
Maths for Computer Science Relations

Maths for Computer Science
Relations

Denis TRYSTRAM
MoSIG1

Sept. 1, 2023

1 / 28



Maths for Computer Science Relations

Study of other types of Mathematical objects

Relations

logarithms

2 / 28



Maths for Computer Science Relations

Equivalence relations

A binary relation ρ is an equivalence relation if the three following
properties are fulfilled:

1 Reflexivity: xρx

2 Symmetry: if xρy then yρx

3 Transitivity: if xρy and yρz then xρz

3 / 28



Maths for Computer Science Relations

Example

Prove that the following relation between pairs of integers (ni ,mi ):
(n1,m1)ρ(n2,m2) iff n1 + m2 = n2 + m1 is an equivalence relation

Intuitively, this relation reflects the geometrical argument that
states that the two pairs of points (n1,m1) and (n2,m2) are
equivalent iff the differences n1 −m1 and n2 −m2 are equal.

Draw the picture to get evidence!

Thus, the equivalence classes here correspond to straight
lines parallel to the first bisectrice

4 / 28



Maths for Computer Science Relations

Example

Prove that the following relation between pairs of integers (ni ,mi ):
(n1,m1)ρ(n2,m2) iff n1 + m2 = n2 + m1 is an equivalence relation

Intuitively, this relation reflects the geometrical argument that
states that the two pairs of points (n1,m1) and (n2,m2) are
equivalent iff the differences n1 −m1 and n2 −m2 are equal.

Draw the picture to get evidence!

Thus, the equivalence classes here correspond to straight
lines parallel to the first bisectrice

4 / 28



Maths for Computer Science Relations

Example

Prove that the following relation between pairs of integers (ni ,mi ):
(n1,m1)ρ(n2,m2) iff n1 + m2 = n2 + m1 is an equivalence relation

Intuitively, this relation reflects the geometrical argument that
states that the two pairs of points (n1,m1) and (n2,m2) are
equivalent iff the differences n1 −m1 and n2 −m2 are equal.

Draw the picture to get evidence!

Thus, the equivalence classes here correspond to straight
lines parallel to the first bisectrice

4 / 28



Maths for Computer Science Relations

Partitions

Partition is a concept closely linked with binary equivalence
relations:

A partition of a set S and an equivalence relation within S are
just two sides of the same medal.

Both notions are equivalent

5 / 28



Maths for Computer Science Relations

Order relation

Definition
A binary relation ρ on a set S is a partial order if ρ is transitive

Cartesian product

of two sets S and S ′ (where S ′ may be the same as S).
It is the set of all ordered pairs of elements whose first coordinate
is in S and the second one is in S ′.

Common example of use: any binary relations.

6 / 28



Maths for Computer Science Relations

Enumeration of the rationals

Here is a nice illustration of cartesian product over the set N that
shows that this set has the same cardinality as Q

Our goal is to enumerate all the fractions.

We write all possible fractions in a double-input array (one for the
numerator p, one for the denominator q): p

q

7 / 28



Maths for Computer Science Relations

technically

8 / 28



Maths for Computer Science Relations

Equivalence classes

Some rationals may be reduced to an irreductible fraction.

9 / 28



Maths for Computer Science Relations

The way to enumerate

There is a one-to-one correspondence (along the diagonals)

This proves that N and Q have the same cardinatilty.
10 / 28



Maths for Computer Science Relations

Some mechanisms that underlie mathematical reasoning

Formalizing hypotheses, decomposing arguments into steps,
invoking logical inference, and writing proofs (that is our ultimate
goal).

What is the essence of logical reasoning? of logical
argumentation?

What does it mean to say that one proposition implies
another?

When has one established that two propositions are
“equivalent”, in the sense that logical arguments cannot
distinguish them?

11 / 28



Maths for Computer Science Relations

Basics of reasoning: Syllogisms

Form of reasoning introduced by Aristotle

It is a logical reasoning that links at least three propositions:
two or more, called ”premises”, lead to a ”conclusion”.

These propositions are generally expressed with unary
predicates only, and therefore belong to first-order monadic
logic.

Example

Main premise: All men are mortal
Secondary premise: Socrates is a man
Conclusion: Socrates is mortal

Attention: Don’t confuse validity with truth1!

1change ”mortal” by ”kleptoman”
12 / 28



Maths for Computer Science Relations

Basics of reasoning: Syllogisms

Form of reasoning introduced by Aristotle

It is a logical reasoning that links at least three propositions:
two or more, called ”premises”, lead to a ”conclusion”.

These propositions are generally expressed with unary
predicates only, and therefore belong to first-order monadic
logic.

Example

Main premise: All men are mortal
Secondary premise: Socrates is a man
Conclusion: Socrates is mortal

Attention: Don’t confuse validity with truth1!
1change ”mortal” by ”kleptoman”

12 / 28



Maths for Computer Science Relations

Algebra of Propositional Logic

The propositions are the basic objects (syntactic), they are
assertions that can be true or false.

Propositional logic is the restriction without the quantifiers.

Example: ”the sky is pink”.

Similarly to Set Theory, we can combine propositions in more
complex ones:

If (the sky is dark) and (I must go to the Maths class at UGA)
then (I take an umbrella).

The connective that links the various components are obtained by
some operations not, or, and, xor, implies, ...
The corresponding system put in operations with boolean variables
is an Algebra

13 / 28



Maths for Computer Science Relations

The commutativity of union and intersection:

S ∪ T = T ∪ S

S ∩ T = T ∩ S

The distributivity of either of union and intersection:

R ∪ (S ∩ T ) = (R ∪ S) ∩ (R ∪ T ) (1)

R ∩ (S ∪ T ) = (R ∩ S) ∪ (R ∩ T ) (2)

Note that arithmetic (of numbers) has an analogue of
Eq. (2)—with multiplication playing the role of intersection
and addition playing the role of union—but it does not have
an analogue of Eq. (1).

The idempotence of complementation:

S = S

14 / 28



Maths for Computer Science Relations

Operations
What distinguishes Propositional Logic from more general
mathematical logic is the absence of quantifiers (there exists,
for all, etc.).

The algebra that underlies Propositional Logic uses operations that
are reminiscent of the set-theoretic operations to combine simple
assertions into complex ones

if “bananas are ripe” and “you are hungry” then “buy
bananas”
either “the grass is green” or “the ocean is calm”
Two special propositions – the constants of the algebra – are
denoted true and false.
They are intended to represent factual truth and falsehood,
but they are defined by the way they interact with other
propositions. In order to specify these interactions, we have to
specify the the operations of the algebra.

15 / 28



Maths for Computer Science Relations

(i) The unary logical connective

not: negation (¬) (Set-theoretic analogue: complementation).
Two shorthand notations for “not P” have evolved:

the prefix-operator ¬, as in “¬P”

the overline-operator, as in “P”

Whichever notation one uses, the defining properties of
negation are encapsulated in the following equations.

[¬true = false] and [¬false = true]

16 / 28



Maths for Computer Science Relations

(ii) The binary logical connectives

or: disjunction (∨) (Set-theoretic analogue: union).

The operation or – which is also called logical sum – is usually
denoted by the infix-operator ∨;
the operation’s defining properties are encapsulated as follows.

[[P ∨ Q] = true] if, and only if, [P = true] or [Q = true] or both.

Note that, as with union, logical or is inclusive: The assertion
[P ∨ Q] is true

is true when both propositions P and Q are true, as well as when
only one of them is. Because such inclusivity does not always
capture one’s intended meaning, there is also an exclusive version
of disjunction, as we see next.

17 / 28



Maths for Computer Science Relations

xor: XOR (⊕) (Set-theoretic analogue: disjoint union).
The operation exclusive or is a version of disjunction that does not
allow both disjuncts to be true simultaneously. It is usually
denoted by the infix-operator ⊕; the operation’s defining properties
are encapsulated as follows.

[[P ⊕ Q] = true] if, and only if, [P = true] or [Q = true] but not both.

We emphasize the distinction between ∨ and ⊕, the (respectively)
inclusive and exclusive versions of disjunction, by remarking that
the assertion

[P ⊕ Q] is true

is false when both propositions P and Q are true.

18 / 28



Maths for Computer Science Relations

and: conjunction (∧) (Set-theoretic analogue: intersection).
The operation and – which is also called logical product—is
usually denoted by the infix-operator ∧; the operation’s defining
properties are encapsulated as follows.

[[P ∧ Q] = true] if, and only if, both [P = true] and [Q = true].

19 / 28



Maths for Computer Science Relations

implies: logical implication (⇒) (Set-theoretic analogue: subset).
The logical operation implies is often called conditional

[[P ⇒ Q] = true] if, and only if,

[[¬P] = true] (inclusive) or [Q = true].

If proposition P is false, then it implies every proposition.

If proposition Q is true, then it is implied by every proposition.

20 / 28



Maths for Computer Science Relations

The semantic completeness of the Propositional Calculus as a
logical system is a consequence of the fact that we are able to view
the expressions of the Calculus as Boolean functions, in the
following way.

As we examine an expression in the Calculus, the only
information we need about the propositions which appear in
the expression is the array of truth-values for the propositions.

If we tabulate how the truth-values of propositions combine under
the logical operators that interconnect them in the expression, then
we remark immediately how the expressions can be viewed as
functions of binary tuples, where the arity of the functions is the
number of propositional variables.

21 / 28



Maths for Computer Science Relations

Using this viewpoint, the tables reproduce the definitions of the
main logical operators , viewed as functions within the space of
truth-values. Each propositional variable is instantiated with all of
its possible truth-values, true and false – which we denote here,
for convenience, by 1 and 0, respectively.

P Q P ∨ Q P ⊕ Q P ∧ Q P ⇒ Q P ≡ Q

0 0 0 0 0 1 1

0 1 1 1 0 1 0

1 0 1 1 0 0 0

1 1 1 0 1 1 1

22 / 28



Maths for Computer Science Relations

Every Propositional expression is a binary function, so we can pass
back and forth between logical and functional/operational
terminology.
This ability affords us very simple definitions of two important
concepts that are somewhat harder to define in purely logical
terms.

Tautology.

Mathematical formulation:
A Propositional expression is a tautology iff its corresponding
function is the constant function F (x) ≡ 1.
Logical formulation:
A Propositional expression is a tautology iff it evaluates to
true under every instantiation of truth-values for its
Propositional variables.

23 / 28



Maths for Computer Science Relations

Satisfiable expression.

Mathematical formulation:
A Propositional expression is satisfiable iff its corresponding
function has 1 in its range; i.e., iff there is an argument x such
that F (x) = 1.
Logical formulation:
A Propositional expression is satisfiable iff there exists an
instantiation of truth-values for its Propositional variables
under which the expression evaluates to true.

This last notion is a foundation of complexity theory (SAT
problem).

24 / 28



Maths for Computer Science Relations

iff: logical equivalence (≡) (Set-theoretic analogue: set equality).
The final logical operation that we shall discuss is known by many
names, including logical equivalence and biconditional, as well as if
and only if and its shorthand iff. It is usually denoted via one of
the following two infix-operators: ≡ or ⇔; the operation’s defining
properties are encapsulated as follows.

[[P ≡ Q] = true] if, and only if

[[P ⇒ Q] = true] and [[Q ⇒ P] = true].

25 / 28



Maths for Computer Science Relations

algebraic closure

Let C be a (finite or infinite) collection of sets.

Let S and T be elements of collection C .

Let ◦ be an operation on sets – so that S ◦ T is a set.

We say that collection C is closed under the operation ◦ if
whenever sets S and T (which could be the same set) both belong
to C , the set S ◦ T also belongs to C .

26 / 28



Maths for Computer Science Relations

A last exercise

We finish this session by asking to carefuly write the solution of
the following problem.

Every one is aware of the well-known Pythagorean Theorem that
states that the sum of the squares of the sides of a right triangle is
equal to the square of the hypothenuse a2 + b2 = c2

A natural extension is to characterize all the integers that are
solutions of the previous equation.

Check this property for all the integers from 1 to 15.

Show by any methods (analytical, geometrical, etc.) that:
All square integers have the following form: 4k or 4k + 1

Deduce the form of the sum the two squares.

27 / 28



Maths for Computer Science Relations

Elements of solution

The first question is in fact not a ”question”, but just an help to
start.
The point here is: ”is it possible to deduce a general model?”

The second question is prescriptive in the sense the result is
given.
It suggests to distinguish between even and odd integers.

In the last question, we don’t explicitly provide what we are
looking for.
It comes directly from the last question that the sum of two
squares are 4k, 4k + 1 or 4k + 2

28 / 28


