Fundamental Computer Science Turing Machines
 Training session

Denis Trystram

MoSIG1-M1Info, 2021

Simple exercises

Aim.

Manipulate MT.

Construct the Turing Machines that implement the following operations ${ }^{1}$.

1. copy reversed
from $\sqcup w \sqcup$ to $\sqcup w w^{r e v} \sqcup$
2. right shift
from $\sqcup w \sqcup$ to $\sqcup \sqcup w \sqcup$
3. delete w
from $\sqcup w \underline{\bigsqcup}$ to $\sqcup \underline{\unrhd}$
${ }^{1}$ The solution is left to the readers (easy).

Exercise:

Aim.

Strenghten the formalism.

Give the high-level description for a Turing Machine that accepts the following language

$$
L=\left\{\# x_{1} \# x_{2} \# \ldots \# x_{\ell}: \text { each } x_{i} \in\{0,1\}^{*} \text { and } x_{i} \neq x_{j} \text { for each } i \neq j\right\}
$$

Exercise:

Aim.

Strenghten the formalism.

Give the high-level description for a Turing Machine that accepts the following language

$$
L=\left\{\# x_{1} \# x_{2} \# \ldots \# x_{\ell}: \text { each } x_{i} \in\{0,1\}^{*} \text { and } x_{i} \neq x_{j} \text { for each } i \neq j\right\}
$$

Analysis

- All pairs $\left(x_{i}, x_{j}\right)$ must be compared.
- For each pair, the bits must be tested one by one.

Exercise

Consider the Turing Machine $M=(K, \Sigma, \Gamma, \delta, s, H)$ where $K=\left\{q_{0}, q_{1}, q_{2}, h\right\}$,
$\Sigma=\{a\}$,
$\Gamma=\{a, \sqcup, \#\}$,
$s=q_{0}$ and $H=\{h\}$
δ is given by the following table.

Let $n \geq 0$.
Describe what M does when started in the configuration ($q_{0}, \# a^{n} a$).

Solution

$$
\Sigma=\{a\}, \quad \Gamma=\{a, \#, \sqcup\}, \quad s=q_{0}, \quad H=\{h\}
$$

Let draw the state graph.

Solution

$$
\Sigma=\{a\}, \quad \Gamma=\{a, \#, \sqcup\}, \quad s=q_{0}, \quad H=\{h\}
$$

Let draw the state graph.

More exercises

1. Give the full details of the following three Turing Machines.

$$
\begin{array}{ccc}
& \text { @ } & >L \xrightarrow{\bullet} R
\end{array}
$$

2. Explain what the following Turing Machine does.

$$
>R \xrightarrow{a \neq \sqcup}>R \xrightarrow{b \neq \sqcup}>R_{\sqcup} a R_{\sqcup} b
$$

Finding the MAX

Give the high-level definition of a Turing Machine that finds the maximum between three integers encoded in unary.

What is the length of the computation?

Exercise

Prove that the language $L=\left\{a^{n} b^{n}: n \geq 0\right\}$ is decidable.

Exercise

Prove that the language $L=\left\{a^{n} b^{n}: n \geq 0\right\}$ is decidable.
Let us study an example.

Solution

A solution is to decompose the operations: establish successive one-to-one correspondences between each pair of a and b

States

- go through the word $a a \cdots a$ until its end (from left to right), resp. with $b b \cdots b$
- similar operations backwards on both words
- q_{0} denotes the initial state
- q_{R} is the rejected state and $q_{a c c}$ the acceptance state

Detailed moves

\section*{| \cdots | \square | \square | a | a | a | b | b | b | b | \square | \square | \cdots |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

\cdots	\square	\square	a	a	a	b	b	b	\square	\square	\square	\cdots

Fagror fovodale

and so on...

and so on...

Let us draw the Turing Machine.

Go through the word $a a \cdots a$

Go through the word $b b \cdots b$

The complete picture

Exercise

Prove that the language $L=\left\{a^{n} b^{n} c^{n}: n \geq 0\right\}$ is decidable.

Exercise

Prove that the language $L=\left\{a^{n} b^{n} c^{n}: n \geq 0\right\}$ is decidable.
Solution: We just need to give a Turing Machine that decides it. (give a Turing Machine composed by simple Turing Machines as described previously)

Solution

Prove that the language $L=\left\{a^{n} b^{n} c^{n}: n \geq 0\right\}$ is decidable.

