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Agenda

I Horn-SAT

I 2SAT

I analysis of CLIQUE

I Dynamic Programming for SubSetSum

I Bin Packing



Complexity of Horn-SAT

A Horn formula has at most one positive literal per clause.

Horn-SAT= {〈F〉 | F is a satisfiable Horn formula}

Recall:

I Positive literal: xi

I Negative literal: x̄i

Prove that Horn-SAT ∈ P

Tipp:

I What has to happen to clauses that contain only one single literal?

I Consider the case that each clause contains a negative literal.
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Solution Horn-SAT

Algorithm

1. While there are clauses with only one literal
I pic a clause with only one literal
I set the corresponding variable to T or F such that the clause is

satisfied
I delete all the other clauses that are satisfied by this assignment and

remove the variable from all the other clauses

2. set all non-assigned variables to F

Sketch of the analysis:
After step 1 all the clauses contain at least one negative literal.
Therefore, after setting all variables to F in step 2, every clause will
contain at least one literal that is T .
Hence, all the clauses are satisfied.

Complexity is in O((n ·m)2)
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2SAT

I X = {x1, x2, . . . , xn}: set of variables

I C = {C1, C2, . . . , Cm}: set of clauses fo cardinality 2

I F = C1 ∧ C2 ∧ . . . ∧ Cm

SAT= {〈F〉 | F is a satisfiable Boolean formula }

Prove 2SAT ∈ P

The solution is detailed in the slides of lecture 4: variants of SAT.



Presentation of CLIQUE

CLIQUE= {〈G, k〉 | G = (V,E) is a graph with a subset of vertices A
of cardinality k and for each pair of vertices in A, (x, y) ∈ E }



CLIQUE ∈ NP-complete

CLIQUE ∈ NP
I given a set of vertices, check if there is an edge between any pair of

them

3SAT ≤P CLIQUE

1. given any formula F of SAT, we construct an instance I = 〈G, k〉
of CLIQUE

I add a vertex for each literal
I add an edge between any two literals except:

(a) literals in the same clause
(b) a literal and its negation

I k = m (number of clauses)
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Example

F = (x1 ∨ x2 ∨ x̄3) ∧ (x1 ∨ x3 ∨ x4) ∧ (x̄2 ∨ x3 ∨ x̄4)

x1

x2

x̄3

x1 x3 x4

x̄2

x3

x̄4



CLIQUE ∈ NP-complete

3SAT ≤P CLIQUE

2. |V | = 3m, |E| = O(m2)

3. F is satisfiable iff there is a clique of size k in G
I assume that F is satisfiable
I at least one literal is TRUE in any clause
I there is an edge between such literals (why?)
I hence, the corresponding vertices form a k-clique

I assume there is a k-clique in G
I this clique contains at most one vertex from each clause
I k = m, hence the clique contains exactly one vertex from each clause
I each pair of these vertices is compatible (no a literal and its negation)
I set the corresponding literals to TRUE
I F is satisfiable
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Solving SubsetSum

SubsetSum

Input: a set of positive integers A = {a1, a2, . . . , ak}
t ∈ N

Question: is there a set B ⊆ A such that
∑

ai∈B ai = t?

Write a dynamic programming algorithm for solving this problem.

Tip:

I Consider the integers sorted in non-decreasing order:
a1 ≤ a2 ≤ . . . ≤ an

I S[i, q] =

 True, if there is a SubsetSum among the i first
integers which sums up exactly to q

False, otherwise

The detailed solution is in the slides of Lecture 4 pseudo-polynomial
algorithms.
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Bin Packing

Bin-Packing

Input: a set of items A, a size s(a) for each a ∈ A, a positive
integer capacity C, and a positive integer k

Question: is there a partition of A into disjoint sets A1, A2, . . . , Ak

such that the total size of the elements in each set Aj

does not exceed the capacity C, i.e.,
∑

a∈Aj
s(a) ≤ C ?

Show that this problem is NP-complete
Is it strongly or weakly NP-complete?
(try to give the strongest result)


