Fundamental Computer Science Sequence 1: Turing Machines Classical extensions

Denis Trystram

MoSIG1-M1info, 2021

Agenda

Objective of the session
Study the most common extensions of Turing machines.
See Pierre Wolper, Introduction à la calculabilité or any related book.

Extensions of the Turing Machine

We have already presented an extension:

- write in the tape and move left or right at the same time
- modify the definition of the transition function

$$
\begin{aligned}
& \text { initial: from }(K \backslash H) \times \Gamma \text { to } K \times(\Gamma \cup\{\leftarrow, \rightarrow\}) \\
& \text { extended: from }(K \backslash H) \times \Gamma \text { to } K \times \Gamma \times\{\leftarrow, \rightarrow\}
\end{aligned}
$$

Extensions of the Turing Machine

We have already presented an extension:

- write in the tape and move left or right at the same time
- modify the definition of the transition function

$$
\begin{aligned}
& \text { initial: from }(K \backslash H) \times \Gamma \text { to } K \times(\Gamma \cup\{\leftarrow, \rightarrow\}) \\
& \text { extended: from }(K \backslash H) \times \Gamma \text { to } K \times \Gamma \times\{\leftarrow, \rightarrow\}
\end{aligned}
$$

- if the extended Turing Machine halts on input w after t steps, then the initial Turing Machine halts on input w after at most $2 t$ steps

Multiple tapes

A k-tape Turing Machine (M) is a sextuple $(K, \Sigma, \Gamma, \delta, s, H)$, where K, Σ, Γ, s and H are as in the definition of the ordinary Turing Machine, and δ is a transition function

$$
\text { from } \quad(K \backslash H) \times \Gamma^{k} \quad \text { to } \quad K \times(\Gamma \cup\{\leftarrow, \rightarrow\})^{k}
$$

Multiple tapes

A k-tape Turing Machine (M) is a sextuple $(K, \Sigma, \Gamma, \delta, s, H)$, where K, Σ, Γ, s and H are as in the definition of the ordinary Turing Machine, and δ is a transition function

$$
\begin{array}{llll}
\text { from } & (K \backslash H) \times \Gamma^{k} & \text { to } & K \times(\Gamma \cup\{\leftarrow, \rightarrow\})^{k} \\
\text { (from } & (K \backslash H) \times \Gamma^{k} & \text { to } & \left.K \times \Gamma^{k} \times\{\leftarrow, \rightarrow\}^{k}\right)
\end{array}
$$

Multiple tapes

Theorem

Every k-tape, $k>1$, Turing Machine $M=(K, \Sigma, \Gamma, \delta, s, H)$ has an equivalent single tape Turing Machine $M^{\prime}=\left(K^{\prime}, \Sigma^{\prime}, \Gamma^{\prime}, \delta^{\prime}, s^{\prime}, H^{\prime}\right)$.
If M halts on input $w \in \Sigma^{*}$ after t steps, then M^{\prime} halts on input w after $O(t(|w|+t))$ steps.

Sketch of the proof:

- M^{\prime} simulates M in a single tape
- \# is used as delimiter to separate the contents of different tapes
- dotted symbols are used to indicate the actual position of the head of each tape
- for each symbol $\sigma \in \Gamma$, add both σ and $\dot{\sigma}$ in Γ^{\prime}
- use the same set of halting states

Multiple tapes

Sketch of the proof:

Multiple tapes

Sketch of the proof:
$M^{\prime}=$ "On input $w=w_{1} w_{2} \ldots w_{n}$:

1. Format the tape to represent the k tapes:

$$
\# \dot{w}_{1} w_{2} \ldots w_{n} \# \dot{\sqcup} \# \dot{\sqcup} \# \ldots \#
$$

2. For each step that M performs, scan the tape from left to right to determine the symbols under the virtual heads. Then, do a second scan to update the tapes according to the transition function of M.

Multiple tapes

Sketch of the proof:
$M^{\prime}=$ "On input $w=w_{1} w_{2} \ldots w_{n}$:

1. Format the tape to represent the k tapes:

$$
\# \dot{w}_{1} w_{2} \ldots w_{n} \# \dot{\sqcup} \# \dot{\sqcup} \# \ldots \#
$$

2. For each step that M performs, scan the tape from left to right to determine the symbols under the virtual heads. Then, do a second scan to update the tapes according to the transition function of M.
3. If at any point there is a need to move a virtual head outside the area marked for the corresponding tape, then shift right the contents of all tapes succeeding."

Multiple tapes

Sketch of the proof:
$M^{\prime}=$ "On input $w=w_{1} w_{2} \ldots w_{n}$:

1. Format the tape to represent the k tapes:

$$
\# \dot{w}_{1} w_{2} \ldots w_{n} \# \dot{\sqcup} \# \dot{\sqcup} \# \ldots \#
$$

2. For each step that M performs, scan the tape from left to right to determine the symbols under the virtual heads. Then, do a second scan to update the tapes according to the transition function of M.
3. If at any point there is a need to move a virtual head outside the area marked for the corresponding tape, then shift right the contents of all tapes succeeding."

What is the number of steps for M^{\prime} ?

Multiple tapes

Sketch of the proof:
$M^{\prime}=$ "On input $w=w_{1} w_{2} \ldots w_{n}$:

1. Format the tape to represent the k tapes:

$$
\# \dot{w}_{1} w_{2} \ldots w_{n} \# \dot{\sqcup} \# \dot{\sqcup} \# \ldots \#
$$

2. For each step that M performs, scan the tape from left to right to determine the symbols under the virtual heads. Then, do a second scan to update the tapes according to the transition function of M.
3. If at any point there is a need to move a virtual head outside the area marked for the corresponding tape, then shift right the contents of all tapes succeeding."

What is the number of steps for M^{\prime} ?

1. $O(|w|)$
2. \& 3. $O(|w|+t)$ per step $\Rightarrow O(t(|w|+t))$ in total

- size of the tape no more than $O(|w|+t)$

Multiple tapes: conclusion

The multiple tape Turing Machine is not more powerful !!

Multiple tapes: conclusion

The multiple tape Turing Machine is not more powerful !!
... but it is more easy to construct and to understand !

Multiple tapes: conclusion

The multiple tape Turing Machine is not more powerful !!
... but it is more easy to construct and to understand !
... and it can be used to simulate functions in an easier way
(a function can use one or more not used tapes)

Multiple tapes: example with $k=2$ tapes

Multiple tapes: example with $k=2$ tapes

- extend notation:
- $R^{1,2}$: move the head of both tapes to the right
- σ^{2} (as a state): write the symbol σ in tape 2
- σ^{2} (as a label): if the head of tape 2 reads the symbol σ

Multiple tapes: example with $k=2$ tapes

- extend notation:
- $R^{1,2}$: move the head of both tapes to the right
- σ^{2} (as a state): write the symbol σ in tape 2
- σ^{2} (as a label): if the head of tape 2 reads the symbol σ

	tape 1	tape 2
initially after (1) $\bigsqcup w$ \sqcup		

Multiple tapes: example with $k=2$ tapes

- extend notation:
- $R^{1,2}$: move the head of both tapes to the right
- σ^{2} (as a state): write the symbol σ in tape 2
- σ^{2} (as a label): if the head of tape 2 reads the symbol σ

	tape 1	tape 2
initially	$\sqcup w$	$\underline{\sqcup}$
after (1)	$\sqcup w \sqcup$	$\sqcup w \sqcup$
(2)		

Multiple tapes: example with $k=2$ tapes

- extend notation:
- $R^{1,2}$: move the head of both tapes to the right
- σ^{2} (as a state): write the symbol σ in tape 2
- σ^{2} (as a label): if the head of tape 2 reads the symbol σ

	tape 1	tape 2
initially	$\sqcup w$	\sqcup
after (1)	$\sqcup w \sqcup$	$\sqcup w \sqcup$
(2)	$\sqcup w \sqcup$	$\sqcup w \sqcup$
at the end		

Multiple tapes: example with $k=2$ tapes

- extend notation:
- $R^{1,2}$: move the head of both tapes to the right
- σ^{2} (as a state): write the symbol σ in tape 2
- σ^{2} (as a label): if the head of tape 2 reads the symbol σ

	tape 1	tape 2
initially	$\sqcup w$	\sqcup
after (1)	$\sqcup w \sqcup$	$\sqcup w \sqcup$
(2)	$\sqcup w \sqcup$	$\sqcup w \sqcup$
at the end	$\sqcup w \sqcup w \sqcup$	$\sqcup w \sqcup$

Multiple tapes: example with $k=2$ tapes

- extend notation:
- $R^{1,2}$: move the head of both tapes to the right
- σ^{2} (as a state): write the symbol σ in tape 2
- σ^{2} (as a label): if the head of tape 2 reads the symbol σ

	tape 1	tape 2	
initially	$\underline{\sqcup} w$	$\underline{\sqcup}$	
after (1)	$\sqcup w \sqcup$	$\sqcup w \sqcup$	transforms w to $w \sqcup w$
(2)	$\sqcup w \sqcup$	$\underline{\sqcup} w \sqcup$	
at the end	$\sqcup w \sqcup w \sqcup$	$\sqcup w \sqcup$	

Another extension: Multiple heads

Definition (informal)

- at each step all heads can read/write/move
- we need a convention if two heads try writing at the same place

Another extension: Multiple heads

Definition (informal)

- at each step all heads can read/write/move
- we need a convention if two heads try writing at the same place

Theorem

Every multiple head Turing Machine M has an equivalent single head Turing Machine M^{\prime}.

The simulation by M^{\prime} of M on an input w which leads to a halting state takes time quadratic to the size of the input $|w|$ and the number of steps t that M performs.

Proof (sketch):

Another extension: Multiple heads

Definition (informal)

- at each step all heads can read/write/move
- we need a convention if two heads try writing at the same place

Theorem

Every multiple head Turing Machine M has an equivalent single head Turing Machine M^{\prime}.

The simulation by M^{\prime} of M on an input w which leads to a halting state takes time quadratic to the size of the input $|w|$ and the number of steps t that M performs.

Proof (sketch):

- scan the tape twice

1 find the symbols at the head positions (which transition to follow?)
2 write/move the heads according to the transition

- same arguments as before for the number of steps

Another extension: Multiple heads

Definition (informal)

- at each step all heads can read/write/move
- we need a convention if two heads try writing at the same place

Theorem

Every multiple head Turing Machine M has an equivalent single head Turing Machine M^{\prime}.

The simulation by M^{\prime} of M on an input w which leads to a halting state takes time quadratic to the size of the input $|w|$ and the number of steps t that M performs.

Proof (sketch):

- scan the tape twice

1 find the symbols at the head positions (which transition to follow?)
2 write/move the heads according to the transition

- same arguments as before for the number of steps

Another extension: Multiple heads

Definition (informal)

- at each step all heads can read/write/move
- we need a convention if two heads try writing at the same place

Theorem

Every multiple head Turing Machine M has an equivalent single head Turing Machine M^{\prime}.

The simulation by M^{\prime} of M on an input w which leads to a halting state takes time quadratic to the size of the input $|w|$ and the number of steps t that M performs.

Proof (another one):

Another extension: Multiple heads

Definition (informal)

- at each step all heads can read/write/move
- we need a convention if two heads try writing at the same place

Theorem

Every multiple head Turing Machine M has an equivalent single head Turing Machine M^{\prime}.

The simulation by M^{\prime} of M on an input w which leads to a halting state takes time quadratic to the size of the input $|w|$ and the number of steps t that M performs.

Proof (another one):

\cdots	\sqcup	m	y	\sqcup	i	n	p	u	t	\sqcup	\cdots
			\wedge								
							\wedge				
				\wedge							

Multiple heads: example

Give a Machine Turing with two heads that transforms the input $\rrbracket w$ to $\Xi w \sqcup w$.

- extend notation:
- $\underline{\sigma}, \bar{\sigma}, \underline{\bar{\sigma}}$: the position of the 1 st, 2 nd and both heads, respectively
- $R^{1,2}$: move both heads on the right
- σ^{2} (as a state): write in the position of head 2 the symbol σ
- σ^{2} (as a label): if the head 2 reads the symbol σ

Multiple heads: example

Give a Machine Turing with two heads that transforms the input $\rrbracket w$ to $\rrbracket w \sqcup w$.

- extend notation:
- $\underline{\sigma}, \bar{\sigma}, \underline{\bar{\sigma}}$: the position of the 1 st, 2 nd and both heads, respectively
- $R^{1,2}$: move both heads on the right
- σ^{2} (as a state): write in the position of head 2 the symbol σ
- σ^{2} (as a label): if the head 2 reads the symbol σ

Unbounded tapes

What happens if the tape is bounded in one direction?

Unbounded tapes

What happens if the tape is bounded in one direction?

Theorem

Every two-direction unbounded tape Turing Machine M has an equivalent single-direction unbounded tape Turing Machine.

Two-dimensional tape

Definition (informal)

- move the head left/right/up/down

Two-dimensional tape

Definition (informal)

- move the head left/right/up/down

Why?

Two-dimensional tape

Definition (informal)

- move the head left/right/up/down

Why?

- for example, to represent more easily two-dimensional matrices

Two-dimensional tape

Definition (informal)

- move the head left/right/up/down

Why?

- for example, to represent more easily two-dimensional matrices

Theorem

Every two-dimensional tape Turing Machine M has an equivalent single-dimensional tape Turing Machine M^{\prime}.

The simulation by M^{\prime} of M on an input w which leads to a halting state takes time polynomial to the size of the input $|w|$ and the number of steps t that M performs.

Proof (sketch):

Two-dimensional tape

Definition (informal)

- move the head left/right/up/down

Why?

- for example, to represent more easily two-dimensional matrices

Theorem

Every two-dimensional tape Turing Machine M has an equivalent single-dimensional tape Turing Machine M^{\prime}.

The simulation by M^{\prime} of M on an input w which leads to a halting state takes time polynomial to the size of the input $|w|$ and the number of steps t that M performs.

Proof (sketch):

- use a multiple tape Turing Machine
- each tape corresponds to one line of the two-dimensional memory

Discussion

- We can even combine the presented extensions and still not get a stronger model

Discussion

- We can even combine the presented extensions and still not get a stronger model
- Observation: a computation in the prototype Turing Machine needs a number of steps which is bounded by a polynomial of the size of the input and of the number steps in any of the extended model

