
Fundamental Computer Science
Non deterministic TM

Denis Trystram

February, 2021

Non-deterministic Turing Machine

Definition.

A Non-deterministic Turing Machine (M) is a sixtuple (K,Σ,Γ,∆, s,H),
where K, Σ, Γ, s and H are similar to the definition of the Deterministic
Turing Machine
∆ describes the transitions, it is a subset of

((K \H)× Γ) × (K × (Γ ∪ {←,→}))

I ∆ is not a function
I a single pair of (q, σ) can lead to multiple pairs (q′, σ′)
I the empty string ε is allowed as a transition symbol

I A configuration may yield several configurations in a single step
I `M is not necessarily uniquely identified

Non-deterministic Turing Machine

Definition.

A Non-deterministic Turing Machine (M) is a sixtuple (K,Σ,Γ,∆, s,H),
where K, Σ, Γ, s and H are similar to the definition of the Deterministic
Turing Machine
∆ describes the transitions, it is a subset of

((K \H)× Γ) × (K × (Γ ∪ {←,→}))

I ∆ is not a function
I a single pair of (q, σ) can lead to multiple pairs (q′, σ′)
I the empty string ε is allowed as a transition symbol

I A configuration may yield several configurations in a single step
I `M is not necessarily uniquely identified

Non-deterministic Turing Machine

Definition.

A Non-deterministic Turing Machine (M) is a sixtuple (K,Σ,Γ,∆, s,H),
where K, Σ, Γ, s and H are similar to the definition of the Deterministic
Turing Machine
∆ describes the transitions, it is a subset of

((K \H)× Γ) × (K × (Γ ∪ {←,→}))

I ∆ is not a function
I a single pair of (q, σ) can lead to multiple pairs (q′, σ′)
I the empty string ε is allowed as a transition symbol

I A configuration may yield several configurations in a single step
I `M is not necessarily uniquely identified

Non-determinism

I the next step is not unique

•
•
•
•
•
•
...

•
•

start

accept or reject

deterministic computation

•
• •
• • •

...

•
• •

• •
• •

...

•
• accept

reject

Comparison deterministic vs
non-deterministic

Non-deterministic Turing Machine

Definitions

Let M = (K,Σ,Γ,∆, s,H) be a Non-deterministic Turing Machine.
We say that M accepts an input w ∈ Σ∗ if

(s,tw) `∗M (h, uσv)

for some h ∈ H, σ ∈ Σ and u, v ∈ Σ∗.

We say that M decides a language L if for each w ∈ Σ∗ the following
two conditions hold:

1. w ∈ L if and only if (s,tw) `∗M (h, uσv) for some σ ∈ Σ and
u, v ∈ Σ∗

2. there is natural number N ∈ N (depending on M and |w|) such that
there is no configuration C satisfying (s,tw) `NM C

Non-deterministic Turing Machine

Definitions

Let M = (K,Σ,Γ,∆, s,H) be a Non-deterministic Turing Machine.
We say that M accepts an input w ∈ Σ∗ if

(s,tw) `∗M (h, uσv)

for some h ∈ H, σ ∈ Σ and u, v ∈ Σ∗.
We say that M decides a language L if for each w ∈ Σ∗ the following
two conditions hold:

1. w ∈ L if and only if (s,tw) `∗M (h, uσv) for some σ ∈ Σ and
u, v ∈ Σ∗

2. there is natural number N ∈ N (depending on M and |w|) such that
there is no configuration C satisfying (s,tw) `NM C

Non-deterministic Turing Machine

Definitions (cont’d)

Let M = (K,Σ,Γ,∆, s,H) be a Non-deterministic Turing Machine.

We say that M computes a function f : Σ∗ → Σ∗ if for each w ∈ Σ∗

the following condition holds:

I (s,tw) `∗M (h,tv) if and only if v = f(w)

Example (1)

I A natural number m ∈ N is called composite if it can be written as
the product of two natural numbers p1, p2 ∈ N, i.e., m = p1 · p2
Describe (high-level) a Non-deterministic Turing Machine that
recognizes the language L = {1m : m is a composite number}.

1. choose two integers p1 and p2 non-deterministically

2. multiply p1 and p2

3. compare m with p1 · p2 and if they are equal then accept

Example (1)

I A natural number m ∈ N is called composite if it can be written as
the product of two natural numbers p1, p2 ∈ N, i.e., m = p1 · p2
Describe (high-level) a Non-deterministic Turing Machine that
recognizes the language L = {1m : m is a composite number}.

1. choose two integers p1 and p2 non-deterministically

2. multiply p1 and p2

3. compare m with p1 · p2 and if they are equal then accept

Example (2)

I What does non-deterministically mean?

I choose (p1, p2) ∈ {(1, 1), (1, 11), (1, 111), . . . , (11, 1), (11, 11), . . .}

I How to transform the above machine to decide the same language?

1. choose two integers p1 < m and p2 < m non-deterministically

2. multiply p1 and p2

3. compare m with p1 · p2 and if they are equal then accept, else reject

Example (2)

I What does non-deterministically mean?

I choose (p1, p2) ∈ {(1, 1), (1, 11), (1, 111), . . . , (11, 1), (11, 11), . . .}

I How to transform the above machine to decide the same language?

1. choose two integers p1 < m and p2 < m non-deterministically

2. multiply p1 and p2

3. compare m with p1 · p2 and if they are equal then accept, else reject

Example (2)

I What does non-deterministically mean?

I choose (p1, p2) ∈ {(1, 1), (1, 11), (1, 111), . . . , (11, 1), (11, 11), . . .}

I How to transform the above machine to decide the same language?

1. choose two integers p1 < m and p2 < m non-deterministically

2. multiply p1 and p2

3. compare m with p1 · p2 and if they are equal then accept, else reject

Example (2)

I What does non-deterministically mean?

I choose (p1, p2) ∈ {(1, 1), (1, 11), (1, 111), . . . , (11, 1), (11, 11), . . .}

I How to transform the above machine to decide the same language?

1. choose two integers p1 < m and p2 < m non-deterministically

2. multiply p1 and p2

3. compare m with p1 · p2 and if they are equal then accept, else reject

Non-deterministic Turing Machine

Theorem

Every Non-deterministic Turing Machine NDTM = (K,Σ,Γ,∆, s,H)
has an equivalent Deterministic Turing Machine DTM .

Proof (sketch):

I Use a multiple tape deterministic Turing Machine

tape 1: input (never changes)
tape 2: simulation
tape 3: address

I data on tape 3:
I each node of the computation

tree of NDTM has at most c
children

I address of a node in
{1, 2, . . . , c}∗

1

11 12

111 112 122

1221 1222

12211

Non-deterministic Turing Machine

Theorem

Every Non-deterministic Turing Machine NDTM = (K,Σ,Γ,∆, s,H)
has an equivalent Deterministic Turing Machine DTM .

Proof (sketch):

I Use a multiple tape deterministic Turing Machine

tape 1: input (never changes)
tape 2: simulation
tape 3: address

I data on tape 3:
I each node of the computation

tree of NDTM has at most c
children

I address of a node in
{1, 2, . . . , c}∗

1

11 12

111 112 122

1221 1222

12211

Non-deterministic Turing Machine

Theorem

Every Non-deterministic Turing Machine NDTM = (K,Σ,Γ,∆, s,H)
has an equivalent Deterministic Turing Machine DTM .

Proof (sketch):

I Use a multiple tape deterministic Turing Machine

tape 1: input (never changes)
tape 2: simulation
tape 3: address

I data on tape 3:
I each node of the computation

tree of NDTM has at most c
children

I address of a node in
{1, 2, . . . , c}∗

1

11 12

111 112 122

1221 1222

12211

Non-deterministic Turing Machine

Proof (sketch):

1. Initialize tape 1 with the input w and tapes 2 & 3 to be empty.

2. Copy the contents of tape 1 to tape 2.

3. Simulate NDTM on tape 2 using the sequence of computations
described in tape 3. If an accepting configuration is yielded, then
accept.

4. Update the string in tape 3 with the lexicographic next string and go
to 2.

I Observations:
I we perform a Breadth First Search of the computation tree
I we need exponential time of steps with respect to NDTM!

Non-deterministic Turing Machine

Proof (sketch):

1. Initialize tape 1 with the input w and tapes 2 & 3 to be empty.

2. Copy the contents of tape 1 to tape 2.

3. Simulate NDTM on tape 2 using the sequence of computations
described in tape 3. If an accepting configuration is yielded, then
accept.

4. Update the string in tape 3 with the lexicographic next string and go
to 2.

I Observations:
I we perform a Breadth First Search of the computation tree

I we need exponential time of steps with respect to NDTM!

Non-deterministic Turing Machine

Proof (sketch):

1. Initialize tape 1 with the input w and tapes 2 & 3 to be empty.

2. Copy the contents of tape 1 to tape 2.

3. Simulate NDTM on tape 2 using the sequence of computations
described in tape 3. If an accepting configuration is yielded, then
accept.

4. Update the string in tape 3 with the lexicographic next string and go
to 2.

I Observations:
I we perform a Breadth First Search of the computation tree
I we need exponential time of steps with respect to NDTM!

Discussion

I Any non-deterministic TM can be simulated by a deterministic one.

I However, Non-deterministic TM seem to be more powerful than
deterministic ones.

I We pay this in computation time.

I We will see what does it mean in the next lectures.

Discussion

I Any non-deterministic TM can be simulated by a deterministic one.

I However, Non-deterministic TM seem to be more powerful than
deterministic ones.

I We pay this in computation time.

I We will see what does it mean in the next lectures.

