, t \rangle$:
 - 1. Non-deterministically generate a permutation of the vertex set, v_1, v_2, \ldots, v_n .
 - 2. If $v_1 = s$, $v_n = t$ and $(v_i, v_{i+1}) \in E$ for each i = 1, 2, ..., n-1, then *accept*, else *reject*."
 - ► *M* decides HPATH

► $f(n) = O(n^2)$ \Rightarrow HPATH \in NTIME (n^2)

Certificates and Verifiers

- "non-deterministically generate" a string
- \blacktriangleright check if the generated string has a certain property of the language
- ► if this input is in the language, then at least one such string exists
- we call this string a **certificate**

Certificates and Verifiers

- "non-deterministically generate" a string
- check if the generated string has a certain property of the language
- ▶ if this input is in the language, then at least one such string exists
- we call this string a certificate
- Examples of certificates
 - COMPOSITES: $\langle p, q \rangle$ such that $x = p \cdot q$
 - ▶ HPATH: $\langle v_1, v_2, \dots, v_n \rangle$ such that $s = v_1 \rightarrow v_2 \rightarrow \dots \rightarrow v_n = t$ is a Hamiltonian path from s to t

Certificates and Verifiers

- "non-deterministically generate" a string
- check if the generated string has a certain property of the language
- \blacktriangleright if this input is in the language, then at least one such string exists
- we call this string a certificate
- Examples of certificates
 - COMPOSITES: $\langle p, q \rangle$ such that $x = p \cdot q$
 - ▶ HPATH: $\langle v_1, v_2, \dots, v_n \rangle$ such that $s = v_1 \rightarrow v_2 \rightarrow \dots \rightarrow v_n = t$ is a Hamiltonian path from s to t
- A verifier for a language L is an algorithm \mathcal{V} where

 $L = \{ w \mid \mathcal{V} \text{ accepts } \langle w, c \rangle \text{ for each certificate } c \}$

Certificates and Verifiers

- "non-deterministically generate" a string
- check if the generated string has a certain property of the language
- ▶ if this input is in the language, then at least one such string exists
- we call this string a certificate
- Examples of certificates
 - COMPOSITES: $\langle p, q \rangle$ such that $x = p \cdot q$
 - ▶ HPATH: $\langle v_1, v_2, \dots, v_n \rangle$ such that $s = v_1 \rightarrow v_2 \rightarrow \dots \rightarrow v_n = t$ is a Hamiltonian path from s to t
- A verifier for a language L is an algorithm \mathcal{V} where

 $L = \{ w \mid \mathcal{V} \text{ accepts } \langle w, c \rangle \text{ for each certificate } c \}$

► A **polynomial time verifier** runs in polynomial time with respect to the length of the input *w*

Equivalence of Verifiers and Non-deterministic TM

Theorem

A language L has a polynomial time verifier \mathcal{V} if and only if there is a polynomial time Non-deterministic Turing Machine NDTM which decides it.

Proof: (\Rightarrow) Consider a polynomial time verifier \mathcal{V} for LNDTM =

Theorem

A language L has a polynomial time verifier \mathcal{V} if and only if there is a polynomial time Non-deterministic Turing Machine NDTM which decides it.

Proof: (\Rightarrow) Consider a polynomial time verifier \mathcal{V} for L

NDTM = "On input w of length n:

- 1. Non-deterministically generate a string c of length n^k .
- 2. Run \mathcal{V} on input $\langle w, c \rangle$.
- 3. If \mathcal{V} accepts, then *accept*, else *reject*."

Theorem

A language L has a polynomial time verifier \mathcal{V} if and only if there is a polynomial time Non-deterministic Turing Machine NDTM which decides it.

Proof: (\Leftarrow) Consider a polynomial time Non-deterministic Turing Machine NDTM that decides L

 $\mathcal{V} =$

Theorem

A language L has a polynomial time verifier \mathcal{V} if and only if there is a polynomial time Non-deterministic Turing Machine NDTM which decides it.

Proof: (\Leftarrow) Consider a polynomial time Non-deterministic Turing Machine NDTM that *decides* L

- $\mathcal{V} =$ "On input $\langle w, c \rangle$:
 - 1. Simulate NDTM on input w using each symbol of c as the non-deterministically choice in order to decide the next step.
 - 2. If this branch of computation accepts, then accept, else reject."

A non-deterministic Turing Machine $M = (K, \Sigma, \Gamma, \Delta, s, H)$ is called **polynomially bounded** if there is a polynomial p and for any input wthere is no configuration C such that $(s, \underline{\sqcup}w) \vdash_{M}^{p(|w|)} C$.

A language is called **non-deterministically polynomially decidable** if there is a polynomially bounded Turing Machine that *decides* it.

A non-deterministic Turing Machine $M = (K, \Sigma, \Gamma, \Delta, s, H)$ is called **polynomially bounded** if there is a polynomial p and for any input wthere is no configuration C such that $(s, \underline{\sqcup}w) \vdash_{M}^{p(|w|)} C$.

A language is called **non-deterministically polynomially decidable** if there is a polynomially bounded Turing Machine that *decides* it.

 \mathcal{NP} is the class of *non-deterministic polynomially decidable* languages.

$$\mathcal{NP} = \bigcup_k \text{NTIME}(n^k)$$

A non-deterministic Turing Machine $M = (K, \Sigma, \Gamma, \Delta, s, H)$ is called **polynomially bounded** if there is a polynomial p and for any input wthere is no configuration C such that $(s, \underline{\sqcup}w) \vdash_{M}^{p(|w|)} C$.

A language is called **non-deterministically polynomially decidable** if there is a polynomially bounded Turing Machine that *decides* it.

 \mathcal{NP} is the class of *non-deterministic polynomially decidable* languages.

$$\mathcal{NP} = \bigcup_k \operatorname{NTIME}(n^k)$$

equivalently

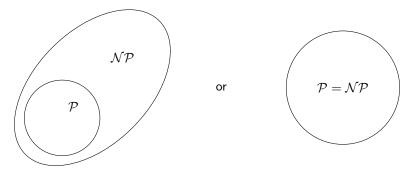
 $\mathcal{N}\mathcal{P}$ is the class of languages that have a polynomial time verifier.

Be careful !!

 \mathcal{NP} means "non-deterministic polynomial" and NOT "non-polynomial"

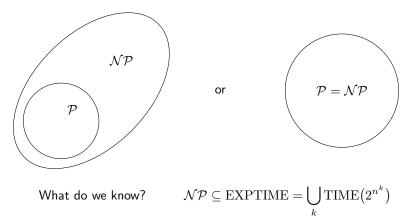
Be careful !!

 \mathcal{NP} means "non-deterministic polynomial" and NOT "non-polynomial"



Be careful !!

 \mathcal{NP} means "non-deterministic polynomial" and NOT "non-polynomial"



Coming back to the space complexity: NPSPACE

Definition

Let $f:\mathbb{N}\to\mathbb{N}$ be a function. We define the space complexity class

$$\begin{split} \text{NSPACE}(f(n)) &= \{L \mid L \text{ is a language } \textit{decided using } O(f(n)) \text{ cells on a } \\ \text{NDTM, where } n \text{ is the size of the input} \end{split}$$

Coming back to the space complexity: NPSPACE

Definition

Let $f:\mathbb{N}\to\mathbb{N}$ be a function. We define the space complexity class

$$\begin{split} \text{NSPACE}(f(n)) &= \{L \mid L \text{ is a language } \textit{decided using } O(f(n)) \text{ cells on a} \\ \text{NDTM, where } n \text{ is the size of the input} \end{split}$$

We are interested in the characterization of the languages –problems– that are decided in polynomial space in non-deterministic TMs.

NPSPACE is the class of *polynomially decidable* languages.

$$NPSPACE = \bigcup_k \text{NSPACE}(n^k)$$

$$NTIME(f(n)) \subset \bigcup_k \text{TIME}(c^{f(n)})$$

where \boldsymbol{c} is the cardinal of the alphabet.

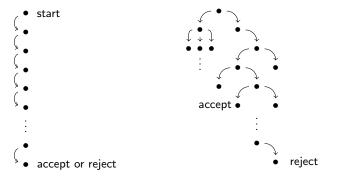
$$NTIME(f(n)) \subset \bigcup_{k} TIME(c^{f(n)})$$

where \boldsymbol{c} is the cardinal of the alphabet.

$$NTIME(f(n)) \subset \bigcup_k SPACE(f(n))$$

Both proofs are intuitive and they are skipped.

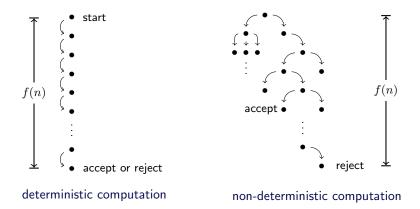
Non-deterministic Turing Machines



deterministic computation

non-deterministic computation

Non-deterministic Turing Machines



The **running time** of a non-deterministic Turing Machine which *decides* a language is a function $f : \mathbb{N} \to \mathbb{N}$, where f(n) is the maximum number of steps on any branch of the computation on any input of length n.

non-deterministic space vs time (1)

Let consider again the problem PATH (also called REACH):

- ► REACH
- \blacktriangleright Input: a graph G and two vertices s and t
- Question: Is there a path between s and t in G?

non-deterministic space vs time (1)

Let consider again the problem PATH (also called REACH):

- ► REACH
- \blacktriangleright Input: a graph G and two vertices s and t
- Question: Is there a path between s and t in G?

Clearly, REACH $\in \mathcal{P}$

It will play a major role in the class LogSPACE.

non-deterministic space vs time (2)

- The idea is to associate a graph to all possible transitions where ω is the input word.
 This graph has O(c^{f(n)}) vertices.
- ▶ Then apply REACH on $(G_{\omega}, K_{\omega}, H)$ Let us assume WLOG that there is only one acceptance state.
- \blacktriangleright Accept ω if and only if there exists a path between the original configuration and H

 $\mathsf{REACH} \in O(n^2)$ in time

It will play a major role in the class LogSPACE.

deterministic vs non-deterministic space

• REACH \in SPACE $(log^2(n))$

The proof is based on a very smart way to progress in the paths.

Savitch Theorem

$$NTIME(f(n)) \subset \bigcup_k SPACE(f(n))$$

deterministic vs non-deterministic space

• REACH \in SPACE $(log^2(n))$

The proof is based on a very smart way to progress in the paths.

Savitch Theorem $NTIME(f(n)) \subset \bigcup_k \text{SPACE}(f(n))$

Corollary

PSPACE = NPSPACE

Synthesis

We have the following series of inclusions:

 $LogSPACE \subseteq \mathcal{P} \subseteq \mathcal{NP} \subseteq PSPACE = NPSPACE \subseteq EXPTIME$

Definition

This is the class of languages L whose complements $(\Sigma^* - L)$ are in \mathcal{NP}

Let consider the following problem:

- ► Prime
- ▶ Instance: an integer N
- ▶ question: Is N a prime?

- ▶ There exists a well-known algorithm for solving this problem
- ► The Erathostenes' sieve whose running time is in O(√N)

Is the problem clearly in \mathcal{P} ?

- ► There exists a well-known algorithm for solving this problem
- ► The Erathostenes' sieve whose running time is in O(√N)

Is the problem clearly in \mathcal{P} ? Not clearly!

A natural coding of PRIME consists in writing N in binary using $\log_2(N)$ bits.

This means that the complexity of this algorithm is exponential!

- ► There exists a well-known algorithm for solving this problem
- ► The Erathostenes' sieve whose running time is in O(√N)

Is the problem clearly in \mathcal{P} ? Not clearly!

A natural coding of PRIME consists in writing N in binary using $\log_2(N)$ bits.

This means that the complexity of this algorithm is exponential!

 $\begin{array}{l} P_{\rm RIME} \text{ is an example of a problem that is hard to give a certifier...} \\ \text{Hard to prove that it is in } \mathcal{NP} \text{ (but its complement -recognize that an integer is NOT a prime- is very simple by multiplying its divisers).} \end{array}$

$\mathsf{Co-}\mathcal{NP}$

Let us remark that if a problem is in $\mathcal{NP},$ its complement is not necessarily in $\mathcal{NP}...$

Why?

$\mathsf{Co-}\mathcal{NP}$

Let us remark that if a problem is in $\mathcal{NP},$ its complement is not necessarily in $\mathcal{NP}...$

Why?

We are dealing here with non-deterministic machines and thus, it is not obvious to invert the answer given by such a machine!

- ► A NDTM accepts a language if there exists an execution that is accepted.
- It refuses if all the executions refuse, that is not verifiable by a NDTM.

$\mathsf{Co-}\mathcal{NP}$

Let us remark that if a problem is in $\mathcal{NP},$ its complement is not necessarily in $\mathcal{NP}...$

Why?

We are dealing here with non-deterministic machines and thus, it is not obvious to invert the answer given by such a machine!

- A NDTM accepts a language if there exists an execution that is accepted.
- It refuses if all the executions refuse, that is not verifiable by a NDTM.

For deterministic TM, we have $\mathcal{P} = co-\mathcal{P}$

An open question

 $\mathcal{P}= ? \ \mathcal{NP} \bigcap \text{co-}\mathcal{NP}$