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Content

The goal here is to show how to extend the abstract Turing Machine
to a higher level concept, closer to our computers.



Random Access Turing Machines

I Random Access Memory
I access any position of the tape in a single step

I we also need:
I finite number of registers → manipulate addresses of the tape
I program counter → current instruction to execute
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I program: a set of instructions
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Random Access Turing Machines: Instructions set

instruction operand semantics
read j R0 ← T [Rj ]
write j T [Rj ]← R0

store j Rj ← R0

load j R0 ← Rj

load = c R0 = c
add j R0 ← R0 +Rj

add = c R0 ← R0 + c
sub j R0 ← max{R0 −Rj , 0}
sub = c R0 ← max{R0 − c, 0}
half R0 ← bR0

2 c
jump s κ← s
jpos s if R0 > 0 then κ← s
jzero s if R0 = 0 then κ← s
halt κ = 0

I register R0: accumulator



Random Access Turing Machines: Formal definition

A Random Access Turing Machine is a pair M = (k,Π), where

I k > 0 is the finite number of registers, and

I Π = (π1, π2, . . . , πp) is a finite sequence of instructions (program).

Notations

I the last instruction πp is always a halt instruction

I (κ;R0, R1, . . . , Rk−1;T ): a configuration, where
I κ: program counter
I Rj , 0 ≤ j < k: the current value of register j
I T : the contents of the tape

(each T [i] contains a non-negative integer, i.e. T [i] ∈ N)

I halted configuration: κ = 0
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Example 1 – write the configurations

1: load 1
2: add 2
3: sub =1
4: store 1
5: halt

(1; 0, 5, 3; ∅)

(1; 0, 5, 3; ∅) ` (2; 5, 5, 3; ∅) ` (3; 8, 5, 3; ∅) ` (4; 7, 5, 3; ∅)
` (5; 7, 7, 3; ∅) ` (0; 7, 7, 3; ∅)

R1 ← R2 +R1 − 1
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Example 2

1: load 1
2: jzero 6
3: sub =3
4: store 1
5: jump 2
6: halt

(1; 0, 7; ∅)

(1; 0, 7; ∅) ` (2; 7, 7; ∅) ` (3; 7, 7; ∅) ` (4; 4, 7; ∅) ` (5; 4, 4; ∅)
` (2; 4, 4; ∅) ` (3; 4, 4; ∅) ` (4; 1, 4; ∅) ` (5; 1, 1; ∅)
` (2; 1, 1; ∅) ` (3; 1, 1; ∅) ` (4; 0, 1; ∅) ` (5; 0, 0; ∅)
` (2; 0, 0; ∅) ` (6; 0, 0; ∅) ` (0; 0, 0; ∅)

while R1 > 0 do R1 ← R1 − 3



Exercise

I Write a program for a Random Access Turing Machine that
multiplies two integers.

HINT: assume that the initial configuration is (1; 0, a1, a2, 0; ∅)



Power of the Random Access Turing Machines

Theorem

Every Random Access Turing Machine M = (κ,Π) has an equivalent
single tape Turing Machine M ′ = (K,Σ,Γ, δ, s,H).

If M halts on input of size n after t steps, then M ′ halts on after
O(poly(t, n)) steps.

Proof (sketch):

I we pass through the multiple tape model
I use k + 3 tapes
I tape 1: the contents of the tape of M
I tape 2: the program counter
I tape 3: auxiliary
I tape 3 + j, 1 ≤ j ≤ k: corresponds to Rj

I add appropriate delimiters

I simulate instructions
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Proof (sketch):

I add 4

1. copy the contents of tape 8 (R4) on tape 3 (auxiliary)
2. use the Turing Machine with two tapes seen in previous lecture to

add the numbers in tapes 8 and 4 (R0)
3. store the result in tape 4
4. increase the contents of tape 2 (program counter) by 1

I write 2

1. move the head of tape 1 (tape of M) to the position (address)
indicted by tape 6 (R2)

2. copy the contents of tape 4 (R0) in the indicated position of tape 1
3. increase the contents of tape 2 (program counter) by 1

I jpos 19

1. scan tape 4 (R0)
2. if all cells are zero then increase the contents of tape 2 (program

counter) by 1
3. else replace the contents of tape 2 by 19
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Proof (sketch):

I the size of the contents of all tapes cannot be bigger that a
polynomial to t and n

I initially: n
I at each step: the size of the contents is increased by at most a

constant c (instruction add = c)

I each instruction can be implemented in time polynomial in the size
of the contents of all tapes

I Thus, complexity polynomial in t and n

Random Access is not more powerful !!!
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