Computing a summation involving binomial coefficients

Let $Q_{n}=\Sigma_{k \leq 2^{n}}(-1)^{k} \times\binom{ 2^{n}-k}{k}$
Question
We are looking for an expression of Q_{n}
Compute $Q_{1,000,000}$

Hint

- Compute the first ranks (for $n=1,2,3$ and 4).

■ As binomial coefficients are involved, an idea could be to use Pascal's triangle and recurrence. However, $2^{n}-k$ is 2^{k} rows apart k, thus, we can not easily use the locality character of the triangle. Instead, we change by computing $R_{m}=\Sigma_{k \leq m}(-1)^{k} \times\binom{ m-k}{k}$ by using the relation $\binom{m-k}{k}=\binom{m-(k+1)}{k}+\binom{m-(k+1)}{k-1}$

- Compute the first ranks and show $R_{m}=R_{m-6}$

■ Deduce the expression of $Q_{1,000,000}$

