Fundamental Computer Science Sequence 1: Turing Machines An introduction

Denis Trystram

MoSIG1-M1Info, 2021

About the module FCS

Classes

- 33 hours in total (10 lectures plus a reading session) (half Theory, half Exercises/Practice).
- 5 topics

1. Universal Computing Model: the Turing Machine
2. Introduction to Quantum Computing
3. NP-completeness
4. Approximation Theory
5. Introduction to parallel complexity
6. Alternative model: λ-Calculus

Evaluation

- Exam: 70\%
- Reading papers: 30%

Organization

- Documents available at: http: //datamove.imag.fr/denis.trystram/teaching.php
- Mattermost https : //im2ag - tchat.univ - grenoble - alpes.fr/
- Active participation where some specialized topics are prepared by the students and discussed in class. Interactive class through many questions/answers.

References (Books)

- M. Garey and D. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman
- P. Wolper, Introduction à la calculabilité, Dunod
- C. Papadimitriou, Computational Complexity, Pearson
- A. Rosenberg, The pillars of Computation Theory, Springer
- S. Arora and B. Barak, Computational complexity - a modern approach, Cambridge
- V. Vazirani, Approximation Algorithms, Springer
- R. Motwani and P. Raghavan, Randomized Algorithms, Cambridge Univ. Press

A comics about the beginning of fundamental CS

Agenda

Objective of the session
Present (and discuss) the universal computational model of Turing machine.

Guidelines

- Start by this introduction that present and discuss the concept of algorithms
- The main piece of the cake: basic Turing Machines
- Some exercises
- Extensions
- Classical variants
- Random access TM
- Non-Deterministic TM
- Three interesting related questions

Preliminary

What is an Algorithm?
The first question is to discuss what can be calculated by a Computer.

Preliminary

What is an Algorithm?
The first question is to discuss what can be calculated by a Computer.
Informally: this is a step-by-step procedure that solves a problem.

Preliminary

What is an Algorithm?
The first question is to discuss what can be calculated by a Computer.
Informally: this is a step-by-step procedure that solves a problem.

Desired properties

- clearly defined steps (formalization)
- efficiency
how many -elementary- steps are needed for solving the problem?
- termination

Short History

- Etymology:
- Al-Khwārizmī - a Persian mathematician of the 9th century
- $\alpha \rho \iota \theta \mu$ ós - the Greek word that means "number"
- Euclid's algorithm for computing the greatest common divisor (3rd century BC)
- End of XIXth century/beginning of XXth century: mathematical formalizations (proof systems, axioms, etc). Is there an algorithm for any problem?
- Church-Turing thesis (1930's): provides a formal definition of an algorithm (λ-calculus, Turing machine).
- Entscheidungsproblem (a challenge proposed by David Hilbert 1928): create an algorithm which is able to decide if a mathematical statement is true in a finite number of operations. Godel's and Turing's works in the 30ties show that a solution to Entscheidungsproblem does not exist.

A remark

This evolution was done before the reality of computers...

Preliminaries

alphabet: a finite set of symbols

- examples: Roman alphabet $\{a, b, \ldots, z\}$, binary alphabet $\{0,1\}$

Preliminaries

alphabet: a finite set of symbols

- examples: Roman alphabet $\{a, b, \ldots, z\}$, binary alphabet $\{0,1\}$
string: a finite sequence of symbols over an alphabet
- examples: science, 0011101
- ϵ : the empty string
- Σ^{*} : the set of all strings over an alphabet Σ (including ϵ)

Preliminaries

alphabet: a finite set of symbols

- examples: Roman alphabet $\{a, b, \ldots, z\}$, binary alphabet $\{0,1\}$
string: a finite sequence of symbols over an alphabet
- examples: science, 0011101
- ϵ : the empty string
- Σ^{*} : the set of all strings over an alphabet Σ (including ϵ)
language: a set strings over an alphabet Σ (i.e., a subset of Σ^{*})
- examples: $\emptyset, \Sigma, \Sigma^{*}$
- more examples:

$$
\begin{aligned}
& L=\left\{w \in \Sigma^{*}: w \text { has some property } P\right\} \\
& L=\left\{w \in \Sigma^{*}: w=w^{R}\right\} \quad\left(w^{R}=\text { reverse of } w\right) \\
& L=\left\{w \in\{0,1\}^{*}: w \text { has an equal number of } 0^{\prime} \mathrm{s} \text { and } 1^{\prime} \mathrm{s}\right\} \\
& L=\{w \in\{1,2, \ldots, n\}: w \text { is a permutation of }\{1,2, \ldots, n\} \\
& \text { corresponding to a Hamiltonian Path in a graph of order } \mathrm{n}\}
\end{aligned}
$$

Notion of Problem

Define first what is a problem:
An id (name), the list of input (with their coding) and a question.

Notion of Problem

Define first what is a problem:
An id (name), the list of input (with their coding) and a question.
Decision problem: a problem that can be posed as an yes/no question.

Notion of Problem

Define first what is a problem:
An id (name), the list of input (with their coding) and a question.
Decision problem: a problem that can be posed as an yes/no question.

- example:

Prime
Given a integer n
Is n a prime?

Notion of Problem

Define first what is a problem:
An id (name), the list of input (with their coding) and a question.
Decision problem: a problem that can be posed as an yes/no question.

- example:

Prime
Given a integer n
Is n a prime?

- another example:

Hamiltonian Path
Given a graph $G=(V, E)$
Is there a permutation π of the vertex set such that $\left(v_{\pi(i)}, v_{\pi(i+1)}\right) \in E$ for all $i, 1 \leq i \leq|V-1| ?$

Beyond decision problems

Optimization: a problem of searching for the best answer

Beyond decision problems

Optimization: a problem of searching for the best answer

- example:

Given a graph $G=(V, E)$, two vertices $s, t \in V$ and an integer distance $d(e)$ for each $e \in E$
find the path p between s and t such that the sum of distances of the edges in p is minimized.

Transform it to a decision problem.

Beyond decision problems

Optimization: a problem of searching for the best answer

- example:

Given a graph $G=(V, E)$, two vertices $s, t \in V$ and an integer distance $d(e)$ for each $e \in E$
find the path p between s and t such that the sum of distances of the edges in p is minimized.

Transform it to a decision problem.

- decision version: Given a graph $G=(V, E)$, two vertices $s, t \in V$, an integer distance $d(e)$ for each $e \in E$ and an integer D is there a path p between s and t such that the sum of distances of the edges in p is at most D ?

Coding

Observation 1:
In most of these lectures we will deal with decision problems

Coding

Observation 1:
In most of these lectures we will deal with decision problems
Observation 2:
A decision problem is defined by the input and the yes/no question

- examples of input:
- Given a set of numbers $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$
- Given a graph $G=(V, E)$
- Given a graph $G=(V, E)$ and a positive weight $w(e)$ for each $e \in E$

Coding

Observation 1:
In most of these lectures we will deal with decision problems
Observation 2:
A decision problem is defined by the input and the yes/no question

- examples of input:
- Given a set of numbers $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$
- Given a graph $G=(V, E)$
- Given a graph $G=(V, E)$ and a positive weight $w(e)$ for each $e \in E$
- $\langle I\rangle$: string encoding of the input
- $<a_{1}, a_{2}, \ldots, a_{n}>$
- < adjacency matrix of $G>$
- < adjacency matrix of $G, w(e) \forall e \in E>$

Coding

Observation 1:
In most of these lectures we will deal with decision problems
Observation 2:
A decision problem is defined by the input and the yes/no question

- examples of input:
- Given a set of numbers $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$
- Given a graph $G=(V, E)$
- Given a graph $G=(V, E)$ and a positive weight $w(e)$ for each $e \in E$
- $\langle I\rangle$: string encoding of the input
- $<a_{1}, a_{2}, \ldots, a_{n}>$
- < adjacency matrix of $G>$
- < adjacency matrix of $G, w(e) \forall e \in E>$
- $|I|$: size of the input (in binary)
- $\log _{2} a_{1}+\log _{2} a_{2}+\ldots \log _{2} a_{n}$
- $|V|^{2}$ or $k \cdot|V|$ where k is the average degree
- $|V|^{2}+\sum_{e \in E} \log _{2} w(e)$

