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These notes are only the sketch of the lecture : the aim is to apply the basic counting
techniques to the binomial coefficients and establish combinatorial equalities.
References : Concrete Mathematics : A Foundation for Computer Science Ronald L.
Graham, Donald E. Knuth and Oren Patashnik Addison-Wesley 1989 (chapter 5)
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COMPUTER SCIENCE

Information
+

Problem

Algorithm
+

Data Structures

Program
+

Data
Machine Result

The four faces of a computer science object

Information representation

Encoding, data, numerical information...

Algorithmics

Design, proof, complexity,...

Programming Language

Languages, software engineering...

Architecture

Processor, networks, operating systems...

Reference : Les quatre concepts de l’informatique,
Didapro, 2011 by Gilles Dowek, INRIA/ENS-Saclay
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ABSTRACT OBJECTS IN COMPUTER SCIENCE

Symbols, Words, and Texts

◮ 011011100101110111...

◮ 270c4fe6205c0f43d3163f566534f308

◮ grammars, rewriting,...

Sets

◮ sets encoding,

◮ subsets, partitions

Trees

◮ binary trees, binary search trees

◮ covering trees

◮ tree structures

Ordering

◮ permutations

◮ sequences

◮ partial orders

Why counting?

◮ Characteristics of objects

◮ Better understanding of the structures

◮ Counting = Descrtiption Method = Enumeration = Generation
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WELL BALANCED EXPRESSIONS

The problem

((a+(3× (c + 1))− (9+ x)× ((5+ e)− (4× 3))) is a well-balanced expression?

and this one

(5 + a)× (2× 3× (5/e))) + (4− 3× (e + 7))

CHECK_EXPRESSION(S)
Data: S sequence of symbols
Result: True if the expression is well-balanced (else False)

count = 0
for i = 0 to length (S) -1

if S[i] ==′ (′

count = count + 1

else if S[i] ==′)′

count = count − 1
if count < 0

return False

return count == 0

Exercise : Design the algorithm for expressions composed with (), {,} and [,] symbols.
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ANALYSIS OF THE PROBLEM

Is the algorithm correct ?

◮ Formal proof (modify the algorithm to prove it)

◮ Check on examples (which ones ?) Is it a proof?

◮ Enumerate all the possible expressions with ′(′ and ′)′ and check the correctness. Is it a
proof?

◮ Generate a random set arbitrary large of expressions and check. Is it a proof?

Aim of the activity :

◮ Describe the structure, check details, fix notations

◮ Explore the small cases exhaustively

◮ Establish algebraic structure, make links with other problems

6 / 52Combinatorics Basics



INTRODUCTION SUBSETS ALGEBRA RULES CLASSICAL TREES GENERATING FUNCTIONS PIGEONS’ HOLES REFERENCES

SUBSET ENUMERATION

(n
k

)
is the number of ways to choose k elements among n elements

http://www-history.mcs.st-and.ac.uk/Biographies/Pascal.html

For all integers 0 6 k 6 n

(n

k

)

=
n(n − 1) · · · (n − k + 1)

k!
(1)

Prove the equality by a combinatorial argument
Hint : the number of sequences of k different elements among n is
n(n − 1) · · · (n − k + 1) and the number of orderings of a set of size k is k!.
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BASIC PROPERTIES

(n

k

)

=
n!

k!(n − k)!
(2)

Prove it directly from Equation 1

For all integers 0 6 k 6 n

(n

k

)

=
( n

n − k

)

(3)

Prove it directly from 2
Prove it by a combinatorial argument
Hint : bijection between the set of subsets of size k and ???.

Exercise

Give a combinatorial argument to prove that for all integers 0 6 k 6 n :

k
(n

k

)

= n
(n − 1

k − 1

)

(4)
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PASCAL’S TRIANGLE

Recurrence Equation

The binomial coefficients satisfy

(n

k

)

=
(n − 1

k − 1

)

+
(n − 1

k

)

(5)

Prove it directly from Equation 1
Prove it by a combinatorial argument

Hint : partition in two parts the set of subsets of size k ; those containing a given
element and those not.
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PASCAL’S TRIANGLE(2)

1

1 1

1 2

+

1

1 3

+

3

+

1

1 4

+

6

+

4

+

1

1 5

+

10

+

10

+

5

+

1

1 6

+

15

+

20

+

15

+

6

+

1

1 7

+

21

+

35

+

35

+

21

+

7

+

1

1 8

+

28

+

56

+

70

+

56

+

28

+

8

+

1

1 9

+

36

+

84

+

126

+

126

+

84

+

36

+

9

+

1

1 10

+

45

+

120

+

210

+

252

+

210

+

120

+

45

+

10

+

1

1 11

+

55

+

165

+

330

+

462

+

462

+

330

+

165

+

55

+

11

+

1

1 12

+

66

+

220

+

495

+

792

+

924

+

792

+

495

+

220

+

66

+

12

+

1

1 13

+

78

+

286

+

715

+

1287

+

1716

+

1716

+

1287

+

715

+

286

+

78

+

13

+

1

1 14

+

91

+

364

+

1001

+

2002

+

3003

+

3432

+

3003

+

2002

+

1001

+

364

+

91

+

14

+

1

1 15

+

105

+

455

+

1365

+

3003

+

5005

+

6435

+

6435

+

5005

+

3003

+

1365

+

455

+

105

+

15

+

1

1 16

+

120

+

560

+

1820

+

4368

+

8008

+

11440

+

12870

+

11440

+

8008

+

4368

+

1820

+

560

+

120

+

16

+

1

Thanks to Tikz/Gaborit
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THE BINOMIAL THEOREM

For all integer n and a formal parameter X

(1 + X)n =
n∑

k=0

(n

k

)

X k (Newton 1666) (6)

Prove it by a combinatorial argument Hint : write
(1 + X)n = (1 + X)(1 + X) · · · (1 + X)

︸ ︷︷ ︸

n terms

in each term choose 1 or X, what is the

coefficient of X k in the result (think "vector of n bits").

Exercises

Use a combinatorial argument to prove :

n∑

k=0

(n

k

)

= 2n

Use the binomial theorem to prove (give also a combinatorial argument)

n∑

k=0 k odd

(n

k

)

=
n∑

k=0 k even

(n

k

)

= 2n−1
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SUMMATIONS AND DECOMPOSITIONS

The Vandermonde Convolution

For all integers m, n, k

k∑

j=0

(m

j

)( n

k − j

)

=
(m + n

k

)

(7)

Prove it by a combinatorial argument
Hint : choose k elements in two sets one of size m and the other n.

Exercise

Prove that

n∑

k=0

(n

k

)2

=
(2n

n

)

(8)

Hint : Specify Equation 7
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SUMMATIONS AND DECOMPOSITIONS (2)

Upper summation

For all integers p 6 n

n∑

k=p

(k

p

)

=
(n + 1

p + 1

)

(9)

Exercises

Establish the so classical result

n∑

k=1

(k

1

)

Compute

n∑

k=2

(k

2

)

and deduce the value of

n∑

k=1

k2
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THE MAIN RULES IN COMBINATORICS (I)

Bijection Rule

Let A and B be two finite sets if there exists a bijection between A and B then

|A| = |B| .

Summation Rule

Let A and B be two disjoint finite sets then

|A ∪ B| = |A|+ |B| .

Moreover if {A1, · · ·An} is a partition of A (for all i 6= j , Ai ∩ Aj = ∅ and
⋃n

i=0 Ai = A)

|A| =
n∑

i=0

|Ai | .
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THE MAIN RULES IN COMBINATORICS (II)

Product rule

Let A and B be two finite sets then

|A× B| = |A| . |B| .

Inclusion/Exclusion principle

Let A1,A2, · · ·An be sets

|A1 ∪ · · · ∪ An| =
n∑

k=1

(−1)k
∑

S⊂{1,··· ,n}, |S|=k

∣
∣
∣
∣
∣
∣

⋂

i∈S

Ai

∣
∣
∣
∣
∣
∣

.

Exercises

Illustrate these rules by the previous examples, giving the sets on which the rule apply.

18 / 52Combinatorics Basics



INTRODUCTION SUBSETS ALGEBRA RULES CLASSICAL TREES GENERATING FUNCTIONS PIGEONS’ HOLES REFERENCES

THE CENTRAL ROLE OF BIJECTION

Mapping

A mapping (function) between X and Y associate to each element x of X a unique
element Y

f : X −→ Y
x 7−→ y

f is an injection iff

∀(x1, x2) ∈ X 2 f (x1) = f (x2)⇒ x1 = x2

f is a surjection iff

∀y ∈ Y ∃x ∈ X such that y = f (x)

f is a bijection iff f is injective and surjective

∀y ∈ Y ∃!x ∈ X such that y = f (x) (x is unique)

19 / 52Combinatorics Basics



INTRODUCTION SUBSETS ALGEBRA RULES CLASSICAL TREES GENERATING FUNCTIONS PIGEONS’ HOLES REFERENCES

MAPPINGS AND CARDINALITIES
X and Y FINITE sets

Typical mapping

X

x3

x4

Y

y4

y3

y2

y1x1

x2

y5x5

no relation between |X | and |Y |

Injective mapping

X Y

y4

y3

y2

y1x1

x2

x3

x4

y5

|X | 6 |Y |

Surjective mapping

X Y

y4

y3

y2

y1x1

x2

x3

x4

x5

|X | > |Y |

Bijective mapping

X

x3

x4

Y

y4

y3

y2

y1x1

x2

y5x5

|X | = |Y |

What happens when the sets are infinite?
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RECIPROCAL MAPPING

A typical mapping f

X

x3

x4

Y

y4

y3

y2

y1x1

x2

y5x5

Inverse Image

subsets of elements of X (equivalence
relation on X )

f−1(y1) = ∅

f−1(y2) = {x1, x3}

f−1(y3) = {x4}

f−1(y4) = {x2, x5}

f−1(y5) = ∅

f−1(y) = {x ∈ X , such that f (x) = y}

Combinatorial property :

∑

y∈Y

∣
∣
∣f−1(y)

∣
∣
∣ = |X |

Exercise :
For all the previous combinatorial proofs construct the corresponding functions.
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COUNTING FUNCTIONS (EXERCISES)

Let X and Y finite sets

f : X −→ Y
x 7−→ y

◮ Compute the total number of such functions f

◮ Compute the number of injective functions

◮ Compute the number of surjective functions

◮ Compute the number of bijective functions

Counting relations

Let X be set, a relation R is a part of X × X .
When X is finite, compute the number of relations on X that are

◮ reflexive (R is reflexive iff ∀x ∈ X we have xRx)

◮ symetric (R is symetric iff ∀(x, y) ∈ X 2 we have xRy =⇒ yRx)

◮ antisymetric (R is antisymetric iff ∀(x, y) ∈ X 2 we have (xRy and yRx) =⇒ x = y )

R is transitive iff ∀(x , y , z) ∈ X 3 we have (xRy and yRz) =⇒ xRz
Try to understand why computing the number of transitive relations is hard. OEIS
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DISTRIBUTION PROBLEMS

Context

Place a set of N objects, called balls, into a set of M containers, called urns.
Basic situations :

◮ Labelled balls

◮ Labelled urns

More constraints :

◮ at least k balls per urn

◮ at last k balls per urn

◮ number of empty urns

◮ ...
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EXAMPLE WITH N = 3 AND M = 2

Labelled urns Unlabelled urns

labelled balls

urn 1 urn 2
123 ∅
12 3
13 2
23 1
1 23
2 13
3 12
∅ 123

one urn the other
123 ∅
12 3
13 2
23 1

unlabelled balls

urn 1 urn 2
*** ∅
** *
* **
∅ ***

one urn the other
*** ∅
** *

Compute the number of configurations in each cell and generalize (if possible).
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DERANGEMENT

Definition

A derangement of a set S is a bijection on S without fixed point.
Number of derangements of n elements dn (notation !n).

Inclusion/Exclusion principle

!n = n!−
(n

1

)

(n − 1)! +
(n

2

)

(n − 2)!− · · ·+ (−1)n
(n

n

)

(n − n)!,

= n!
n∑

i=0

(−1)i

i!

n→∞
∼ n!

1

e
.

Recurrence relation

Show by a combinatorial argument that

dn = (n − 1)(dn−1 + dn−2) = ndn−1 + (−1)n.
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PROOF OF THE SECOND EQUATION

First we have the first element Thanks OEIS

n 0 1 2 3 4 5 6 7 8 9 10 ...
dn 1 0 1 2 9 44 265 1854 14833 133496 14684570 ...

Suppose that dn satisfies the recurrence equation dn = (n− 1)(dn−1 + dn−2) for n > 2
with d0 = 1 and d1 = 0.
We will prove by recurrence that dn = ndn−1 + (−1)n with d0 = 1 (E).

1 base case : this is true for n = 0 and n = 1

2 Suppose that (E) is satisfied for n − 1

Then dn−1 = (n − 1)dn−2 + (−1)n−1, we deduce that (n − 1)dn−2 = dn−1 − (−1)n−1.
Injecting that equality in the recurrence equation of dn

dn = (n − 1)(dn−1 + dn−2)

= (n − 1)dn−1 + (n − 1)dn−2

= (n − 1)dn−1 + dn−1 − (−1)
n−1

= ndn−1 + (−1)
n

3 The base case and the induction is proven, so is the result
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FIBONACCI NUMBERS

Recurrence Equation

{

F0 = F1 = 1

Fn = Fn−1 + Fn−2 for all n > 2

Interpretation

What kind of situation could be represented by Fibonacci’s Numbers?
Hint : Consider words in {0, 1}n

Use a combinatorial argument to prove

Fn = Fn−2 + Fn−3 + · · ·+ F1 + F0

Hint : Consider the last "1"

Imagine other combinatorial equalities
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(UNDIRECTED) TREES
A tree T = (X , E) is an acyclic connected graph

◮ connected : for all x, y ∈ X 2 there is a path from x to y (x ❀ y)

◮ acyclic : there are no paths from x to x x 6❀ x

Notations

X set of n nodes
E set of edges
A leaf is a node with exactly one edge and an internal node has at least two
neighbors.

◮ Prove that the maximum number of leaves is n − 1 and the minimum 2 (for (n > 3).

An undirected graph T with n nodes is a tree iff

1 T is acyclic and connected

2 T is acyclic with a maximal number of edges

3 T is connected with a minimal number of edges

4 T is connected with n − 1 edges

5 T is acyclic with n − 1 edges

6 for all couple (x, y) of nodes there is a unique path x ❀ y joining the two nodes.

Prove the equivalences (with a minimal number of implications).
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CAYLEY’S FORMULA

Tn the set of all trees with n nodes labelled by the first integers {1, 2, · · · , n}
Tn the number of such trees.

Phase 1 : small n cases

n Tn

1 1
2 1
3 3
4 16
5 125
· · · · · ·

Phase 2 : Intuition of the Formulae

Tn = nn−2.

Many proofs (see "Proofs from the Book").
Approach based on an explicit bijection between the set of
trees and the a set of words.
Algorithmic as it associates to each tree a unique word with
a coding algorithm.
The uniqueness is obtained with a decoding algorithm (H.
Prüfer in 1918).
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A1 = 1

A2 = 1 = 22−2

A3 =
(

3

1

)

= 3 = 33−2

A4 =
(

4

2

)(

2

1

)

+
(

4

1

)

= 16 = 44−2

A5 =
(

5

1

)(

4

2

)(

2

1

)

+
(

5

1

)(

4

2

)(

2

1

)

+
(

5

1

)

= 60 + 60 + 5 = 125 = 55−2

A6 =
(

6

2

)(

4

2

)(

2

1

)(

2

1

)

+
(

6

1

)(

5

2

)(

3

1

)(

2

1

)

+
(

6

1

)(

5

1

)(

4

2

)(

2

1

)

+
(

6

2

)(

4

2

)

+
(

6

1

)(

5

2

)(

2

1

)

+
(

6

1

)

= 360 + 360 + 360 + 90 + 120 + 6

= 1296 = 66−2

32 / 52Combinatorics Basics



INTRODUCTION SUBSETS ALGEBRA RULES CLASSICAL TREES GENERATING FUNCTIONS PIGEONS’ HOLES REFERENCES

PRÜFER’S CODING ALGORITHM

Phase 3 : double counting

Find a one to one mapping with another set which cardinality is known.

Tn ←→Wn−2

Wn−2 is the set of words of length n − 2 over the alphabet {1, · · · , n}

CODING (T )
Data: A tree T with labelled nodes (all labels are comparable)
Result: A word of n − 2 labels

W ← {}
for i = 1 to n − 2 do

x ←Select_min (T)
// x is the leaf with the smallest label

W ← W+Father (x)
// Father (x) is the unique node connected to the

leaf x
T ← T\{x}// remove the leaf x from tree T
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LABELLED TREES

a

b

c

d

e

f

g

h

i

a

b

c

d

e

f

g

h

i

a

b

c

d

e

f

g

h

i

a

b

c

d

e

f

g

h

i

a

b

c

d

e

f

g

h

i

a

b

c

d

e

f

g

h

i
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PRÜFER’S DECODING ALGORITHM

DECODING (W )
Data: A word W = w1w2 · · ·wn−2 of n − 2 labels in {1, · · · , n}
Result: A tree with n nodes labelled from 1 to n

Create n nodes labelled from 1 to n and mark each node by "non
selected"

for i = 1 to n − 2 do
x ←Select_min (Wi )
// x is the node with the smallest label not in

the set wi · · ·wn−2

Mark x by "selected"
Link x and wi

Link the last two nodes marked "non selected"
return T
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PRÜFER’S DECODING ALGORITHM

Examples (10 letters words)

0 d i g h a c g c f f

1 e h i e i c a e d d

2 e f g d g g i b c d

3 h h g h c f c c d f

4 i f e c d f a h g f

5 c b e a g i d i a g

6 b g g i b b f i b d

7 e i c c a c f i b d

8 b i d i e e a g d a

9 g c b f c f e f b f

10 b h i a b e b e c h

11 d e h g f f f b e g

12 b h i e a d d g h f

13 g a b h a a g h i i

14 d h d e i i b f b a

15 h e c a b a b c h d

16 i e g i d i e e b g

17 d g i b e h c e i f

18 c h a b e f g b h i

19 h a f b d h c d h g

Questions

◮ Prove the bijection

◮ Compute the complexity of coding
and decoding

◮ What kind of data structure could
be useful ?

◮ How degrees are expressed in the
coding word?

Extension : is it possible to build a
tree from a list of degrees ?
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JOYAL’S BIJECTION

What set of objects has cardinality nn ?
Number of mappings from X on X ,
(number of words of size n on an alphabet of size n)

A mapping f

x 0 1 2 3 4 5 6 7 8 9

f (x) 3 9 7 2 8 1 6 5 5 8

Graph associated to mapping f

3 2 7 5 1

0 6 4 8 9
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JOYAL’S BIJECTION

Cycles

3 2 7 5 1

0 6 4 8 9

◮ Each node has an outdegree = 1

◮ Decomposition in cycles and transient
nodes

x 0 1 2 3 4 5 6 7 8 9

f (x) 3 9 7 2 8 1 6 5 5 8
◮ Extract the bijective part

◮ build a line with the ordered bijective part

Build the tree

9 1 6 5 8

0 3 2 7 4

◮ Fix the line between diamond (image of the
smallest) and rectangle (image of the
greatest)

◮ Connect the transients and remove arrows

Design the reciprocal algorithm

38 / 52Combinatorics Basics



INTRODUCTION SUBSETS ALGEBRA RULES CLASSICAL TREES GENERATING FUNCTIONS PIGEONS’ HOLES REFERENCES

GENERATING FUNCTION

Newton’s Binomial Theorem

(1 + x)n =
n∑

k=0

(n

k

)

xk

One to one correspondance

(1 + x)n ←→
(n

0

)

,
(n

1

)

, · · · ,
(n

n

)

Generating Function (Power Series)

Sequence a = {a0, a1, · · · , an, · · · }

Ga(x)
def
=

+∞∑

n=0

anxn

(formal series, it is not necessary to ensure convergence)
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GENERATING FUNCTION (2)

A bijection

Derivation operator

Ga(x) =
+∞∑

n=0

anxn

G′
a(x) =

+∞∑

n=1

n.anxn−1

G′′
a (x) =

+∞∑

n=2

n.(n − 1)anxn−2

· · ·

G
(k)
a (x) =

+∞∑

n=k

n.(n − 1) · · · (n − k + 1)anxn−k

· · ·

Ga(0) = a0,
G′

a(0)

1!
= a1,

G′′
a (0)

2!
= a2, · · · ,

G
(k)
a (0)

k!
= ak , · · ·
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BASIC GENERATING FUNCTIONS

Sequence ←→ Generating function

1, 1, 1, · · · , 1, · · · 1
1−x

0, 1, 2, 3, · · · , n, · · · x
(1−x)2

0, 0, 1, 3, 6, 10, · · · ,
(n

2

)
, · · · x2

(1−x)3

1, c, c2, · · · , cn, · · · 1
1−cx

1, 0, 1, 0, · · · 1
1−x2

1
0!
, 1

1!
, 1

2!
, 1

3!
, · · · , 1

n!
, · · · ex

0, 1
1
, 1

2
, 1

3
, · · · , 1

n
, · · · log 1

1−x
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GENERATING FUNCTIONS : APPLICATIONS

Order one equation

an = 1 + nan−1 n > 1

Ga(x)− a0 =
1

1− x
− 1 + xG′

a(x)

Order two equation

fn = fn−1 + fn−2 n > 2

Counting objects

Number of ways of choosing a dozen doughnuts when five flavors were available.
{chocolate, lemon-filled, sugar, glazed, plain}

G(x) =
1

(1− x)5
= · · ·
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FIBONNACCI’S NUMBERS

Recurrence equation

fn = fn−1 + fn−2, for n > 2, f0 and f1 fixed

G(x) generating function of {fn}, G(x) =
∑

n fnxn

G(x)− f0 − f1x = x(G(x)− f0) + x2G(x)

Decomposition of he generating function

G(x) =
f0 + (f1 − f0)x

1− x − x2
=

A

1− ϕx
+

B

1− ϕx

with ϕ = 1+
√

5
2

and ϕ = 1−
√

5
2

, 1− x − x2 = (1− ϕx)(1− ϕx)

◮ Compute A and B and deduce the power expansion of G .

◮ Use the power series decomposition 1
1−cx

=
∑

cnxn.

◮ And deduce a closed formula for fn
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GENERATING FUNCTIONS : ALGEBRA

Sequence ←→ Generating function

a0, a1, a2, · · · , an, · · · Ga(x)

a0 + b0, a1 + b1, a2 + b2, · · · , an + bn, · · · Ga(x) + Gb()x

0, a0, a1, a2, · · · , an+1 · · · xGa(x)

0.a0, 1.a1, 2.a2, · · · , nan · · · xG′
a(x)

a0b0, a0b1 + a1b0, · · · , a0bn + a1bn−1 + ...+ anb0 · · · Ga(x)× Gb(x)
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PIGEONS AND HOLES

Principle

If you have more pigeons than pigeonholes
Then some hole must have at least two pigeons

Generalization

If there are n pigeons and t holes, then there will be at least one hole with at least

⌈
n

t

⌉

pigeons

History

Johann Peter Gustav Lejeune Dirichlet (1805-1859)
Principle of socks and drawers

http://www-history.mcs.st-and.ac.uk/Biographies/Dirichlet.html

47 / 52Combinatorics Basics

http://www-history.mcs.st-and.ac.uk/Biographies/Dirichlet.html


INTRODUCTION SUBSETS ALGEBRA RULES CLASSICAL TREES GENERATING FUNCTIONS PIGEONS’ HOLES REFERENCES

SOME EXAMPLES

On integers (from Erdös)

◮ Every subset A of {1, 2, · · · , 2n} with size n + 1 contains at least 2 integers prime together

◮ Every subset A of {1, 2, · · · , 2n} with size n + 1 contains at least 2 integers a and b such
that a divide b

On sequences

Consider a sequence of n integers {a1, · · · , an}.
There is a subsequence {ak , · · · , al} such that

n divide

l∑

i=k

ai
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IRRATIONAL APPROXIMATION

Friends

Let α be a non-rational number and N a positive integer, then there is a rational p
q

satisfying

1 6 q 6 N and

∣
∣
∣
∣α−

p

q

∣
∣
∣
∣ 6

1

qN

Hint : divide [0, 1[ in N intervals, and decimal part of 0, α, 2α, · · · ,Nα

Sums and others

1 Choose 10 numbers between 1 and 100 then there exist two disjoint subsets with the same
sum.

2 For an integer N, there is a multiple of N which is written with only figures 0 and 1

Geometry

1 In a convex polyhedra there are two faces with the same number of edges

2 Put 5 points inside a equilateral triangle with sides 1. At least two of them are at a distance
less than 1

3 For 5 point chosen on a square lattice, there are two point such that the middle is also on the
lattice
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GRAPHS

Friends

Six people
Every two are either friends or strangers
Then there must be a set of 3 mutual friends or 3 mutual strangers

Guess the number

Player 1 : pick a number 1 to 1 Million
Player 2 Can ask Yes/No questions
How many questions do I need to be guaranteed to correctly identify the number?

Sorting
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