Question N.1:

Finite summations: let n be an integer, $\Sigma_{k=0, n} 2^{k}=$?

Question N.2:

Prove $\Sigma_{k=1, n}\left(k^{2}(k+1)-k(k-1)^{2}\right)=n^{2}(n+1)$

Question N.3:

Identities:
$a^{n}-b^{n}=$?
$(a+b)^{n}=$?

Question N.4:

What are the values of $\Sigma_{k>0} \frac{1}{2^{k}}$ and $\Sigma_{k>0} \frac{1}{k}$?

Question N.5:

Classify asymptotically the functions (variable n integer).
$\log (n), 2^{n}, \sqrt{n}, n^{n}, \log (\log (n)), n^{3}$

Question N.6:

Consider $T=1+2+4+\ldots$.
Compute $2 T=2+4+8+\ldots=T-1$, thus $T=-1$.
What's wrong here?
Give an interpretation of the sum: $1-1+1-1+1 \ldots$

Question N.7:

What is an irrational number?

Question N.8:

Recall the definition of a function $F: S \rightarrow T$.
What is a injective function?

Question N.9:

Give the definition of the derivative of the continuous function f defined on all the real points. Describe briefly its geometric interpretation.

Question N.10:

What are the derivative of each function: $x^{2}+2 x, \sqrt{x}, \log (x), \frac{1}{x}$

Question N.11:

Recall the interpretation of the integral of a function.
Examples for $(x+1)^{2}$ on [0..1] and $1 / x^{c}$ on $) 0, \infty($ for $c>0$

Question N.12:

Consider a -continuous- function $\mathrm{f}(\mathrm{x})$. Give a definition and an example for the following asymptotic notations: $O(f(x)), \Omega(f(x)), \Theta(f(x))$.

Question N.13:

$$
A=\left(\begin{array}{lll}
2 & 0 & 1 \\
3 & 3 & 1 \\
0 & 5 & 2
\end{array}\right)
$$

Compute the determinant of A and compute A^{2}.

Question N.14:

Write the number 2021 in base 2 (binary) and in base 16.

Question N.15:

Describe the main composant of the Algebra of Propositional Logic

Question N.16:

Truth tables.

Build the table for the main operations of propositional logic.
Check the contraposition operation using truth tables.

Question N.17:

Define the notion of equivalence relation.

Question N.18:

Do you know the notion of algebraic closure?

Question N.19:

Prove that the following relation between pairs of integers $\left(n_{i}, m_{i}\right):\left(n_{1}, m_{1}\right) \rho\left(n_{2}, m_{2}\right)$ iff $n_{1}+m_{2}=$ $n_{2}+m_{1}$ is an equivalence relation.
Give an interpretation of the equivalent class that contains $(n=1, m=0)$.

Question N.20:

What is an order relation?

Question N.21:

Give the formal definition of the intersection and union of two sets S and T.

Question N.22:

Give the formal definition of the set difference of S and T.

Question N.23:

Define the cross product (or cartesian product) of two sets S and T.

Question N.24:

Express $\log _{a}(x)$ with logarithms in base b.

Question N.25:

Give another expression for $n^{\log _{a}(b)}$.

