Fundamental Computer Science Sequence 1: Turing Machines

MoSIG-M1Info, 2021

February 1, 2021

Aim and content

We present in detail the classical computational model of Turing Machine.

The objective is to understand the basic mechanisms and to learn the underlying formalism.

Description of the Turing Machine

- memory: an infinite tape
- initially, it contains the input string
- move the head left or right
- read and/or write to current cell
- control (transition table)
- finite number of states
- one current state
- At each step:
- move from state to state
- read/write or move Left/Right in the tape

Turing machine: formal definition

A Turing Machine (M) is a six-tuple $(K, \Sigma, \Gamma, \delta, s, H)$, where

- K is a finite set of states
- Σ is the input alphabet not containing the blank symbol \sqcup
- Γ is the tape alphabet, where $\sqcup \in \Gamma$ and $\Sigma \subseteq \Gamma$
- $s \in K$: the initial state
- $H \subseteq K$: the set of halting states
- δ : the transition function from $(K \backslash H) \times \Gamma$ to $K \times(\Gamma \cup\{\leftarrow, \rightarrow\})$

Turing machine: formal definition

A Turing Machine (M) is a six-tuple $(K, \Sigma, \Gamma, \delta, s, H)$, where

- K is a finite set of states
- Σ is the input alphabet not containing the blank symbol \sqcup
- Γ is the tape alphabet, where $\sqcup \in \Gamma$ and $\Sigma \subseteq \Gamma$
- $s \in K$: the initial state
- $H \subseteq K$: the set of halting states
- δ : the transition function from $(K \backslash H) \times \Gamma$ to $K \times(\Gamma \cup\{\leftarrow, \rightarrow\})$

In general, $\delta(q, a)=(p, b)$ means that when M is in the state q and reads a in the tape, it goes to the state p and

- if $b \in \Sigma$, writes b in the place of a
- if $b \in\{\leftarrow, \rightarrow\}$, moves the head either Left or Right

A first example (2 representations)

Consider the Turing Machine $M=(K, \Sigma, \Gamma, \delta, s, H)$ where

$$
K=\left\{q_{0}, q_{1}, h\right\}, \quad \Sigma=\{a\}, \quad \Gamma=\{a, \sqcup\}, \quad s=q_{0}, \quad H=\{h\},
$$ and δ is given by the table. How does M proceed?

q	σ	$\delta(q, \sigma)$
q_{0}	a	$\left(q_{1}, \sqcup\right)$
q_{0}	\sqcup	(h, \sqcup)
q_{1}	a	$\left(q_{0}, a\right)$
q_{1}	\sqcup	$\left(q_{0}, \rightarrow\right)$

A first example (2 representations)

Consider the Turing Machine $M=(K, \Sigma, \Gamma, \delta, s, H)$ where

$$
K=\left\{q_{0}, q_{1}, h\right\}, \quad \Sigma=\{a\}, \quad \Gamma=\{a, \sqcup\}, \quad s=q_{0}, \quad H=\{h\},
$$ and δ is given by the table. How does M proceed?

q	σ	$\delta(q, \sigma)$
q_{0}	a	$\left(q_{1}, \sqcup\right)$
q_{0}	\sqcup	(h, \sqcup)
q_{1}	a	$\left(q_{0}, a\right)$
q_{1}	\sqcup	$\left(q_{0}, \rightarrow\right)$

$$
\left(q_{0}, \underline{a} a a\right)
$$

A first example (2 representations)

Consider the Turing Machine $M=(K, \Sigma, \Gamma, \delta, s, H)$ where

$$
K=\left\{q_{0}, q_{1}, h\right\}, \quad \Sigma=\{a\}, \quad \Gamma=\{a, \sqcup\}, \quad s=q_{0}, \quad H=\{h\},
$$ and δ is given by the table. How does M proceed?

q	σ	$\delta(q, \sigma)$
q_{0}	a	$\left(q_{1}, \sqcup\right)$
q_{0}	\sqcup	(h, \sqcup)
q_{1}	a	$\left(q_{0}, a\right)$
q_{1}	\sqcup	$\left(q_{0}, \rightarrow\right)$

$$
\left(q_{0}, \underline{a} a a\right) \quad \vdash_{M} \quad\left(q_{1}, \underline{\sqcup} a a\right)
$$

A first example (2 representations)

Consider the Turing Machine $M=(K, \Sigma, \Gamma, \delta, s, H)$ where

$$
K=\left\{q_{0}, q_{1}, h\right\}, \quad \Sigma=\{a\}, \quad \Gamma=\{a, \sqcup\}, \quad s=q_{0}, \quad H=\{h\},
$$ and δ is given by the table. How does M proceed?

q	σ	$\delta(q, \sigma)$
q_{0}	a	$\left(q_{1}, \sqcup\right)$
q_{0}	\sqcup	(h, \sqcup)
q_{1}	a	$\left(q_{0}, a\right)$
q_{1}	\sqcup	$\left(q_{0}, \rightarrow\right)$

$$
\left(q_{0}, \underline{a} a a\right) \quad \vdash_{M}\left(q_{1}, \underline{\sqcup} a a\right) \vdash_{M}\left(q_{0}, \sqcup \underline{a} a\right)
$$

A first example (2 representations)

Consider the Turing Machine $M=(K, \Sigma, \Gamma, \delta, s, H)$ where

$$
K=\left\{q_{0}, q_{1}, h\right\}, \quad \Sigma=\{a\}, \quad \Gamma=\{a, \sqcup\}, \quad s=q_{0}, \quad H=\{h\},
$$ and δ is given by the table. How does M proceed?

q	σ	$\delta(q, \sigma)$
q_{0}	a	$\left(q_{1}, \sqcup\right)$
q_{0}	\sqcup	(h, \sqcup)
q_{1}	a	$\left(q_{0}, a\right)$
q_{1}	\sqcup	$\left(q_{0}, \rightarrow\right)$

$$
\begin{array}{rll}
\left(q_{0}, \underline{a} a a\right) & \vdash_{M} & \left(q_{1}, \sqcup a a\right) \vdash_{M}\left(q_{0}, \sqcup \underline{a} a\right) \\
& \vdash_{M} & \left(q_{1}, \sqcup \sqcup a\right)
\end{array}
$$

A first example (2 representations)

Consider the Turing Machine $M=(K, \Sigma, \Gamma, \delta, s, H)$ where

$$
K=\left\{q_{0}, q_{1}, h\right\}, \quad \Sigma=\{a\}, \quad \Gamma=\{a, \sqcup\}, \quad s=q_{0}, \quad H=\{h\},
$$ and δ is given by the table. How does M proceed?

q	σ	$\delta(q, \sigma)$
q_{0}	a	$\left(q_{1}, \sqcup\right)$
q_{0}	\sqcup	(h, \sqcup)
q_{1}	a	$\left(q_{0}, a\right)$
q_{1}	\sqcup	$\left(q_{0}, \rightarrow\right)$

$$
\begin{array}{llll}
\left(q_{0}, \underline{a} a a\right) & \vdash_{M} & \left(q_{1}, \sqcup a a\right) \vdash_{M} & \left(q_{0}, \sqcup \underline{a} a\right) \\
& \vdash_{M} & \left(q_{1}, \sqcup \sqcup a\right) \vdash_{M} & \left(q_{0}, \sqcup \sqcup \underline{a}\right)
\end{array}
$$

A first example (2 representations)

Consider the Turing Machine $M=(K, \Sigma, \Gamma, \delta, s, H)$ where

$$
K=\left\{q_{0}, q_{1}, h\right\}, \quad \Sigma=\{a\}, \quad \Gamma=\{a, \sqcup\}, \quad s=q_{0}, \quad H=\{h\},
$$ and δ is given by the table. How does M proceed?

q	σ	$\delta(q, \sigma)$
q_{0}	a	$\left(q_{1}, \sqcup\right)$
q_{0}	\sqcup	(h, \sqcup)
q_{1}	a	$\left(q_{0}, a\right)$
q_{1}	\sqcup	$\left(q_{0}, \rightarrow\right)$

$$
\begin{array}{rlll}
\left(q_{0}, \underline{a} a a\right) & \vdash_{M} & \left(q_{1}, \sqcup a a\right) \vdash_{M} & \left(q_{0}, \sqcup \underline{a} a\right) \\
& \vdash_{M} & \left(q_{1}, \sqcup \sqcup a\right) \vdash_{M} & \left(q_{0}, \sqcup \sqcup \underline{a}\right) \\
& \vdash_{M} & \left(q_{1}, \sqcup \sqcup \sqcup\right)
\end{array}
$$

A first example (2 representations)

Consider the Turing Machine $M=(K, \Sigma, \Gamma, \delta, s, H)$ where

$$
K=\left\{q_{0}, q_{1}, h\right\}, \quad \Sigma=\{a\}, \quad \Gamma=\{a, \sqcup\}, \quad s=q_{0}, \quad H=\{h\},
$$ and δ is given by the table. How does M proceed?

q	σ	$\delta(q, \sigma)$
q_{0}	a	$\left(q_{1}, \sqcup\right)$
q_{0}	\sqcup	(h, \sqcup)
q_{1}	a	$\left(q_{0}, a\right)$
q_{1}	\sqcup	$\left(q_{0}, \rightarrow\right)$

$$
\begin{array}{rll}
\left(q_{0}, \underline{a} a a\right) & \vdash_{M} & \left(q_{1}, \sqcup a a\right) \vdash_{M} \quad\left(q_{0}, \sqcup \underline{a} a\right) \\
& \vdash_{M} & \left(q_{1}, \sqcup \sqcup a\right) \vdash_{M} \quad\left(q_{0}, \sqcup \sqcup \underline{a}\right) \\
& \vdash_{M} & \left(q_{1}, \sqcup \sqcup \sqcup\right) \vdash_{M} \quad\left(q_{0}, \sqcup \sqcup \sqcup \sqcup\right)
\end{array}
$$

A first example (2 representations)

Consider the Turing Machine $M=(K, \Sigma, \Gamma, \delta, s, H)$ where

$$
K=\left\{q_{0}, q_{1}, h\right\}, \quad \Sigma=\{a\}, \quad \Gamma=\{a, \sqcup\}, \quad s=q_{0}, \quad H=\{h\},
$$ and δ is given by the table. How does M proceed?

q	σ	$\delta(q, \sigma)$
q_{0}	a	$\left(q_{1}, \sqcup\right)$
q_{0}	\sqcup	(h, \sqcup)
q_{1}	a	$\left(q_{0}, a\right)$
q_{1}	\sqcup	$\left(q_{0}, \rightarrow\right)$

$$
\begin{array}{rll}
\left(q_{0}, \underline{a} a a\right) & \vdash_{M} & \left(q_{1}, \sqcup a a\right) \vdash_{M} \quad\left(q_{0}, \sqcup \underline{a} a\right) \\
& \vdash_{M} & \left(q_{1}, \sqcup \sqcup a\right) \vdash_{M} \quad\left(q_{0}, \sqcup \sqcup \underline{a}\right) \\
& \vdash_{M} & \left(q_{1}, \sqcup \sqcup \sqcup\right) \vdash_{M} \quad\left(q_{0}, \sqcup \sqcup \sqcup \sqcup\right) \\
& \vdash_{M} & (h, \sqcup \sqcup \sqcup \sqcup)
\end{array}
$$

Formalize the notation

Definition

A configuration of a Turing Machine $M=(K, \Sigma, \Gamma, \delta, s, H)$ is a member of $K \times \Gamma^{*} \times \Gamma^{*}((\Gamma \backslash\{\sqcup\}) \cup\{\epsilon\})$.

- informally: a triplet describing
- the current state
- the contents of the tape at the left of the head (including head's position)
- the contents of the tape at the right of the head

Formalize the notation

Definition

A configuration of a Turing Machine $M=(K, \Sigma, \Gamma, \delta, s, H)$ is a member of $K \times \Gamma^{*} \times \Gamma^{*}((\Gamma \backslash\{\sqcup\}) \cup\{\epsilon\})$.

- informally: a triplet describing
- the current state
- the contents of the tape at the left of the head (including head's position)
- the contents of the tape at the right of the head
- example: $\left(q_{1}, \sqcup a, a\right)$ or simply $\left(q_{1}, \sqcup \underline{a} a\right)$ or simply $\left(q_{1}, \underline{a} a\right)$

Formalize the notation

Definition

A configuration of a Turing Machine $M=(K, \Sigma, \Gamma, \delta, s, H)$ is a member of $K \times \Gamma^{*} \times \Gamma^{*}((\Gamma \backslash\{\sqcup\}) \cup\{\epsilon\})$.

- informally: a triplet describing
- the current state
- the contents of the tape at the left of the head (including head's position)
- the contents of the tape at the right of the head
- example: $\left(q_{1}, \sqcup a, a\right)$ or simply $\left(q_{1}, \sqcup \underline{a} a\right)$ or simply $\left(q_{1}, \underline{a} a\right)$

Initial configuration: $(s, \underline{a} w)$ where $M=(K, \Sigma, \Gamma, \delta, s, H)$ is a Turing Machine, $a \in \Sigma, w \in \Sigma^{*}$ and $a w$ is the input string

Formalize the notation

Definition

A configuration of a Turing Machine $M=(K, \Sigma, \Gamma, \delta, s, H)$ is a member of $K \times \Gamma^{*} \times \Gamma^{*}((\Gamma \backslash\{\sqcup\}) \cup\{\epsilon\})$.

- informally: a triplet describing
- the current state
- the contents of the tape at the left of the head (including head's position)
- the contents of the tape at the right of the head
- example: $\left(q_{1}, \sqcup a, a\right)$ or simply $\left(q_{1}, \sqcup \underline{a} a\right)$ or simply $\left(q_{1}, \underline{a} a\right)$

Initial configuration: $(s, \underline{a} w)$ where $M=(K, \Sigma, \Gamma, \delta, s, H)$ is a Turing Machine, $a \in \Sigma, w \in \Sigma^{*}$ and $a w$ is the input string

Halted configuration: a configuration whose state belongs to H

- example: $(h, \sqcup \sqcup \sqcup \sqcup, \epsilon)$ or simply $(h, \sqcup \sqcup \sqcup \sqcup)$ or simply (h, \sqcup)

Formalize the notation

Definition

Consider a Turing Machine M and two configurations C_{1} and C_{2} of M. If M can go from C_{1} to C_{2} in a single step, then we write

$$
C_{1} \vdash_{M} C_{2}
$$

Formalize the notation

Definition

Consider a Turing Machine M and two configurations C_{1} and C_{2} of M. If M can go from C_{1} to C_{2} in a single step, then we write

$$
C_{1} \vdash_{M} C_{2}
$$

Definition

Consider a Turing Machine M and two configurations C_{1} and C_{2} of M. If M can go from C_{1} to C_{2} using a sequence of configurations, then we say that C_{1} yields C_{2} and we write

$$
C_{1} \vdash_{M}^{*} C_{2}
$$

Formalize the notation

Definition

Consider a Turing Machine M and two configurations C_{1} and C_{2} of M. If M can go from C_{1} to C_{2} in a single step, then we write

$$
C_{1} \vdash_{M} C_{2}
$$

Definition

Consider a Turing Machine M and two configurations C_{1} and C_{2} of M. If M can go from C_{1} to C_{2} using a sequence of configurations, then we say that C_{1} yields C_{2} and we write

$$
C_{1} \vdash_{M}^{*} C_{2}
$$

Definition

A computation of a Turing Machine M is a sequence of configurations $C_{0}, C_{1}, \ldots, C_{n}$, for some $n \geq 0$, such that

$$
C_{0} \vdash_{M} C_{1} \vdash_{M} C_{2} \vdash_{M} \ldots \vdash_{M} C_{n}
$$

The length of the computation is n (or it performs n steps).

Turing Machines and automata

Turing Machines are (augmented) finite states automata.
Not detailed here
see the following link to get an idea of the powers.
http://www.jflap.org/

Determinism or not?

Implicitly, the transition δ is deterministic.

Determinism or not?

Implicitly, the transition δ is deterministic.

Non-deterministic Turing Machine

What happens if several outputs are allowed at each step?

The choice is among k fixed possibilities, random, round-robin, etc.

Determinism or not?

Implicitly, the transition δ is deterministic.

Non-deterministic Turing Machine

What happens if several outputs are allowed at each step?

The choice is among k fixed possibilities, random, round-robin, etc.
This point is important and it will be detailed in a separate lecture.

A more general notation for Turing Machines

Turing Machine $L_{a}=(K, \Sigma, \Gamma, \delta, s, H)$ where:

$$
\begin{aligned}
& -K=\left\{q_{0}, q_{1}\right\} \\
& -a \in \Sigma \\
& -s=q_{0} \\
& -H=\left\{q_{1}\right\}
\end{aligned}
$$

A more general notation for Turing Machines

Turing Machine $L_{a}=(K, \Sigma, \Gamma, \delta, s, H)$ where:

$$
\begin{aligned}
& -K=\left\{q_{0}, q_{1}\right\} \\
& -a \in \Sigma \\
& -s=q_{0} \\
& -H=\left\{q_{1}\right\}
\end{aligned}
$$

- Define similar simple Turing Machines
- examples: $L, R, L_{a}, R_{a}, L^{2}, R^{2}, a$, \sqcup, etc.

A more general notation for Turing Machines

Turing Machine $L_{a}=(K, \Sigma, \Gamma, \delta, s, H)$ where:

$-K=\left\{q_{0}, q_{1}\right\}$
$-a \in \Sigma$
$-s=q_{0}$

- $H=\left\{q_{1}\right\}$
- Define similar simple Turing Machines
- examples: $L, R, L_{a}, R_{a}, L^{2}, R^{2}, a$, \sqcup, etc.
- Combine simple machines to construct more complicated ones

1. Run M_{1}

M_{3}	2. If M_{1} finishes and the head reads a then run M_{2} starting from this a
$\prod_{1} \xrightarrow{a} M_{2}$	3. Else run M_{3} starting from this b

Example

What is the goal of the following Turing Machine?

Example

What is the goal of the following Turing Machine?

$$
>L_{\sqcup} \rightarrow \stackrel{\downarrow}{\substack{\downarrow \\ \\ R_{\sqcup}}}
$$

$(\sqcup a b c \sqcup) \quad \vdash_{M}^{*}(\sqcup a b c \sqcup) \quad\left(L_{\sqcup}\right)$

Example

What is the goal of the following Turing Machine?

$$
>L_{\sqcup} \rightarrow \stackrel{\downarrow}{\substack{\downarrow \\ \\ R_{\sqcup}}}
$$

$\begin{array}{llll}(\sqcup a b c \sqcup) & \vdash_{M}^{*} & (\sqcup a b c \sqcup) & \left(L_{\sqcup}\right) \\ & \vdash_{M} & (\sqcup \underline{a} b c \sqcup) & (R)\end{array}$

Example

What is the goal of the following Turing Machine?

$$
>L_{\sqcup} \rightarrow \stackrel{\downarrow}{\substack{\downarrow \\ \\ R_{\sqcup}}}
$$

$\begin{array}{cccc}(\sqcup a b c \sqcup) & \vdash_{M}^{*} & (\sqcup a b c \sqcup) & \left(L_{\sqcup}\right) \\ & \vdash_{M} & (\sqcup \underline{a b c} \sqcup) & (R) \\ & \vdash_{M} & (\sqcup \sqcup b b c \sqcup) & (\sqcup)\end{array}$

Example

What is the goal of the following Turing Machine?

$$
>L_{\sqcup} \rightarrow \stackrel{\downarrow}{\substack{\downarrow \\ \\ R_{\sqcup}}}
$$

$$
\begin{array}{llll}
(\sqcup a b c \sqcup) & \vdash_{M}^{*} & (\sqcup a b c \sqcup) & \left(L_{\sqcup}\right) \\
& \vdash_{M} & (\sqcup \underline{a b c \sqcup)} & (R) \\
& \vdash_{M} & (\sqcup \sqcup b c \sqcup) & (\sqcup) \\
& \vdash_{M}^{*} & (\sqcup \sqcup b c \sqcup \sqcup) & \left(R_{\sqcup}^{2}\right)
\end{array}
$$

Example

What is the goal of the following Turing Machine?

$$
>L_{\sqcup} \rightarrow \stackrel{\downarrow}{\substack{\downarrow \\ \\ \overbrace{\sqcup} \\ R_{\sqcup}}}
$$

$$
\begin{array}{llll}
(\sqcup a b c \sqcup) & \vdash_{M}^{*} & (\sqcup a b c \sqcup) & \left(L_{\sqcup}\right) \\
& \vdash_{M} & (\sqcup \underline{a b c \sqcup)} & (R) \\
& \vdash_{M} & (\sqcup \sqcup b c \sqcup) & (\sqcup) \\
& \vdash_{M}^{*} & (\sqcup \sqcup b c \sqcup \sqcup) & \left(R_{\sqcup}^{2}\right) \\
& \vdash_{M} & (\sqcup \sqcup b c \sqcup \underline{a}) & (a)
\end{array}
$$

Example

What is the goal of the following Turing Machine?

$$
>L_{\sqcup} \rightarrow \stackrel{\downarrow}{\substack{ \\ \\\downarrow_{\sqcup} \\ R_{\sqcup}}}
$$

$$
\begin{array}{llll}
(\sqcup a b c \sqcup) & \vdash_{M}^{*} & (\sqcup a b c \sqcup) & \left(L_{\sqcup}\right) \\
& \vdash_{M} & (\sqcup \underline{a b c \sqcup)} & (R) \\
& \vdash_{M} & (\sqcup \sqcup b c \sqcup) & (\sqcup) \\
& \vdash_{M}^{*} & (\sqcup \sqcup b c \sqcup \sqcup) & \left(R_{\sqcup}^{2}\right) \\
& \vdash_{M} & (\sqcup \sqcup b c \sqcup \underline{a}) & (a) \\
& \vdash_{M}^{*} & (\sqcup \sqcup b c \sqcup a) & \left(L_{\sqcup}^{2}\right)
\end{array}
$$

Example

What is the goal of the following Turing Machine?

$$
>L_{\sqcup} \rightarrow \stackrel{\downarrow}{\substack{\downarrow \\ \\ \overbrace{\sqcup} \\ R_{\sqcup}}}
$$

$$
\begin{array}{llll}
(\sqcup a b c \sqcup) & \vdash_{M}^{*} & (\sqcup a b c \sqcup) & \left(L_{\sqcup}\right) \\
& \vdash_{M} & (\sqcup \underline{a} b c \sqcup) & (R) \\
& \vdash_{M} & (\sqcup \sqcup b c \sqcup) & (\sqcup) \\
& \vdash_{M}^{*} & (\sqcup \sqcup b c \sqcup \underline{\sqcup}) & \left(R_{\sqcup)}^{2}\right) \\
& \vdash_{M} & (\sqcup \sqcup b c \sqcup \underline{a}) & (a) \\
& \vdash_{M}^{*} & (\sqcup \sqcup b c \sqcup a) & \left(L_{\sqcup)}^{2}\right) \\
& \vdash_{M} & (\sqcup \underline{a} b c \sqcup a) & (a)
\end{array}
$$

Example

What is the goal of the following Turing Machine?

$$
>L_{\sqcup} \rightarrow \stackrel{\downarrow}{\substack{\downarrow \\ \\ \overbrace{\sqcup} \\ R_{\sqcup}}}
$$

```
(\sqcupabc\sqcup) \vdash**
    \vdashM
    \vdashM
    \vdash}\mp@subsup{}{M}{*}\quad(\sqcup\sqcupbc\sqcup\sqcup) ( (R) 
    \vdashM
    \vdash}\mp@subsup{}{M}{*}(\sqcup\sqcupbc\sqcupa)\quad(\mp@subsup{L}{\sqcup}{2}
    \vdash
    \vdash
```


Example

What is the goal of the following Turing Machine?


```
\((\sqcup a b c \sqcup) \quad \vdash_{M}^{*}(\underline{\bigsqcup} a b c \sqcup) \quad\left(L_{\sqcup}\right)\)
    \(\vdash_{M} \quad(\sqcup \underline{a} b c \sqcup) \quad(R)\)
    \(\vdash_{M} \quad(\sqcup \sqcup b c \sqcup) \quad(\sqcup)\)
    \(\vdash_{M}^{*} \quad(\sqcup \sqcup b c \sqcup \underline{\square}) \quad\left(R_{\sqcup}^{2}\right) \quad\) Solution:
    \(\vdash_{M}(\sqcup \sqcup b c \sqcup \underline{a}) \quad(a) \quad\) transforms \(\sqcup w \sqcup\) to \(\sqcup w \sqcup w \sqcup\)
    \(\vdash_{M}^{*} \quad(\sqcup \sqcup b c \sqcup a) \quad\left(L_{\sqcup}^{2}\right)\)
    \(\vdash_{M} \quad(\sqcup \underline{a} b c \sqcup a) \quad(a)\)
    \(\vdash_{M} \quad(\sqcup a \underline{b} c \sqcup a) \quad(R)\)
```


Behind the power...

Why do we need so formal descriptions?

- Precision avoids ambiguity
- The finest grain is required
- The hierarchical decomposition is useful

Generalize more the notation

High-level description

- give an algorithmic description of how the Turing Machine works in finite and discrete steps
- what is allowed?

Generalize more the notation

High-level description

- give an algorithmic description of how the Turing Machine works in finite and discrete steps
- what is allowed? almost everything!

Generalize more the notation

High-level description

- give an algorithmic description of how the Turing Machine works in finite and discrete steps
- what is allowed? almost everything!

Example

$M=$ "On input w :

1. scan the input from left to right to be sure that it is of the form $a^{*} b^{*} c^{*}$ and reject if not
2. find the leftmost a in the tape and if such an a does not exist, then

- scan the input for a c and if such a c exists then reject else accept

3. replace a by \hat{a}
4. scan the input for the leftmost b and if such a b does not exist, then restore all b 's (replace all \hat{b} by b) and goto 2
5. replace b by \hat{b}
6. scan to the right for the first c and if such a c does not exist, then reject
7. replace c by \hat{c} and goto $4 "$

Generalize more the notation

High-level description

- give an algorithmic description of how the Turing Machine works in finite and discrete steps
- what is allowed? almost everything!

Example

$$
L=\left\{a^{i} b^{j} c^{k}: i \times j=k\right\}
$$

$M=$ "On input w :

1. scan the input from left to right to be sure that it is of the form $a^{*} b^{*} c^{*}$ and reject if not
2. find the leftmost a in the tape and if such an a does not exist, then

- scan the input for a c and if such a c exists then reject else accept

3. replace a by \hat{a}
4. scan the input for the leftmost b and if such a b does not exist, then restore all b 's (replace all \hat{b} by b) and goto 2
5. replace b by \hat{b}
6. scan to the right for the first c and if such a c does not exist, then reject
7. replace c by \hat{c} and goto $4 "$

Definitions

Consider a Turing Machine $M=(K, \Sigma, \Gamma, \delta, s, H)$ such that $H=\{y, n\}$.
Any halting configuration whose state component is y (for "yes") is called an accepting configuration, while a halting configuration whose state component is n (for "no") is called a rejecting configuration.

Definitions

Consider a Turing Machine $M=(K, \Sigma, \Gamma, \delta, s, H)$ such that $H=\{y, n\}$.
Any halting configuration whose state component is y (for "yes") is called an accepting configuration, while a halting configuration whose state component is n (for "no") is called a rejecting configuration.

We say that M accepts a string $w \in \Sigma^{*}$ if starting from an initial configuration yields an accepting configuration.
We say that M rejects a string $w \in \Sigma^{*}$ if starting from an initial configuration yields an rejecting configuration.

Definitions

Consider a Turing Machine $M=(K, \Sigma, \Gamma, \delta, s, H)$ such that $H=\{y, n\}$.
Any halting configuration whose state component is y (for "yes") is called an accepting configuration, while a halting configuration whose state component is n (for "no") is called a rejecting configuration.

We say that M accepts a string $w \in \Sigma^{*}$ if starting from an initial configuration yields an accepting configuration.
We say that M rejects a string $w \in \Sigma^{*}$ if starting from an initial configuration yields an rejecting configuration.

We say that M decides a language $L \subseteq \Sigma^{*}$ if for any string $w \in \Sigma^{*}$: if $w \in L$ then M accepts w; and if $w \notin L$ then M rejects w.

Definitions

Consider a Turing Machine $M=(K, \Sigma, \Gamma, \delta, s, H)$ such that $H=\{y, n\}$.
Any halting configuration whose state component is y (for "yes") is called an accepting configuration, while a halting configuration whose state component is n (for "no") is called a rejecting configuration.

We say that M accepts a string $w \in \Sigma^{*}$ if starting from an initial configuration yields an accepting configuration.
We say that M rejects a string $w \in \Sigma^{*}$ if starting from an initial configuration yields an rejecting configuration.

We say that M decides a language $L \subseteq \Sigma^{*}$ if for any string $w \in \Sigma^{*}$: if $w \in L$ then M accepts w; and if $w \notin L$ then M rejects w.

We say that M recognizes (or semidecides) a language $L \subseteq \Sigma^{*}$ if for any string $w \in \Sigma^{*}: w \in L$ if and only if M accepts w.

Definitions

A language L is called decidable (or Turing-decidable or recursive) if there is a Turing Machine that decides it.

Definitions

A language L is called decidable (or Turing-decidable or recursive) if there is a Turing Machine that decides it.

A language L is called Turing-recognizable (or recursively enumerable) if there is a Turing Machine that recognizes it.

Basic theorems

Theorem
If a language L is decidable, then it is Turing-recognizable.

Basic theorems

Theorem

If a language L is decidable, then it is Turing-recognizable.

Theorem

If a language L is decidable, then its complement \bar{L} is also.

Proof.

$$
\delta^{\prime}(q, a)= \begin{cases}n & \text { if } \delta(q, a)=y \\ y & \text { if } \delta(q, a)=n \\ \delta(q, a) & \text { otherwise }\end{cases}
$$

More definitions

Consider a Turing Machine $M=(K, \Sigma, \Gamma, \delta, s,\{h\})$ and a string $w \in \Sigma^{*}$. Suppose that M halts on input w and for some $y \in \Sigma^{*}$ we have

$$
(s, \underline{\sqcup} w) \vdash_{M}^{*}(h, \underline{\sqcup} y)
$$

Then, y is the output of M on input w and is denoted by $M(w)$.

More definitions

Consider a Turing Machine $M=(K, \Sigma, \Gamma, \delta, s,\{h\})$ and a string $w \in \Sigma^{*}$. Suppose that M halts on input w and for some $y \in \Sigma^{*}$ we have

$$
(s, \sqcup \underline{\omega}) \vdash_{M}^{*}(h, \underline{\sqcup} y)
$$

Then, y is the output of M on input w and is denoted by $M(w)$.
Consider a function $f: \Sigma^{*} \rightarrow \Sigma^{*}$. We say that M computes the function f if $M(w)=f(w)$ for all $w \in \Sigma^{*}$.

More definitions

Consider a Turing Machine $M=(K, \Sigma, \Gamma, \delta, s,\{h\})$ and a string $w \in \Sigma^{*}$. Suppose that M halts on input w and for some $y \in \Sigma^{*}$ we have

$$
(s, \sqcup \underline{\omega}) \vdash_{M}^{*}(h, \underline{\sqcup} y)
$$

Then, y is the output of M on input w and is denoted by $M(w)$.
Consider a function $f: \Sigma^{*} \rightarrow \Sigma^{*}$. We say that M computes the function f if $M(w)=f(w)$ for all $w \in \Sigma^{*}$.

A function f is called decidable (or recursive) if there is a Turing Machine that computes it.

Extension of the Turing Machine

The natural extension:

- write in the tape and move left or right at the same time
- modify the definition of the transition function

$$
\begin{aligned}
& \text { initial: from }(K \backslash H) \times \Gamma \text { to } K \times(\Gamma \cup\{\leftarrow, \rightarrow\}) \\
& \text { extended: from }(K \backslash H) \times \Gamma \text { to } K \times \Gamma \times\{\leftarrow, \rightarrow\}
\end{aligned}
$$

Extension of the Turing Machine

The natural extension:

- write in the tape and move left or right at the same time
- modify the definition of the transition function

$$
\begin{aligned}
& \text { initial: from }(K \backslash H) \times \Gamma \text { to } K \times(\Gamma \cup\{\leftarrow, \rightarrow\}) \\
& \text { extended: from }(K \backslash H) \times \Gamma \text { to } K \times \Gamma \times\{\leftarrow, \rightarrow\}
\end{aligned}
$$

- if the extended Turing Machine halts on input w after t steps, then the initial Turing Machine halts on input w after at most $2 t$ steps

Discussion

- We can even combine some extensions and still not get a stronger (more powerful) model

Discussion

- We can even combine some extensions and still not get a stronger (more powerful) model
- Observation: a computation in the prototype Turing Machine needs a number of steps which is bounded by a polynomial of the size of the input and of the number of steps in any of the extended model

