Fundamental Computer Science Sequence 1. Turing Machines Random Access TM

Denis Trystram

February, 2021

Content

The goal here is to show how to extend the abstract Turing Machine to a higher level concept, closer to our computers.

Random Access Turing Machines

- Random Access Memory
- access any position of the tape in a single step

Random Access Turing Machines

- Random Access Memory
- access any position of the tape in a single step
- we also need:
- finite number of registers \rightarrow manipulate addresses of the tape
- program counter \rightarrow current instruction to execute

- program: a set of instructions

Random Access Turing Machines: Instructions set

instruction	operand	semantics
read	j	$R_{0} \leftarrow T\left[R_{j}\right]$
write	j	$T\left[R_{j}\right] \leftarrow R_{0}$
store	j	$R_{j} \leftarrow R_{0}$
load	j	$R_{0} \leftarrow R_{j}$
load	$=c$	$R_{0}=c$
add	j	$R_{0} \leftarrow R_{0}+R_{j}$
add	$=c$	$R_{0} \leftarrow R_{0}+c$
sub	j	$R_{0} \leftarrow \max \left\{R_{0}-R_{j}, 0\right\}$
sub		$R_{0} \leftarrow \max \left\{R_{0}-c, 0\right\}$
half	s	$R_{0} \leftarrow\left\lfloor\frac{R_{0}}{2}\right\rfloor$
jump	s	$\kappa \leftarrow s$
jpos	s	if $R_{0}>0$ then $\kappa \leftarrow s$
jzero		if $R_{0}=0$ then $\kappa \leftarrow s$
halt		$\kappa=0$

- register R_{0} : accumulator

Random Access Turing Machines: Formal definition

A Random Access Turing Machine is a pair $M=(k, \Pi)$, where

- $k>0$ is the finite number of registers, and
- $\Pi=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{p}\right)$ is a finite sequence of instructions (program).

Random Access Turing Machines: Formal definition

A Random Access Turing Machine is a pair $M=(k, \Pi)$, where

- $k>0$ is the finite number of registers, and
- $\Pi=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{p}\right)$ is a finite sequence of instructions (program).

Notations

- the last instruction π_{p} is always a halt instruction
- $\left(\kappa ; R_{0}, R_{1}, \ldots, R_{k-1} ; T\right)$: a configuration, where
- κ : program counter
- $R_{j}, 0 \leq j<k$: the current value of register j
- T : the contents of the tape
(each $T[i]$ contains a non-negative integer, i.e. $T[i] \in \mathbb{N}$)
- halted configuration: $\kappa=0$

Example 1 - write the configurations

1: load 1
2: add 2
3: sub $=1$
4: store 1
5: halt
$(1 ; 0,5,3 ; \emptyset)$

Example 1 - write the configurations

$$
\begin{aligned}
& \text { 1: load } 1 \\
& \text { 2: add } 2 \\
& \text { 3: sub }=1 \\
& \text { 4: store } 1 \\
& \text { 5: halt } \\
& \begin{array}{lll}
(1 ; 0,5,3 ; \emptyset) & \\
& \\
\left.\qquad \begin{array}{lll}
(1 ; 0,5,3 ; \emptyset) & \vdash & \\
& & \\
& \vdash & (2 ; 5,5,3,7,3 ; \emptyset)
\end{array}\right) \vdash(3 ; 8,5,3 ; \emptyset) & \vdash(4 ; 7,5,3 ; \emptyset)
\end{array}
\end{aligned}
$$

Example 1 - write the configurations

$$
\begin{aligned}
& \text { 1: load } 1 \\
& \text { 2: add } 2 \\
& \text { 3: sub }=1 \\
& \text { 4: store } 1 \\
& \text { 5: halt } \\
& \begin{aligned}
&(1 ; 0,5,3 ; \emptyset) \\
& \\
& \qquad \begin{array}{rlll}
(1 ; 0,5,3 ; \emptyset) & \vdash & (2 ; 5,5,3 ; \emptyset) & \vdash(3 ; 8,5,3 ; \emptyset) \vdash(4 ; 7,5,3 ; \emptyset) \\
& \vdash & (5 ; 7,7,3 ; \emptyset) & \vdash(0 ; 7,7,3 ; \emptyset)
\end{array} \\
& \\
& \\
& R_{1} \leftarrow R_{2}+R_{1}-1
\end{aligned}
\end{aligned}
$$

Example 2

$$
\begin{aligned}
& \text { 1: load } 1 \\
& \text { 2: jzero } 6 \\
& \text { 3: sub }=3 \\
& \text { 4: store } 1 \\
& \text { 5: jump } 2 \\
& \text { 6: halt } \\
& \begin{aligned}
(1 ; 0,7 ; \emptyset) & \\
& \\
& \\
& \\
& \\
& \\
& \vdash \\
& \vdash \\
& \vdash(2 ; 4,4 ; \emptyset) \vdash(3 ; 4,4 ; \emptyset) \vdash(4 ; 1,4 ; \emptyset) \vdash(5 ; 1,1 ; \emptyset) \\
& \vdash \\
& \vdash(2 ; 0,0 ; \emptyset) \vdash(6 ; 0,0 ; \emptyset) \vdash(0 ; 0,0 ; \emptyset)
\end{aligned}
\end{aligned}
$$

while $R_{1}>0$ do $R_{1} \leftarrow R_{1}-3$

Exercise

- Write a program for a Random Access Turing Machine that multiplies two integers.

HINT: assume that the initial configuration is $\left(1 ; 0, a_{1}, a_{2}, 0 ; \emptyset\right)$

Power of the Random Access Turing Machines

Theorem

Every Random Access Turing Machine $M=(\kappa, \Pi)$ has an equivalent single tape Turing Machine $M^{\prime}=(K, \Sigma, \Gamma, \delta, s, H)$.
If M halts on input of size n after t steps, then M^{\prime} halts on after $O(p o l y(t, n))$ steps.

Power of the Random Access Turing Machines

Theorem

Every Random Access Turing Machine $M=(\kappa, \Pi)$ has an equivalent single tape Turing Machine $M^{\prime}=(K, \Sigma, \Gamma, \delta, s, H)$.
If M halts on input of size n after t steps, then M^{\prime} halts on after $O(p o l y(t, n))$ steps.

Proof (sketch):

- we pass through the multiple tape model
- use $k+3$ tapes
- tape 1: the contents of the tape of M
- tape 2: the program counter
- tape 3: auxiliary
- tape $3+j, 1 \leq j \leq k$: corresponds to R_{j}
- add appropriate delimiters
- simulate instructions

Proof (sketch):

- add 4

1. copy the contents of tape $8\left(R_{4}\right)$ on tape 3 (auxiliary)
2. use the Turing Machine with two tapes seen in previous lecture to add the numbers in tapes 8 and $4\left(R_{0}\right)$
3. store the result in tape 4
4. increase the contents of tape 2 (program counter) by 1

Proof (sketch):

- add 4

1. copy the contents of tape $8\left(R_{4}\right)$ on tape 3 (auxiliary)
2. use the Turing Machine with two tapes seen in previous lecture to add the numbers in tapes 8 and $4\left(R_{0}\right)$
3. store the result in tape 4
4. increase the contents of tape 2 (program counter) by 1

- write 2

1. move the head of tape 1 (tape of M) to the position (address) indicted by tape $6\left(R_{2}\right)$
2. copy the contents of tape $4\left(R_{0}\right)$ in the indicated position of tape 1
3. increase the contents of tape 2 (program counter) by 1

Proof (sketch):

- add 4

1. copy the contents of tape $8\left(R_{4}\right)$ on tape 3 (auxiliary)
2. use the Turing Machine with two tapes seen in previous lecture to add the numbers in tapes 8 and $4\left(R_{0}\right)$
3. store the result in tape 4
4. increase the contents of tape 2 (program counter) by 1

- write 2

1. move the head of tape 1 (tape of M) to the position (address) indicted by tape $6\left(R_{2}\right)$
2. copy the contents of tape $4\left(R_{0}\right)$ in the indicated position of tape 1
3. increase the contents of tape 2 (program counter) by 1

- jpos 19

1. scan tape $4\left(R_{0}\right)$
2. if all cells are zero then increase the contents of tape 2 (program counter) by 1
3. else replace the contents of tape 2 by 19

Proof (sketch):

- the size of the contents of all tapes cannot be bigger that a polynomial to t and n
- initially: n
- at each step: the size of the contents is increased by at most a constant c (instruction add $=c$)

Proof (sketch):

- the size of the contents of all tapes cannot be bigger that a polynomial to t and n
- initially: n
- at each step: the size of the contents is increased by at most a constant c (instruction add $=c$)
- each instruction can be implemented in time polynomial in the size of the contents of all tapes

Proof (sketch):

- the size of the contents of all tapes cannot be bigger that a polynomial to t and n
- initially: n
- at each step: the size of the contents is increased by at most a constant c (instruction add $=c$)
- each instruction can be implemented in time polynomial in the size of the contents of all tapes
- Thus, complexity polynomial in t and n

Proof (sketch):

- the size of the contents of all tapes cannot be bigger that a polynomial to t and n
- initially: n
- at each step: the size of the contents is increased by at most a constant c (instruction add $=c$)
- each instruction can be implemented in time polynomial in the size of the contents of all tapes
- Thus, complexity polynomial in t and n

Random Access is not more powerful !!!

