Fundamental Computer Science Sequence 1: Turing Machines Classical extensions

Denis Trystram

MoSIG1-M1info, 2021

Objective of the session

Study the most common extensions of **Turing machines**.

See Pierre Wolper, Introduction à la calculabilité or any related book.

We have already presented an extension:

- write in the tape and move left or right at the same time
- ► modify the definition of the transition function initial: from (K \ H) × Γ to K × (Γ ∪ {←, →}) extended: from (K \ H) × Γ to K × Γ × {←, →}

We have already presented an extension:

- write in the tape and move left or right at the same time
- ► modify the definition of the transition function initial: from (K \ H) × Γ to K × (Γ ∪ {←, →}) extended: from (K \ H) × Γ to K × Γ × {←, →}
- ▶ if the extended Turing Machine halts on input w after t steps, then the initial Turing Machine halts on input w after at most 2t steps

A k-tape Turing Machine (M) is a sextuple $(K, \Sigma, \Gamma, \delta, s, H)$, where K, Σ , Γ , s and H are as in the definition of the ordinary Turing Machine, and δ is a transition function

 $\text{from} \quad (K \setminus H) \times \Gamma^k \quad \text{ to } \quad K \times (\Gamma \cup \{\leftarrow, \rightarrow\})^k$

A k-tape Turing Machine (M) is a sextuple $(K, \Sigma, \Gamma, \delta, s, H)$, where K, Σ , Γ , s and H are as in the definition of the ordinary Turing Machine, and δ is a transition function

from $(K \setminus H) \times \Gamma^k$ to $K \times (\Gamma \cup \{\leftarrow, \rightarrow\})^k$ (from $(K \setminus H) \times \Gamma^k$ to $K \times \Gamma^k \times \{\leftarrow, \rightarrow\}^k$)

Theorem

Every k-tape, k > 1, Turing Machine $M = (K, \Sigma, \Gamma, \delta, s, H)$ has an equivalent single tape Turing Machine $M' = (K', \Sigma', \Gamma', \delta', s', H')$.

If M halts on input $w\in \Sigma^*$ after t steps, then M' halts on input w after O(t(|w|+t)) steps.

Sketch of the proof:

- M' simulates M in a single tape
- \blacktriangleright # is used as delimiter to separate the contents of different tapes
- dotted symbols are used to indicate the actual position of the head of each tape
 - ▶ for each symbol $\sigma \in \Gamma$, add both σ and $\overset{\bullet}{\sigma}$ in Γ'
- use the same set of halting states

M' = "On input $w = w_1 w_2 \dots w_n$:

1. Format the tape to represent the \boldsymbol{k} tapes:

 $#w_1w_2\dots w_n\# \stackrel{\bullet}{\sqcup} \# \stackrel{\bullet}{\sqcup} \#\dots \#$

2. For each step that M performs, scan the tape from left to right to determine the symbols under the virtual heads. Then, do a second scan to update the tapes according to the transition function of M.

M' = "On input $w = w_1 w_2 \dots w_n$:

1. Format the tape to represent the \boldsymbol{k} tapes:

 $#w_1w_2\dots w_n\# \stackrel{\bullet}{\sqcup} \# \stackrel{\bullet}{\sqcup} \#\dots \#$

- 2. For each step that M performs, scan the tape from left to right to determine the symbols under the virtual heads. Then, do a second scan to update the tapes according to the transition function of M.
- If at any point there is a need to move a virtual head outside the area marked for the corresponding tape, then shift right the contents of all tapes succeeding."

M' = "On input $w = w_1 w_2 \dots w_n$:

1. Format the tape to represent the \boldsymbol{k} tapes:

 $#w_1w_2\dots w_n\# \stackrel{\bullet}{\sqcup} \# \stackrel{\bullet}{\sqcup} \#\dots \#$

- 2. For each step that M performs, scan the tape from left to right to determine the symbols under the virtual heads. Then, do a second scan to update the tapes according to the transition function of M.
- 3. If at any point there is a need to move a virtual head outside the area marked for the corresponding tape, then shift right the contents of all tapes succeeding."

What is the number of steps for M'?

M' = "On input $w = w_1 w_2 \dots w_n$:

1. Format the tape to represent the \boldsymbol{k} tapes:

 $#w_1w_2\dots w_n\# \stackrel{\bullet}{\sqcup} \# \stackrel{\bullet}{\sqcup} \#\dots \#$

- 2. For each step that M performs, scan the tape from left to right to determine the symbols under the virtual heads. Then, do a second scan to update the tapes according to the transition function of M.
- If at any point there is a need to move a virtual head outside the area marked for the corresponding tape, then shift right the contents of all tapes succeeding."

What is the number of steps for M'?

1. O(|w|)

2. & 3. O(|w|+t) per step $\Rightarrow O(t(|w|+t))$ in total

• size of the tape no more than O(|w|+t)

The multiple tape Turing Machine is **not** more powerful !!

The multiple tape Turing Machine is **not** more powerful !!

... but it is more easy to construct and to understand !

The multiple tape Turing Machine is **not** more powerful !!

 \ldots but it is more easy to construct and to understand !

... and it can be used to simulate functions in an easier way (a function can use one or more not used tapes)

- $R^{1,2}$: move the head of both tapes to the right
- σ^2 (as a state): write the symbol σ in tape 2
- σ^2 (as a label): if the head of tape 2 reads the symbol σ

- $R^{1,2}$: move the head of both tapes to the right
- σ^2 (as a state): write the symbol σ in tape 2
- σ^2 (as a label): if the head of tape 2 reads the symbol σ

	tape 1	tape 2
initially	$\Box w$	
after (1)		

- $R^{1,2}$: move the head of both tapes to the right
- σ^2 (as a state): write the symbol σ in tape 2
- σ^2 (as a label): if the head of tape 2 reads the symbol σ

	tape 1	tape 2
initially	$\Box w$	
after (1)	$\sqcup w \sqcup$	$\Box w \underline{\Box}$
(2)		

- $R^{1,2}$: move the head of both tapes to the right
- σ^2 (as a state): write the symbol σ in tape 2
- σ^2 (as a label): if the head of tape 2 reads the symbol σ

	tape 1	tape 2
initially	$\Box w$	
after (1)	$\sqcup w \sqcup$	$\Box w \underline{\Box}$
(2)	$\sqcup w \sqcup$	$\sqcup w \sqcup$
at the end		

- $R^{1,2}$: move the head of both tapes to the right
- σ^2 (as a state): write the symbol σ in tape 2
- σ^2 (as a label): if the head of tape 2 reads the symbol σ

	tape 1	tape 2
initially	$\Box w$	
after (1)	$\sqcup w \sqcup$	$\Box w \underline{\Box}$
(2)	$\sqcup w \sqcup$	$\sqcup w \sqcup$
at the end	$\sqcup w \sqcup w \sqcup$	$\sqcup w \underline{\sqcup}$

extend notation:

- $R^{1,2}$: move the head of both tapes to the right
- σ^2 (as a state): write the symbol σ in tape 2
- σ^2 (as a label): if the head of tape 2 reads the symbol σ

	tape 1	tape 2
initially	$\Box w$	
after (1)	$\sqcup w \sqcup$	$\Box w \underline{\Box}$
(2)	$\sqcup w \sqcup$	$\square w \square$
at the end	$\sqcup w \sqcup w \underline{\sqcup}$	$\sqcup w \underline{\sqcup}$

transforms w to $w \sqcup w$

- ▶ at each step all heads can read/write/move
- ▶ we need a convention if two heads try writing at the same place

Another extension: Multiple heads

Definition (informal)

- ▶ at each step all heads can read/write/move
- ▶ we need a convention if two heads try writing at the same place

Theorem

Every multiple head Turing Machine M has an equivalent single head Turing Machine M'.

The simulation by M' of M on an input w which leads to a halting state takes time quadratic to the size of the input |w| and the number of steps t that M performs.

- ▶ at each step all heads can read/write/move
- ▶ we need a convention if two heads try writing at the same place

Theorem

Every multiple head Turing Machine M has an equivalent single head Turing Machine M'.

The simulation by M' of M on an input w which leads to a halting state takes time quadratic to the size of the input |w| and the number of steps t that M performs.

- scan the tape twice
 - 1 find the symbols at the head positions (which transition to follow?)
 - 2 write/move the heads according to the transition
- same arguments as before for the number of steps

- ▶ at each step all heads can read/write/move
- ▶ we need a convention if two heads try writing at the same place

Theorem

Every multiple head Turing Machine M has an equivalent single head Turing Machine M'.

The simulation by M' of M on an input w which leads to a halting state takes time quadratic to the size of the input |w| and the number of steps t that M performs.

- scan the tape twice
 - 1 find the symbols at the head positions (which transition to follow?)
 - 2 write/move the heads according to the transition
- same arguments as before for the number of steps

- ▶ at each step all heads can read/write/move
- ▶ we need a convention if two heads try writing at the same place

Theorem

Every multiple head Turing Machine M has an equivalent single head Turing Machine M'.

The simulation by M' of M on an input w which leads to a halting state takes time quadratic to the size of the input |w| and the number of steps t that M performs.

Proof (another one):

- ▶ at each step all heads can read/write/move
- ▶ we need a convention if two heads try writing at the same place

Theorem

Every multiple head Turing Machine M has an equivalent single head Turing Machine M'.

The simulation by M' of M on an input w which leads to a halting state takes time quadratic to the size of the input |w| and the number of steps t that M performs.

Proof (another one):

Multiple heads: example

Give a Machine Turing with two heads that transforms the input $\underline{\Box}w$ to $\underline{\Box}w \sqcup w$.

- $\underline{\sigma}$, $\overline{\sigma}$, $\overline{\underline{\sigma}}$: the position of the 1st, 2nd and both heads, respectively
- $R^{1,2}$: move both heads on the right
- σ^2 (as a state): write in the position of head 2 the symbol σ
- σ^2 (as a label): if the head 2 reads the symbol σ

Multiple heads: example

Give a Machine Turing with two heads that transforms the input $\underline{\Box}w$ to $\underline{\Box}w \sqcup w$.

- $\underline{\sigma}$, $\overline{\sigma}$, $\overline{\underline{\sigma}}$: the position of the 1st, 2nd and both heads, respectively
- $R^{1,2}$: move both heads on the right
- σ^2 (as a state): write in the position of head 2 the symbol σ
- σ^2 (as a label): if the head 2 reads the symbol σ

$$> R^2_{\sqcup} R^{1,2} \xrightarrow{\sigma^1 \neq \sqcup} \sigma^2$$

$$\downarrow \sqcup^1$$

$$L^{1,2}_{\sqcup} L^2_{\sqcup}$$

Unbounded tapes

What happens if the tape is bounded in one direction?

Unbounded tapes

What happens if the tape is bounded in one direction?

Theorem

Every two-direction unbounded tape Turing Machine M has an equivalent single-direction unbounded tape Turing Machine.

Definition (informal)

move the head left/right/up/down

Definition (informal)

move the head left/right/up/down

Why?

Definition (informal)

▶ move the head left/right/up/down

Why?

▶ for example, to represent more easily two-dimensional matrices

Definition (informal)

▶ move the head left/right/up/down

Why?

▶ for example, to represent more easily two-dimensional matrices

Theorem

Every two-dimensional tape Turing Machine M has an equivalent single-dimensional tape Turing Machine M'.

The simulation by M' of M on an input w which leads to a halting state takes time polynomial to the size of the input |w| and the number of steps t that M performs.

Definition (informal)

▶ move the head left/right/up/down

Why?

▶ for example, to represent more easily two-dimensional matrices

Theorem

Every two-dimensional tape Turing Machine M has an equivalent single-dimensional tape Turing Machine M'.

The simulation by M' of M on an input w which leads to a halting state takes time polynomial to the size of the input |w| and the number of steps t that M performs.

- use a multiple tape Turing Machine
- ▶ each tape corresponds to one line of the two-dimensional memory

Discussion

 We can even combine the presented extensions and still not get a stronger model

Discussion

- We can even combine the presented extensions and still not get a stronger model
- Observation: a computation in the prototype Turing Machine needs a number of steps which is bounded by a polynomial of the size of the input and of the number steps in any of the extended model