Fundamental Computer Science Sequence 1. Turing Machines Random Access TM

Denis Trystram

February, 2021

The goal here is to show how to extend the abstract Turing Machine to a higher level concept, closer to our *computers*.

Random Access Turing Machines

- Random Access Memory
 - access any position of the tape in a single step

Random Access Turing Machines

- Random Access Memory
 - access any position of the tape in a single step
- ▶ we also need:
 - \blacktriangleright finite number of <code>registers</code> \rightarrow <code>manipulate</code> addresses of the tape
 - program counter \rightarrow current instruction to execute

program: a set of instructions

Random Access Turing Machines: Instructions set

instruction	operand	semantics
read	j	$R_0 \leftarrow T[R_j]$
write	j	$T[R_j] \leftarrow R_0$
store	j	$R_j \leftarrow R_0$
load	j	$R_0 \leftarrow R_j$
load	= c	$R_0 = c$
add	j	$R_0 \leftarrow R_0 + R_j$
add	= c	$R_0 \leftarrow R_0 + c$
sub	j	$R_0 \leftarrow \max\{R_0 - R_j, 0\}$
sub	= c	$R_0 \leftarrow \max\{R_0 - c, 0\}$
half		$R_0 \leftarrow \lfloor \frac{R_0}{2} \rfloor$
jump	s	$\kappa \leftarrow s$
jpos	s	if $R_0 > 0$ then $\kappa \leftarrow s$
jzero	s	if $R_0 = 0$ then $\kappa \leftarrow s$
halt		$\kappa = 0$

• register R_0 : accumulator

Random Access Turing Machines: Formal definition

A Random Access Turing Machine is a pair $M = (k, \Pi)$, where

- $\blacktriangleright \ k>0$ is the finite number of registers, and
- $\Pi = (\pi_1, \pi_2, \dots, \pi_p)$ is a finite sequence of instructions (program).

Random Access Turing Machines: Formal definition

A Random Access Turing Machine is a pair $M=(k,\Pi),$ where

- $\blacktriangleright \ k>0$ is the finite number of registers, and
- $\Pi = (\pi_1, \pi_2, \dots, \pi_p)$ is a finite sequence of instructions (program).

Notations

- the last instruction π_p is always a *halt* instruction
- $(\kappa; R_0, R_1, \ldots, R_{k-1}; T)$: a configuration, where
 - κ: program counter
 - R_j , $0 \le j < k$: the current value of register j
 - T: the contents of the tape (each T[i] contains a non-negative integer, i.e. T[i] ∈ N)
- halted configuration: $\kappa = 0$

Example 1 – write the configurations

- 1: load 1
- 2: add 2
- 3: sub =1
- 4: store 1
- 5: halt

 $(1;0,5,3;\emptyset)$

Example 1 – write the configurations

- 1: load 1
- 2: add 2
- 3: sub =1
- 4: store 1
- 5: halt
- $(1;0,5,3;\emptyset)$

$$\begin{array}{rcl} (1;0,5,3;\emptyset) & \vdash & (2;5,5,3;\emptyset) \ \vdash & (3;8,5,3;\emptyset) \ \vdash & (4;7,5,3;\emptyset) \\ & \vdash & (5;7,7,3;\emptyset) \ \vdash & (0;7,7,3;\emptyset) \end{array}$$

Example 1 – write the configurations

- 1: load 1
- 2: add 2
- 3: sub =1
- 4: store 1
- 5: halt

 $(1; 0, 5, 3; \emptyset)$

 $R_1 \leftarrow R_2 + R_1 - 1$

Example 2

- 1: load 1
- 2: jzero 6
- 3: sub =3
- 4: store 1
- 5: jump 2
- 6: halt

 $(1;0,7;\emptyset)$

$$\begin{array}{rcl} (1;0,7;\emptyset) & \vdash & (2;7,7;\emptyset) \vdash (3;7,7;\emptyset) \vdash (4;4,7;\emptyset) \vdash (5;4,4;\emptyset) \\ & \vdash & (2;4,4;\emptyset) \vdash (3;4,4;\emptyset) \vdash (4;1,4;\emptyset) \vdash (5;1,1;\emptyset) \\ & \vdash & (2;1,1;\emptyset) \vdash (3;1,1;\emptyset) \vdash (4;0,1;\emptyset) \vdash (5;0,0;\emptyset) \\ & \vdash & (2;0,0;\emptyset) \vdash (6;0,0;\emptyset) \vdash (0;0,0;\emptyset) \end{array}$$

while $R_1 > 0$ do $R_1 \leftarrow R_1 - 3$

Exercise

 Write a program for a Random Access Turing Machine that multiplies two integers.

HINT: assume that the initial configuration is $(1; 0, a_1, a_2, 0; \emptyset)$

Theorem

Every Random Access Turing Machine $M = (\kappa, \Pi)$ has an equivalent single tape Turing Machine $M' = (K, \Sigma, \Gamma, \delta, s, H)$.

If M halts on input of size n after t steps, then M' halts on after O(poly(t,n)) steps.

Theorem

Every Random Access Turing Machine $M = (\kappa, \Pi)$ has an equivalent single tape Turing Machine $M' = (K, \Sigma, \Gamma, \delta, s, H)$.

If M halts on input of size n after t steps, then M' halts on after O(poly(t,n)) steps.

- we pass through the multiple tape model
 - use k + 3 tapes
 - ► tape 1: the contents of the tape of M
 - ► tape 2: the program counter
 - ► tape 3: auxiliary
 - tape 3 + j, $1 \le j \le k$: corresponds to R_j
- ► add appropriate delimiters
- simulate instructions

- ► add 4
 - 1. copy the contents of tape 8 (R_4) on tape 3 (auxiliary)
 - 2. use the Turing Machine with two tapes seen in previous lecture to add the numbers in tapes 8 and 4 (R_0)
 - 3. store the result in tape 4
 - 4. increase the contents of tape 2 (program counter) by 1

- ► add 4
 - 1. copy the contents of tape 8 (R_4) on tape 3 (auxiliary)
 - 2. use the Turing Machine with two tapes seen in previous lecture to add the numbers in tapes 8 and 4 (R_0)
 - 3. store the result in tape 4
 - 4. increase the contents of tape 2 (program counter) by 1
- ► write 2
 - 1. move the head of tape 1 (tape of M) to the position (address) indicted by tape 6 (R_2)
 - 2. copy the contents of tape 4 (R_0) in the indicated position of tape 1
 - 3. increase the contents of tape 2 (program counter) by 1

- ► add 4
 - 1. copy the contents of tape 8 (R_4) on tape 3 (auxiliary)
 - 2. use the Turing Machine with two tapes seen in previous lecture to add the numbers in tapes 8 and 4 (R_0)
 - 3. store the result in tape 4
 - 4. increase the contents of tape 2 (program counter) by 1
- ► write 2
 - 1. move the head of tape 1 (tape of M) to the position (address) indicted by tape 6 (R_2)
 - 2. copy the contents of tape 4 (R_0) in the indicated position of tape 1
 - 3. increase the contents of tape 2 (program counter) by 1
- ▶ jpos 19
 - 1. scan tape 4 (R_0)
 - 2. if all cells are zero then increase the contents of tape 2 (program counter) by 1
 - 3. else replace the contents of tape 2 by 19 $% \left({{{\left({{{\left({{{\left({{{\left({{{}}} \right)}} \right)}} \right.}} \right)}_{2}}}} \right)$

- ► the size of the contents of all tapes cannot be bigger that a polynomial to t and n
 - ► initially: n
 - ► at each step: the size of the contents is increased by at most a constant c (instruction add = c)

- ► the size of the contents of all tapes cannot be bigger that a polynomial to t and n
 - initially: n
 - ▶ at each step: the size of the contents is increased by at most a constant c (instruction add = c)
- each instruction can be implemented in time polynomial in the size of the contents of all tapes

- ► the size of the contents of all tapes cannot be bigger that a polynomial to t and n
 - initially: n
 - ▶ at each step: the size of the contents is increased by at most a constant c (instruction add = c)
- each instruction can be implemented in time polynomial in the size of the contents of all tapes
- \blacktriangleright Thus, complexity polynomial in t and n

- ► the size of the contents of all tapes cannot be bigger that a polynomial to t and n
 - ► initially: n
 - ▶ at each step: the size of the contents is increased by at most a constant c (instruction add = c)
- each instruction can be implemented in time polynomial in the size of the contents of all tapes
- \blacktriangleright Thus, complexity polynomial in t and n

Random Access is not more powerful !!!