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The goal here is to show how to extend the abstract Turing Machine
to a higher level concept, closer to our computers.



» Random Access Memory
> access any position of the tape in a single step



Random Access Turing Machines

» Random Access Memory
> access any position of the tape in a single step

> we also need:
» finite number of registers — manipulate addresses of the tape
current instruction to execute

program counter

T1]|T[2)| T3] | T[] | 7[5 | T]6]

» program counter —»

tape
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registers

> program: a set of instructions



Random Access Turing Machines: Instructions set

instruction operand semantics

read j Ry + T[R7]

write j T[R]} +— Ry

store j R; < Ry

load J Ry + R;

load =C R() =cC

add ] RO “— Ro + RJ

add =c Ry <+ Ry +c

sub J Ry < max{Ry, — R;,0}
sub =c Ry + max{Ry — ¢,0}
half Ry + ||

jump s K4S

jpos S if Rp > 0 then k < s
jzero S if Ry =0 then x + s
halt k=0

> register Ry: accumulator



|
A Random Access Turing Machine is a pair M = (k,II), where

» k > 0 is the finite number of registers, and

» Il = (my,ma,...,mp) is a finite sequence of instructions (program).



Random Access Turing Machines: Formal definition

A Random Access Turing Machine is a pair M = (k,II), where
» k > 0 is the finite number of registers, and

» II = (m,m2,...,mp) is a finite sequence of instructions (program).

Notations

> the last instruction , is always a halt instruction
» (k;Ro,R1,...,Rr_1;T): a configuration, where
> Kk program counter
» R;, 0 <j < k: the current value of register j
» T': the contents of the tape
(each Ti] contains a non-negative integer, i.e. T'[i] € N)

» halted configuration: x =0



load 1

add 2

sub =1
store 1
halt

AN A

(1;0,5,3;0)



load 1

add 2

sub =1
store 1
halt

AN A

(1;0,5,3;0)

(1;0,5,3;0) = (25,5,3;0) F (3;8,5,3;0) = (4;7,5,3;0)
Fo(5;7,7,3;0) = (0;7,7,3;0)



load 1

add 2

sub =1
store 1
halt

AN A

(1;0,5,3;0)

(1;0,5,3;0) = (25,5,3;0) F (3;8,5,3;0) = (4;7,5,3;0)
Fo(5;7,7,3;0) = (0;7,7,3;0)

R+ R+ R —1



: load 1
: jzero 6
sub =3
store 1
: jump 2
. halt

(1;0,7;0)

o U s WwN R

(1;0,7;0) + (2;7,7:0)F (3;7,7;0) - (4;4,7;0) - (5;4,4; 0)
Foo(2;4,4,0)F (3;4,4,0) F (4;1,4;0) = (5;1,1;0)
Fo(21,1;0) F (3;1,1;0) F (450,1;0) - (5;0,0;0)
F o (2;0,0;0) F (6;0,0;0) - (0;0,0;0)

while Ry >0do Ry + R; — 3



» Write a program for a Random Access Turing Machine that
multiplies two integers.

HINT: assume that the initial configuration is (1;0, ay, az,0; 0)



Every Random Access Turing Machine M = (k,I1) has an equivalent
single tape Turing Machine M’ = (K, %, T, 0, s, H).

If M halts on input of size n after t steps, then M’ halts on after
O(poly(t,m)) steps.



Power of the Random Access Turing Machines

Theorem

Every Random Access Turing Machine M = (k,II) has an equivalent
single tape Turing Machine M’ = (K, X, T, 6, s, H).

If M halts on input of size n after t steps, then M’ halts on after
O(poly(t,n)) steps.

Proof (sketch):

» we pass through the multiple tape model
use k + 3 tapes
tape 1: the contents of the tape of M
tape 2: the program counter
tape 3: auxiliary
tape 3+ 7, 1 < j < k: corresponds to R;
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» add appropriate delimiters

» simulate instructions



Proof (sketch):
> add 4

1. copy the contents of tape 8 (R4) on tape 3 (auxiliary)

2. use the Turing Machine with two tapes seen in previous lecture to
add the numbers in tapes 8 and 4 (Ro)

3. store the result in tape 4

4. increase the contents of tape 2 (program counter) by 1



Proof (sketch):
> add 4

1. copy the contents of tape 8 (R4) on tape 3 (auxiliary)

2. use the Turing Machine with two tapes seen in previous lecture to
add the numbers in tapes 8 and 4 (Ro)

3. store the result in tape 4

4. increase the contents of tape 2 (program counter) by 1

> write 2
1. move the head of tape 1 (tape of M) to the position (address)
indicted by tape 6 (R2)
2. copy the contents of tape 4 (Rp) in the indicated position of tape 1
3. increase the contents of tape 2 (program counter) by 1



Proof (sketch):
> add 4
1. copy the contents of tape 8 (R4) on tape 3 (auxiliary)
2. use the Turing Machine with two tapes seen in previous lecture to
add the numbers in tapes 8 and 4 (Ro)
3. store the result in tape 4
4. increase the contents of tape 2 (program counter) by 1

> write 2
1. move the head of tape 1 (tape of M) to the position (address)
indicted by tape 6 (R2)
2. copy the contents of tape 4 (Rp) in the indicated position of tape 1
3. increase the contents of tape 2 (program counter) by 1

> jpos 19
1. scan tape 4 (Ro)
2. if all cells are zero then increase the contents of tape 2 (program
counter) by 1
3. else replace the contents of tape 2 by 19



Proof (sketch):
> the size of the contents of all tapes cannot be bigger that a
polynomial to ¢ and n
> initially: n
» at each step: the size of the contents is increased by at most a
constant ¢ (instruction add = ¢)
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Proof (sketch):

> the size of the contents of all tapes cannot be bigger that a
polynomial to ¢ and n
> initially: n
» at each step: the size of the contents is increased by at most a
constant ¢ (instruction add = ¢)

» each instruction can be implemented in time polynomial in the size
of the contents of all tapes

» Thus, complexity polynomial in £ and n

Random Access is not more powerful !!!



