Name:

Question N.1:	
Finite summations: let n b	e an integer, $\Sigma_{k=0,n} 2^k = ?$

Question N.2:

Prove $\Sigma_{k=1,n}(k^2(k+1)-k(k-1)^2) = n^2(n+1)$

Question N.3:		
Identities:		
$a^n - b^n = ?$		
$(a+b)^n = ?$		

Question N.4:

What are the values of $\sum_{k>0} \frac{1}{2^k}$ and $\sum_{k>0} \frac{1}{k}$?

Question N.5:

Classify asymptotically the functions (variable *n* integer). $log(n), 2^n, \sqrt{n}, n^n, log(log(n)), n^3$

Question N.6:

Consider $T = 1 + 2 + 4 + \dots$ Compute $2T = 2 + 4 + 8 + \dots = T - 1$, thus T = -1. What's wrong here? Give an interpretation of the sum: $1 - 1 + 1 - 1 + 1 \dots$

Question N.7:

What is an irrational number?

Question N.8:

Recall the definition of a function $F: S \to T$. What is a injective function?

Question N.9:

Give the definition of the derivative of the continuous function f defined on all the real points. Describe briefly its geometric interpretation.

Question N.10:

What are the derivative of each function: $x^2 + 2x$, \sqrt{x} , log(x), $\frac{1}{x}$

Question N.11:

Recall the interpretation of the integral of a function. Examples for $(x + 1)^2$ on [0..1] and $1/x^c$ on $(0, \infty)$ for c > 0

Question N.12:

Consider a –continuous– function f(x). Give a definition and an example for the following asymptotic notations: $O(f(x)), \Omega(f(x)), \Theta(f(x))$.

$$A = \begin{pmatrix} 2 & 0 & 1 \\ 3 & 3 & 1 \\ 0 & 5 & 2 \end{pmatrix}$$

Compute the determinant of A and compute A^2 .

Question N.14:

Write the number 2021 in base 2 (binary) and in base 16.

Question N.15:

Describe the main composant of the Algebra of Propositional Logic

Question N.16:

Truth tables. Build the table for the main operations of propositional logic. Check the contraposition operation using truth tables.

Question N.17:

Define the notion of *equivalence relation*.

Question N.18:

Do you know the notion of *algebraic closure*?

Question N.19:			
Prove that the following relation between pairs of integers (n_i, m_i) : $(n_1, m_1)\rho(n_2, m_2)$ iff $n_1 + m_2 = n_2 + m_1$ is an equivalence relation. Give an interpretation of the equivalent class that contains $(n = 1, m = 0)$.			
[1		
Question N.20:			
What is an order relation?			
Question N.21:]		
Give the formal definition	of the intersection and union of two sets S and T .		
Question N.22:]		
Give the formal definition	of the set difference of S and T .		

Question N.23:

Define the cross product (or cartesian product) of two sets S and T.

Question N.24:

Express $\log_a(x)$ with logarithms in base b.

Question N.25:

Give another expression for $n^{\log_a(b)}$.