Fundamental Computer Science Sequence 1: Turing Machines An introduction

Denis Trystram

MoSIG1-M1Info, 2021

Classes

- 33 hours in total (10 lectures plus a reading session) (half Theory, half Exercises/Practice).
- ► 5 topics
 - 1. Universal Computing Model: the Turing Machine
 - 2. Introduction to Quantum Computing
 - 3. NP-completeness
 - 4. Approximation Theory
 - 5. Introduction to parallel complexity
 - 6. Alternative model: λ -Calculus

Evaluation

- ► Exam: 70%
- ► Reading papers: 30%

Documents available at:

http://datamove.imag.fr/denis.trystram/teaching.php

- ► Mattermost https://im2ag-tchat.univ-grenoble-alpes.fr/
- Active participation where some specialized topics are prepared by the students and discussed in class. Interactive class through many questions/answers.

- ► M. Garey and D. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman
- ▶ P. Wolper, Introduction à la calculabilité, Dunod
- ► C. Papadimitriou, Computational Complexity, Pearson
- ► A. Rosenberg, The pillars of Computation Theory, Springer
- S. Arora and B. Barak, Computational complexity a modern approach, Cambridge
- V. Vazirani, Approximation Algorithms, Springer
- R. Motwani and P. Raghavan, Randomized Algorithms, Cambridge Univ. Press

A comics about the beginning of fundamental CS

AN EPIC SEARCH FOR TRUTH

APOSTOLOS DOXIADIS AND CHRISTOS H. PAPADIMITRIOU Art by Alecos Papadatos and Annie di Donna

Agenda

Objective of the session

$\label{eq:present} Present \ (and \ discuss) \ the \ universal \ computational \ model \ of \ Turing \ machine.$

- Start by this introduction that present and discuss the concept of algorithms
- ► The main piece of the cake: basic Turing Machines
- Some exercises
- Extensions
 - Classical variants
 - Random access TM
- Non-Deterministic TM
- ▶ Three interesting related questions

Preliminary

What is an *Algorithm*?

The first question is to discuss what can be calculated by a Computer.

Preliminary

What is an *Algorithm*?

The first question is to discuss what can be calculated by a Computer.

Informally:

this is a step-by-step procedure that solves a problem.

Preliminary

What is an Algorithm?

The first question is to discuss what can be calculated by a Computer.

Informally:

this is a step-by-step procedure that solves a problem.

Desired properties

clearly defined steps (formalization)

efficiency

how many -elementary- steps are needed for solving the problem?

► termination

Short History

• Etymology:

- ► Al-Khwārizmī a Persian mathematician of the 9th century
- $\alpha \rho \iota \theta \mu \delta \varsigma$ the Greek word that means "number"
- Euclid's algorithm for computing the greatest common divisor (3rd century BC)
- End of XIXth century/beginning of XXth century: mathematical formalizations (proof systems, axioms, etc). Is there an algorithm for any problem?
- Church-Turing thesis (1930's): provides a formal definition of an algorithm (λ-calculus, Turing machine).
- Entscheidungsproblem (a challenge proposed by David Hilbert 1928): create an algorithm which is able to decide if a mathematical statement is true in a finite number of operations. Godel's and Turing's works in the 30ties show that a solution to Entscheidungsproblem does not exist.

A remark

This evolution was done **before** the reality of computers...

Preliminaries

alphabet: a finite set of symbols

• examples: Roman alphabet $\{a, b, \dots, z\}$, binary alphabet $\{0, 1\}$

Preliminaries

alphabet: a finite set of symbols

• examples: Roman alphabet $\{a, b, \dots, z\}$, binary alphabet $\{0, 1\}$

string: a finite sequence of symbols over an alphabet

- ► examples: *science*, 0011101
- \blacktriangleright ϵ : the empty string
- Σ^* : the set of all strings over an alphabet Σ (including ϵ)

Preliminaries

alphabet: a finite set of symbols

• examples: Roman alphabet $\{a, b, \ldots, z\}$, binary alphabet $\{0, 1\}$

string: a finite sequence of symbols over an alphabet

- ► examples: *science*, 0011101
- \blacktriangleright ϵ : the empty string
- Σ^* : the set of all strings over an alphabet Σ (including ϵ)

language: a set strings over an alphabet Σ (i.e., a subset of Σ^*)

- examples: \emptyset , Σ , Σ^*
- more examples:

$$\begin{split} L &= \{w \in \Sigma^* : w \text{ has some property } P\} \\ L &= \{w \in \Sigma^* : w = w^R\} \quad (w^R = \text{reverse of } w) \\ L &= \{w \in \{0, 1\}^* : w \text{ has an equal number of 0's and 1's} \\ L &= \{w \in \{1, 2, \dots, n\} : w \text{ is a permutation of } \{1, 2, \dots, n\} \\ \text{corresponding to a Hamiltonian Path in a graph of order n} \end{split}$$

Define first what is a *problem*: An **id** (name), the **list of input** (with their coding) and a **question**.

Define first what is a *problem*:

An id (name), the list of input (with their coding) and a question.

Decision problem: a problem that can be posed as an yes/no question.

Define first what is a *problem*:

An id (name), the list of input (with their coding) and a question.

Decision problem: a problem that can be posed as an yes/no question.

example:
 Prime
 Given a integer n
 ls n a prime?

Define first what is a *problem*:

An id (name), the list of input (with their coding) and a question.

Decision problem: a problem that can be posed as an yes/no question.

- example:
 Prime
 Given a integer n
 Is n a prime?
- another example: Hamiltonian Path Given a graph G = (V, E)Is there a permutation π of the vertex set such that $(v_{\pi(i)}, v_{\pi(i+1)}) \in E$ for all $i, 1 \le i \le |V-1|$?

Beyond decision problems

Optimization: a problem of searching for the best answer

Beyond decision problems

Optimization: a problem of searching for the best answer

► example:

Given a graph G = (V, E), two vertices $s, t \in V$ and an integer distance d(e) for each $e \in E$ find the path p between s and t such that the sum of distances of the edges in p is minimized.

Transform it to a decision problem.

Beyond decision problems

Optimization: a problem of searching for the best answer

► example:

Given a graph G = (V, E), two vertices $s, t \in V$ and an integer distance d(e) for each $e \in E$ find the path p between s and t such that the sum of distances of the edges in p is minimized.

Transform it to a decision problem.

▶ decision version: Given a graph G = (V, E), two vertices s, t ∈ V, an integer distance d(e) for each e ∈ E and an integer D is there a path p between s and t such that the sum of distances of the edges in p is at most D?

Observation 1:

In most of these lectures we will deal with decision problems

Observation 1:

In most of these lectures we will deal with decision problems

Observation 2:

A decision problem is defined by the input and the yes/no question

- examples of input:
 - Given a set of numbers $A = \{a_1, a_2, \dots, a_n\}$
 - Given a graph G = (V, E)
 - ▶ Given a graph G = (V, E) and a positive weight w(e) for each $e \in E$

Observation 1:

In most of these lectures we will deal with decision problems

Observation 2:

A decision problem is defined by the input and the yes/no question

- examples of input:
 - Given a set of numbers $A = \{a_1, a_2, \dots, a_n\}$
 - Given a graph G = (V, E)
 - \blacktriangleright Given a graph G=(V,E) and a positive weight w(e) for each $e\in E$
- \blacktriangleright < I >: string encoding of the input
 - \blacktriangleright < a_1, a_2, \ldots, a_n >
 - < adjacency matrix of G >
 - < adjacency matrix of $G, w(e) \ \forall e \in E >$

Observation 1:

In most of these lectures we will deal with decision problems

Observation 2:

A decision problem is defined by the input and the yes/no question

- examples of input:
 - Given a set of numbers $A = \{a_1, a_2, \dots, a_n\}$
 - Given a graph G = (V, E)
 - \blacktriangleright Given a graph G=(V,E) and a positive weight w(e) for each $e\in E$
- $\blacktriangleright\ < I >:$ string encoding of the input
 - \blacktriangleright < a_1, a_2, \ldots, a_n >
 - < adjacency matrix of G >
 - < adjacency matrix of $G, w(e) \ \forall e \in E >$
- |I|: size of the input (in binary)
 - $\bullet \ \log_2 a_1 + \log_2 a_2 + \dots \log_2 a_n$
 - $|V|^2$ or $k \cdot |V|$ where k is the average degree
 - $|V|^2 + \sum_{e \in E} \log_2 w(e)$