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Introduction

Illustration of methodological element

We investigate here a useful mathematical technique.

Stand alone toolbox.

As an inspiring element.

No need to rely on sophisticated material.
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Computing Geometric series

let n be an integer, Σk=0,n2k = ?

This is a particular case (a = 2) of the geometric progression.

Sa(n) = Σk=0,na
k = an+1−1

a−1 for a 6= 1

Let us expand the summation:

Sa(n) = 1 + a + a2 + · · ·+ an

= 1 + a[1 + a + a2 + · · ·+ an−1] + an+1 − an+1

= 1 + a · Sa(n)− an+1

Thus, (1− a)Sa(n) = 1− an+1

Remark that most existing proofs directly suggest to multiply S(n)
by 1− a
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Other ways of computing particular geometric series

a = 1
2

Using an analogy with geometry (surface of the unit square).

Remark: We may also have used unit sized disks...
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Particular geometric series

a = 1
4

Could we do the same?

Assuming the base triangle area is 1, the solution is the grey
area.
Argument: It is one third at each layer.
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Exercise

Prove this result formally.

S1/4 = 1
3 + 1 = 4

3

What happens at infinity?

Are you sure we told the whole story in a proper way?
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Generalization:
Any geometric series with b < 1

The value of the summation is given by the Thales’ theorem
(triangle similarity)1:
Sb
1 = 1

1−b

1notice here the transversality of the topics in Maths
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Proving an expression with a summation

Prove
Σk=1,n[k2(k + 1)− k(k − 1)2] = n2(n + 1) for all non-negative
integer n

The idea here is to learn how to write a simple proof.

To get insight, let start by small values of n.

n = 1, 12(1 + 1)− 1(1− 1)2 = 12(1 + 1)

n = 2,
12(1 + 1)− 1(1− 1)2 + 22(2 + 1)− 2(2− 1)2 = 22(2 + 1)

In both cases, we see that the sum reduces to a single term...
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Proving this result

The summation can be written as follows:
n2(n + 1) + Σk=1,n−1[k2(k + 1)− Σk=1,nk(k − 1)2]

Now, let us remark that the last term can be simplified since the
first term of this summation is nul for k = 1:
Σk=2,nk(k − 1)2

Now, shift the indices in this sum (change k to k ′ = k + 1):
Σk ′=1,n−1(k ′ + 1)k ′2.

This concludes the proof since both summations are the same with
an opposite sign2.

2notice here that a proof by expending the expression is also possible
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Identities

an − bn = ?

an − bn = (a− b)(an−1 + an−2b + an−3b2 + ... + bn−1).

The proof technique works exactly as before by cancelling pairs of
equal terms!

(a + b)n = ?
The second one is the classical Newton binomial expression.

(a + b)2 = a2 + 2ab + b2

(a + b)3 = a3 + 3a2b + 3ab2 + b3

(a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4
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Harmonic series

What are the values of Σk≥0
1
2k

and Σk>0
1
k ?

Σk>0f (k) = limn→∞Σk=1,nf (k)
Obtaining a finite value for an infinite sum was a paradox for a
long time until the infinitesimal calculus of Leibniz/Newton on the
XVIIth century.

The limit of the first sum is 2.
This is obtained by using the sum of a geometric progression
for a = 1

2 .

The second sum is unbounded (it goes to +∞).
The result is obtained by bounding the summation:
1 + 1

2 + 1
3 + 1

4 + ... > 1 + 1
2 + 21

4 + 41
8 + ...

and the infinite sum of positive constant numbers (here 1
2) is

infinite.
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An extra (related) question

Compute extended geometric series and their sums

S
(c)
a (n) =

∑n
i=1 icai

where c is an arbitrary fixed positive integer, and a is an arbitrary
fixed real number.

We restrict attention to summations S
(c)
a (n) that satisfy the joint

inequalities c 6= 0.

We have already adequately studied the case c = 0, which
characterizes “ordinary” geometric summations.

Assume and a 6= 1 since the degenerate case a = 1 removes
the “geometric growth” of the sequence underlying the
summation.

12 / 22



Maths for Computer Science Summations

Summation method

The method is inductive in parameter c , for each fixed value
of c , the method is inductive in the argument n.
We restrict our study to the case c = 1.

The summation S
(1)
a (n) =

∑n
i=1 ia

i

Proposition.

For all bases a > 1,

S
(1)
a (n) =

n∑
i=1

iai =
(a− 1)n − 1

(a− 1)2
· an+1 +

a

(a− 1)2
(1)
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Proof
We begin to develop our strategy by writing the natural expression

for S
(1)
a (n) = a + 2a2 + 3a3 + · · ·+ nan in two different ways.

First, we isolate the summation’s last term:

S
(1)
a (n + 1) = S

(1)
a (n) + (n + 1)an+1 (2)

Then we isolate the left-hand side of expression:

S
(1)
a (n + 1) = a +

n+1∑
i=2

iai

= a +
n∑

i=1

(i + 1)ai+1

= a + a ·
n∑

i=1

(i + 1)ai
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Proof

Let develop the last sum3:

= a + a ·

(
n∑

i=1

iai +
n∑

i=1

ai

)
= a ·

(
S
(1)
a (n) + S

(0)
a (n)

)
+ a

= a ·
(
S
(1)
a (n) +

an+1 − 1

a− 1
− 1

)
+ a

= a · S (1)
a (n) + a · a

n+1 − 1

a− 1
(3)

3Could you guess ”why?”
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We now use standard algebraic manipulations to derive the
expression

Combining both previous expressions of S
(1)
a (n + 1), we finally find

that

(a− 1) · S (1)
a (n) = (n + 1) · an+1 − a · a

n+1 − 1

a− 1

=

(
n − 1

a− 1

)
· an+1 +

a

a− 1
(4)

Good exercise: check the previous calculations.
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Another way to solve

Solving the case a = 2 using subsum rearrangement.

We evaluate the sum S
(1)
2 (n) =

∑n
i=1 i2i

in an especially interesting way, by rearranging the sub-summations
of the target summation.

Underlying our evaluation of S
(1)
2 (n) is the fact that we can rewrite

the summation as a double summation:

S
(1)
2 (n) =

n∑
i=1

i∑
k=1

2i (5)

By suitably applying the laws of arithmetic specifically, the
distributive, associative, and commutative laws, we can perform
the required double summation in a different order than that
specified previously.
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We can exchange the indices of summation in a manner that

enables us to compute S
(1)
2 (n) in the order implied by the following

expression:

S
(1)
2 (n) =

n∑
k=1

n∑
i=k

2i

Are you able to validate this transformation?
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An easier way to see the transformation

The indicated summation is much easier to perform in this order,
because its core consists of instances of the “ordinary” geometric
summation

∑n
i=k 2i .
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Expanding these instances, we find finally that

S
(1)
2 (n) =

n∑
k=1

(
2n+1 − 1−

k−1∑
i=0

2i
)

=
n∑

k=1

(
2n+1 − 2k

)
= n · 2n+1 − (2n+1 − 1) + 1

= (n − 1) · 2n+1 + 2
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We remark that the process of obtaining the original summation
can also be seen by scanning the elements of the summation along
diagonals.

Each of the n diagonals contains exactly the difference between the
complete geometric summation and the partial summation that is
truncated at the kth term.
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Final message

We had a brief overview of techniques for manipulating the
mathematical object of summation.

We also started to write proper proofs.
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