Fundamental Computer Science Non deterministic TM

Denis Trystram

February, 2021

Definition.

A Non-deterministic Turing Machine (M) is a sixtuple $(K, \Sigma, \Gamma, \Delta, s, H)$, where K, Σ , Γ , s and H are similar to the definition of the Deterministic Turing Machine

 Δ describes the transitions, it is a subset of

 $((K \setminus H) \times \Gamma) \quad \times \quad (K \times (\Gamma \cup \{\leftarrow, \rightarrow\}))$

Definition.

A Non-deterministic Turing Machine (M) is a sixtuple $(K, \Sigma, \Gamma, \Delta, s, H)$, where K, Σ, Γ, s and H are similar to the definition of the Deterministic Turing Machine

 Δ describes the transitions, it is a subset of

$$((K \setminus H) \times \Gamma) \quad \times \quad (K \times (\Gamma \cup \{\leftarrow, \rightarrow\}))$$

\blacktriangleright Δ is not a function

- \blacktriangleright a single pair of (q,σ) can lead to multiple pairs (q',σ')
- \blacktriangleright the empty string ϵ is allowed as a transition symbol

Definition.

A Non-deterministic Turing Machine (M) is a sixtuple $(K, \Sigma, \Gamma, \Delta, s, H)$, where K, Σ, Γ, s and H are similar to the definition of the Deterministic Turing Machine

 Δ describes the transitions, it is a subset of

$$((K \setminus H) \times \Gamma) \quad \times \quad (K \times (\Gamma \cup \{\leftarrow, \rightarrow\}))$$

\blacktriangleright Δ is not a function

- \blacktriangleright a single pair of (q,σ) can lead to multiple pairs (q',σ')
- the empty string ϵ is allowed as a transition symbol
- ► A configuration may *yield* several configurations in a single step
 - \vdash_M is not necessarily uniquely identified

Non-determinism

▶ the next step is **not unique**

deterministic computation

Comparison deterministic vs non-deterministic

Definitions

Let $M = (K, \Sigma, \Gamma, \Delta, s, H)$ be a Non-deterministic Turing Machine. We say that M accepts an input $w \in \Sigma^*$ if

 $(s, {\underline{\sqcup}} w) \vdash^*_M (h, u \underline{\sigma} v)$

for some $h \in H$, $\sigma \in \Sigma$ and $u, v \in \Sigma^*$.

Definitions

Let $M = (K, \Sigma, \Gamma, \Delta, s, H)$ be a Non-deterministic Turing Machine. We say that M accepts an input $w \in \Sigma^*$ if

 $(s, {\underline{\sqcup}} w) \vdash^*_M (h, u \underline{\sigma} v)$

for some $h \in H$, $\sigma \in \Sigma$ and $u, v \in \Sigma^*$.

We say that M decides a language L if for each $w \in \Sigma^*$ the following two conditions hold:

- 1. $w\in L$ if and only if $(s, \underline{\sqcup} w)\vdash^*_M ({\color{black}h}, u\underline{\sigma} v)$ for some $\sigma\in \Sigma$ and $u,v\in \Sigma^*$
- 2. there is natural number $N \in \mathbb{N}$ (depending on M and |w|) such that there is no configuration C satisfying $(s, \sqcup w) \vdash_M^N C$

Definitions (cont'd)

Let $M = (K, \Sigma, \Gamma, \Delta, s, H)$ be a Non-deterministic Turing Machine.

We say that M computes a function $f: \Sigma^* \to \Sigma^*$ if for each $w \in \Sigma^*$ the following condition holds:

▶ $(s, \sqsubseteq w) \vdash_M^* (h, \sqsubseteq v)$ if and only if v = f(w)

Example (1)

▶ A natural number $m \in \mathbb{N}$ is called *composite* if it can be written as the product of two natural numbers $p_1, p_2 \in \mathbb{N}$, i.e., $m = p_1 \cdot p_2$ Describe (high-level) a Non-deterministic Turing Machine that recognizes the language $L = \{1^m : m \text{ is a composite number}\}$.

Example (1)

- ▶ A natural number $m \in \mathbb{N}$ is called *composite* if it can be written as the product of two natural numbers $p_1, p_2 \in \mathbb{N}$, i.e., $m = p_1 \cdot p_2$ Describe (high-level) a Non-deterministic Turing Machine that recognizes the language $L = \{1^m : m \text{ is a composite number}\}$.
 - 1. choose two integers p_1 and p_2 non-deterministically
 - 2. multiply p_1 and p_2
 - 3. compare m with $p_1 \cdot p_2$ and if they are equal then accept

▶ What does non-deterministically mean?

- What does non-deterministically mean?
 - ▶ choose $(p_1, p_2) \in \{(1, 1), (1, 11), (1, 111), \dots, (11, 1), (11, 11), \dots\}$

- What does non-deterministically mean?
 - ▶ choose $(p_1, p_2) \in \{(1, 1), (1, 11), (1, 111), \dots, (11, 1), (11, 11), \dots\}$
- ▶ How to transform the above machine to decide the same language?

- What does non-deterministically mean?
 - ▶ choose $(p_1, p_2) \in \{(1, 1), (1, 11), (1, 111), \dots, (11, 1), (11, 11), \dots\}$
- ▶ How to transform the above machine to decide the same language?
 - 1. choose two integers $p_1 < m$ and $p_2 < m$ non-deterministically
 - 2. multiply p_1 and p_2
 - 3. compare m with $p_1 \cdot p_2$ and if they are equal then *accept*, else *reject*

Theorem

Every Non-deterministic Turing Machine $NDTM = (K, \Sigma, \Gamma, \Delta, s, H)$ has an equivalent Deterministic Turing Machine DTM.

Theorem

Every Non-deterministic Turing Machine $NDTM = (K, \Sigma, \Gamma, \Delta, s, H)$ has an equivalent Deterministic Turing Machine DTM.

- Use a multiple tape deterministic Turing Machine
- tape 1: input (never changes)
- tape 2: simulation
- tape 3: address

Theorem

Every Non-deterministic Turing Machine $NDTM = (K, \Sigma, \Gamma, \Delta, s, H)$ has an equivalent Deterministic Turing Machine DTM.

Proof (sketch):

Use a multiple tape deterministic Turing Machine

tape 1: input (never changes) tape 2: simulation

tape 3: address

data on tape 3:

- each node of the computation tree of NDTM has at most c children
- address of a node in $\{1, 2, \dots, c\}^*$

- 1. Initialize tape 1 with the input w and tapes 2 & 3 to be empty.
- 2. Copy the contents of tape 1 to tape 2.
- 3. Simulate NDTM on tape 2 using the sequence of computations described in tape 3. If an accepting configuration is yielded, then *accept*.
- 4. Update the string in tape 3 with the lexicographic next string and go to 2.

- 1. Initialize tape 1 with the input w and tapes 2 & 3 to be empty.
- 2. Copy the contents of tape 1 to tape 2.
- 3. Simulate NDTM on tape 2 using the sequence of computations described in tape 3. If an accepting configuration is yielded, then *accept*.
- 4. Update the string in tape 3 with the lexicographic next string and go to 2.

- Observations:
 - we perform a Breadth First Search of the computation tree

- 1. Initialize tape 1 with the input w and tapes 2 & 3 to be empty.
- 2. Copy the contents of tape 1 to tape 2.
- 3. Simulate NDTM on tape 2 using the sequence of computations described in tape 3. If an accepting configuration is yielded, then *accept*.
- 4. Update the string in tape 3 with the lexicographic next string and go to 2.

- Observations:
 - we perform a Breadth First Search of the computation tree
 - we need exponential time of steps with respect to NDTM!

Discussion

- ► Any non-deterministic TM can be simulated by a deterministic one.
- However, Non-deterministic TM seem to be more powerful than deterministic ones.
- We pay this in computation time.

Discussion

- ► Any non-deterministic TM can be simulated by a deterministic one.
- However, Non-deterministic TM seem to be more powerful than deterministic ones.
- We pay this in computation time.
- ▶ We will see what does it mean in the next lectures.