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About the module FCS

Classes

I 33 hours in total (10 lectures plus a reading session)
(half Theory, half Exercises/Practice).

I 5 topics

1. Universal Computing Model: the Turing Machine
2. Introduction to Quantum Computing
3. NP-completeness
4. Approximation Theory
5. Introduction to parallel complexity
6. Alternative model: λ-Calculus

Evaluation

I Exam: 70%

I Reading papers: 30%



Organization

I Documents available at:
http : //datamove.imag.fr/denis.trystram/teaching.php

I Mattermost
https : //im2ag − tchat.univ − grenoble− alpes.fr/

I Active participation where some specialized topics are prepared by
the students and discussed in class.
Interactive class through many questions/answers.
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A comics about the beginning of fundamental CS



Agenda

Objective of the session
Present (and discuss) the universal computational model of Turing
machine.



Guidelines

I Start by this introduction that present and discuss the concept of
algorithms

I The main piece of the cake: basic Turing Machines

I Some exercises

I Extensions
I Classical variants
I Random access TM

I Non-Deterministic TM

I Three interesting related questions



Preliminary

What is an Algorithm?
The first question is to discuss what can be calculated by a Computer.

Informally:
this is a step-by-step procedure that solves a problem.

Desired properties

I clearly defined steps (formalization)

I efficiency
how many –elementary– steps are needed for solving the problem?

I termination
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Short History

I Etymology:
I Al-Khwārizm̄ı – a Persian mathematician of the 9th century
I αριθµóς – the Greek word that means “number”

I Euclid’s algorithm for computing the greatest common divisor (3rd
century BC)

I End of XIXth century/beginning of XXth century: mathematical
formalizations (proof systems, axioms, etc).
Is there an algorithm for any problem?

I Church-Turing thesis (1930’s): provides a formal definition of an
algorithm (λ-calculus, Turing machine).

I Entscheidungsproblem (a challenge proposed by David Hilbert
1928): create an algorithm which is able to decide if a mathematical
statement is true in a finite number of operations.
Godel’s and Turing’s works in the 30ties show that a solution to
Entscheidungsproblem does not exist.



A remark

This evolution was done before the reality of computers...



Preliminaries

alphabet: a finite set of symbols

I examples: Roman alphabet {a, b, . . . , z}, binary alphabet {0, 1}

string: a finite sequence of symbols over an alphabet

I examples: science, 0011101

I ε: the empty string

I Σ∗: the set of all strings over an alphabet Σ (including ε)

language: a set strings over an alphabet Σ (i.e., a subset of Σ∗)

I examples: ∅, Σ, Σ∗

I more examples:
L = {w ∈ Σ∗ : w has some property P}
L = {w ∈ Σ∗ : w = wR} (wR = reverse of w)
L = {w ∈ {0, 1}∗ : w has an equal number of 0’s and 1’s}
L = {w ∈ {1, 2, . . . , n} : w is a permutation of {1, 2, . . . , n}
corresponding to a Hamiltonian Path in a graph of order n}
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Notion of Problem

Define first what is a problem:
An id (name), the list of input (with their coding) and a question.

Decision problem: a problem that can be posed as an yes/no question.

I example:
Prime
Given a integer n
Is n a prime?

I another example:
Hamiltonian Path
Given a graph G = (V,E)
Is there a permutation π of the vertex set such that
(vπ(i), vπ(i+1)) ∈ E for all i, 1 ≤ i ≤ |V − 1|?
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Beyond decision problems

Optimization: a problem of searching for the best answer

I example:
Given a graph G = (V,E), two vertices s, t ∈ V and an integer
distance d(e) for each e ∈ E
find the path p between s and t such that the sum of distances of
the edges in p is minimized.

Transform it to a decision problem.

I decision version: Given a graph G = (V,E), two vertices s, t ∈ V ,
an integer distance d(e) for each e ∈ E and an integer D
is there a path p between s and t such that the sum of distances of
the edges in p is at most D?
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Coding

Observation 1:
In most of these lectures we will deal with decision problems

Observation 2:
A decision problem is defined by the input and the yes/no question

I examples of input:
I Given a set of numbers A = {a1, a2, . . . , an}
I Given a graph G = (V,E)
I Given a graph G = (V,E) and a positive weight w(e) for each e ∈ E

I < I >: string encoding of the input
I < a1, a2, . . . , an >
I < adjacency matrix of G >
I < adjacency matrix of G,w(e) ∀e ∈ E >

I |I|: size of the input (in binary)
I log2 a1 + log2 a2 + . . . log2 an
I |V |2 or k · |V | where k is the average degree
I |V |2 +

∑
e∈E log2 w(e)
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