
Efficient mapping functions
Denis TRYSTRAM
HomeWork

Maths for Computer Science – MOSIG 1 – 2023

Guidelines

This work can be done by groups of 3 to 4 students, but each one must send
a personal report in pdf format at

Denis.Trystram@univ-grenoble-alpes.fr
Please, indicate the names of the other members of this group and detail

clearly the credit of each (percentage in designing, proving, writing code, do
experiments, etc.).

I don’t encourage you to look at Internet, but in case, indicate all
sources you used.

Use your professional e-mail address and clearly indicate:
subject: Homework MCS
The file should be named Homework-name.pdf
The strict deadline is novembre 12, 23:59, a penalty will be applied in

case of delay.

The subject contains both explanations and questions.
It is mandatory to answer Questions 1 to 6. The further questions are

harder and are only for those who wish to dive deeper into the subject.

Motivation

We propose here to investigate the mathematical analysis of coding functions
motivated by the “real-life" challenge of devising efficient computer-storage
mappings for arrays and tables that can be expanded and contracted dy-
namically.



The first part is a warm-up for understanding a generic construction
paradigm on the example of diagonal pairing function in N+×N+ that will
be applied in further sections.

Diagonal coding: Bringing linear order to tuple spaces

The problem is to encode complex structures via ordered pairs, that represent
a myriad of complex structures. We illustrate below some of them.

(i) (Ordered) tuples of integers. Focus on the set of k-tuples of integers, for
any integer k > 1. One way to encode this set using ordered pairs is by
recursion as follows:

• the base case k = 2 consists of the ordered pairs themselves.

• For any k > 2, encode the k-tuple 〈a1, a2, . . . , ak〉 as the ordered pair
whose first is the ordered (k − 1)-tuple 〈a1, a2, . . . , ak−1〉

〈a1, a2, . . . , ak〉 is encoded as 〈〈a1, a2, . . . , ak−1〉, ak〉

(ii) Strings of integers. One way to encode the string of integers a1a2 · · · an
using ordered pairs is as follows.

a1a2 · · · an is encoded as 〈a1, 〈a2, 〈a3, . . . , 〈an−2, 〈an−1, an〉〉 · · · 〉〉〉

(iii) Binary trees. One can use ordered pairs to encode any binary tree by
an appropriate “parenthesization" of the sequence of the tree’s leaves.

Question 1. Provide such a coding for binary trees with leaves a1, a2, a3,
a4, a5, a6, a7, a8.

What does it really mean to encode one class of entities, A (integers, strings,
trees, etc.), as another class, B?

For the mathematical perspective, there exists a bijection fA,B that maps
A one-to-one onto B. In other words, when presented with an element a ∈ A,
the function fA,B “produces” a unique element b ∈ B. And conversely, when
presented with an element b ∈ B, the function f−1

A,B “produces” a unique
element a ∈ A.

The Diagonal encoding of N+ ×N+ as N+

Ordered pairs of integers play a special role in the study of encodings of struc-
tured sets of integers. These special bijections are called pairing functions.

2



One of the most valuable by-products of encodings via pairing functions is
that such encodings provide a linear/total ordering of the set being encoded.1

The orderings provided by pairing functions are particularly valuable when
the structured sets being encoded as integers do not have their own “intrinsic”
or “natural” orderings. Included in this category are structures such as tuples,
strings, and trees.

Of course some structured sets do have natural, native linear orders:
consider for instance strings under lexicographic ordering. Even for such
sets, we often benefit from determining alternative orderings as we design
and analyze algorithms on the sets.

We now describe the first explicit mapping function, namely, the diagonal
encoding function δ(x, y).

(.x, y) =

(
x+ y

2

)
+ (1− y) (1)

Remark. δ of course has a twin that exchanges the roles of x and y.
δ’s mapping of N+ × N+ onto N+ is depicted in Fig. 1. The figure

Figure 1: The diagonal pairing function δ. The shell x+y = 6 is highlighted

exposes that we can view δ’s mapping of N+×N+ as a two-step conceptual
process:

1. partitioning N+ ×N+ into “diagonal shells”.

For each index k ∈ N+, shell #k is the set

Shellk = {〈x, y〉 | x+ y = k}
1order within a number system is among one’s biggest friends when reasoning about

the numbers within the system.

3



The partitioning is an integral part of the specification of δ, as wit-
nessed by the following subexpression below.

1

2
(x+ y) · (x+ y) =

(
x+ y

2

)
2. “climbing up” these shells in order

Shell-Based Methodology

The shell-oriented strategy that underlies the diagonal mapping function δ
can be adapted to incorporate shell-shapes that are inspired by a variety of
computational situations – and can be applied to computational advantage
in such situations.

Procedure Constructor(α)
/*Construct a shape-inspired pairing function α∗/
begin

Step 1. Partition the set N+×N+ into finite sets called shells. Order these
shells linearly in some way.

Step 2. Construct a pairing function from the shells as follows.

Step 2a. Enumerate N+×N+ shell by shell according to the ordering
of the shells; i.e., list the pairs in shell #1, shell #2, shell #3, etc.

Step 2b. Enumerate each shell systematically.

end Constructor

Question 2. Provide a way to enumerate the pairs 〈x, y〉.

Question 3. Show that any function N+ ×N+ ↔ N+ that is designed via
Constructor is a bijection.

We now use Constructor to design two other functions which produce ef-
ficient storage mappings for extendible arrays and tables.

Question 4. Briefly analyze Stern’s sequence as a diagonal mapping.

The Square-Shell function σ

One computational situation where pairing functions are useful is as storage-
mappings for arrays/tables that can expand and/or contract dynamically.

In conventional programming systems, when one expands an n×n table
into an (n+ 1)× (n+ 1) table, one allocates a new region of (n+ 1)2 storage

4



locations and copies the current table from its n2-location region to the new
region. Of course, this is very wasteful: one is moving Ω(n2) items to make
room for the anticipated 2n+ 1 new items. On any given day, the practical
impact of this waste depends on current technology.

Considering the mathematics perspective and not an engineering one, let
us explore whether in principle we can avoid the waste.

If we employ a function ε : N+×N+ ↔ N+ to allocate storage for tables,
then to expand a table from dimensions n× n to (n+ 1)× (n+ 1), we need
move only O(n) items to accommodate the new table entries; the rest of the
current entries need not be moved.

For square tables, the following square-shell function σ manages the de-
scribed scenario perfectly.

Figure 2: The square-shell σ. The shell max(x, y) = 5 is highlighted

σ(x, y) = m2 +m+ y − x+ 1
where m = max(x− 1, y − 1).

(2)

Of course, σ has a twin that enumerates the shells in a counterclockwise
direction...

Question 5. Verify the mapping σ and show that it follows the prescription
of Constructor

Question 6. Show how to adapt σ to accommodate, with no wastage,
arrays/tables of any fixed aspect ratio an× bn (a, b ∈ N).

The Hyperbolic-Shell hyp

The previous diagonal and square-shell functions indicate that when the
growth patterns of one’s arrays/tables is very constrained, one can use pair-

5



ing functions as storage mappings with very little wastage. In contrast, if
one employs a pairing function such as δ without considering its wastage,
then a storage map would show some O(n)-entry tables being “spread”
over Ω(n2) storage locations. In the worst-case, δ spreads the n-position
1 × n array/table over more than 1

2n
2 addresses, because: (.1, 1) = 1 and

(.1, n) = 1
2(n2 + n). This degree of wastefulness can be avoided via careful

analysis, coupled with the use of Constructor. The target commodity to be
minimized is the spread of a Pairing Function-based storage map, which we
define as follows. Let denote PF in short for Pairing Function.

Note that an ordered pair of integers 〈x, y〉 appears as a position-index
within an n-position table if, and only if, xy ≤ n. Therefore, we define the
spread of a PF-based storage map µ via the function

S(n) = max{µ(x, y) | xy ≤ n} (3)

S(n) is the largest “address” that µ assigns to any position of a table that
has n or fewer positions.

Question 7. Show that the following mapping hyp in Fig. 3 (within constant
factors) has minimum worst-case spread

Let d(k) be the number of divisors of the integer k
hyp(x, y) =

∑xy−1
k=1 d(k)+ the position of 〈x, y〉 among two-part factor-

izations of xy, in reverse lexicographic order.

Figure 3: The hyperbolic function hyp where shell xy = 6 is highlighted

Question 8. Show that the hyperbolic function hyp is a pairing function.

Question 9. The spread of hyp is S(n) = O(n log n).

Question 10. No pairing function has better compactness than hyp by
more than a constant factor.

6


