Denis Trystram

February, 2021

A Non-deterministic Turing Machine (M) is a sixtuple (K, X, T, A, s, H),
where K, ¥, T', s and H are similar to the definition of the Deterministic
Turing Machine

A describes the transitions, it is a subset of

(K\H)xT) x (KxTU{+,—=}))

Non-deterministic Turing Machine

Definition.

A Non-deterministic Turing Machine (M) is a sixtuple (K, X, T, A, s, H),
where K, ¥, I, s and H are similar to the definition of the Deterministic
Turing Machine

A describes the transitions, it is a subset of

(K\H)xT) x (KxTU{+,—}))

» A is not a function
> a single pair of (¢, o) can lead to multiple pairs (¢’, ")
» the empty string € is allowed as a transition symbol

Non-deterministic Turing Machine

Definition.

A Non-deterministic Turing Machine (M) is a sixtuple (K, X, T, A, s, H),
where K, ¥, I, s and H are similar to the definition of the Deterministic
Turing Machine

A describes the transitions, it is a subset of

(K\H)xT) x (KxTU{+,—}))

» A is not a function
> a single pair of (¢, o) can lead to multiple pairs (¢’, ")
» the empty string € is allowed as a transition symbol

» A configuration may yield several configurations in a single step
» b7 is not necessarily uniquely identified

» the next step is not unique

® start

VTN VN N N N

(

deterministic computation

® accept or reject

VAR
I
.?. .\
f. L]
‘. f.\
reject o °
BN
e accept

Comparison deterministic vs
non-deterministic

Let M = (K,%,T,A,s, H) be a Non-deterministic Turing Machine.
We say that M accepts an input w € X* if

(s,Uw) 3y (h, ugv)
forsome h € H, o0 € ¥ and u,v € X*.

Non-deterministic Turing Machine

Definitions
Let M = (K,X,T,A,s, H) be a Non-deterministic Turing Machine.
We say that M accepts an input w € X* if
(s,Uw) F4; (h,ugv)
for some h € H, 0 € 3 and u,v € X*.
We say that M decides a language L if for each w € ¥* the following
two conditions hold:
1. w € L if and only if (s,Uw) k4, (h,ugv) for some o € ¥ and
u,v € X*
2. there is natural number N € N (depending on M and |w|) such that
there is no configuration C satisfying (s, Lw) -3, C

Let M = (K,%,T',A,s, H) be a Non-deterministic Turing Machine.

We say that M computes a function f: X* — X* if for each w € ¥*
the following condition holds:

> (s,Uw) F3, (h,Uo) if and only if v = f(w)

» A natural number m € N is called composite if it can be written as
the product of two natural numbers p;,ps € N, ie., m = p; - po
Describe (high-level) a Non-deterministic Turing Machine that
recognizes the language L = {1™ : m is a composite number}.

Example (1)

» A natural number m € N is called composite if it can be written as
the product of two natural numbers p1,p2 € N, i.e., m = py - po
Describe (high-level) a Non-deterministic Turing Machine that
recognizes the language L = {1™ : m is a composite number}.

1. choose two integers p1 and p2 non-deterministically
2. multiply p1 and p2

3. compare m with p; - p2 and if they are equal then accept

» What does non-deterministically mean?

» What does non-deterministically mean?

» choose (p1,p2) € {(1,1),(1,11),(1,111),...,(11,1),(11,11),...}

» What does non-deterministically mean?

» choose (p1,p2) € {(1,1),(1,11),(1,111),...,(11,1),(11,11),...}

» How to transform the above machine to decide the same language?

» What does non-deterministically mean?

» choose (p1,p2) € {(1,1),(1,11),(1,111),...,(11,1),(11,11),...}

» How to transform the above machine to decide the same language?

1. choose two integers p1 < m and p2 < m non-deterministically
2. multiply p1 and p2

3. compare m with p; - p2 and if they are equal then accept, else reject

Every Non-deterministic Turing Machine NDTM = (K,%,T,A,s, H)
has an equivalent Deterministic Turing Machine DT M .

Proof (sketch):

Every Non-deterministic Turing Machine NDTM = (K,%,T,A,s, H)
has an equivalent Deterministic Turing Machine DT M .

Proof (sketch):
» Use a multiple tape deterministic Turing Machine
tape 1: input (never changes)
tape 2: simulation
tape 3: address

Non-deterministic Turing Machine

Theorem

Every Non-deterministic Turing Machine NDTM = (K,X,T', A, s, H)
has an equivalent Deterministic Turing Machine DT M .

Proof (sketch):

» Use a multiple tape deterministic Turing Machine
tape 1: input (never changes)

tape 2: simulation

tape 3: address

jary

» data on tape 3: 11 12
» each node of the computation
tree of NDT M has at most ¢

children 1221 1222
» address of a node in f

{1,2,...,c}" 12211

Non-deterministic Turing Machine

Proof (sketch):

1. Initialize tape 1 with the input w and tapes 2 & 3 to be empty.
2. Copy the contents of tape 1 to tape 2.

3. Simulate NDTM on tape 2 using the sequence of computations
described in tape 3. If an accepting configuration is yielded, then
accept.

4. Update the string in tape 3 with the lexicographic next string and go
to 2.

Non-deterministic Turing Machine

Proof (sketch):

1. Initialize tape 1 with the input w and tapes 2 & 3 to be empty.
2. Copy the contents of tape 1 to tape 2.

3. Simulate NDTM on tape 2 using the sequence of computations
described in tape 3. If an accepting configuration is yielded, then
accept.

4. Update the string in tape 3 with the lexicographic next string and go
to 2.

» Observations:
» we perform a Breadth First Search of the computation tree

Non-deterministic Turing Machine

Proof (sketch):

1. Initialize tape 1 with the input w and tapes 2 & 3 to be empty.
2. Copy the contents of tape 1 to tape 2.
3. Simulate NDTM on tape 2 using the sequence of computations

described in tape 3. If an accepting configuration is yielded, then
accept.

4. Update the string in tape 3 with the lexicographic next string and go
to 2.

» Observations:

» we perform a Breadth First Search of the computation tree
» we need exponential time of steps with respect to NDTM!

» Any non-deterministic TM can be simulated by a deterministic one.

» However, Non-deterministic TM seem to be more powerful than
deterministic ones.

» We pay this in computation time.

» Any non-deterministic TM can be simulated by a deterministic one.

» However, Non-deterministic TM seem to be more powerful than
deterministic ones.

» We pay this in computation time.

» We will see what does it mean in the next lectures.

