Lecture 1 – Maths for Computer Science Multiple ways for solving a problem Summations

Denis TRYSTRAM Lecture notes MoSIG1

sept. 12, 2023

Context and content

The **purpose** of this lecture is to experience multiple ways for solving the same mathematical problem.

Its **goal** is to provide the basis for gaining intuition in proving methods.

We consider the sum of squares as an illustration.

Context and content

The **purpose** of this lecture is to experience multiple ways for solving the same mathematical problem.

Its **goal** is to provide the basis for gaining intuition in proving methods.

We consider the sum of squares as an illustration.

- The core analysis: Sum of squares also called the pyramid numbers
- One step further: the Tetrahedral numbers

Sum of squares: pyramid numbers

Definition:

Sum of the n first squares:

$$\square_n = \sum_{k=1}^n k^2$$

Let us study various ways to establish and prove the sum of squares.

Preliminary: determine the asymptotic behavior

Rough analysis.

Upper bound

as
$$k^2 \le n^2$$
, $\forall k \le n$

$$\square_n \leq \sum_{k=1}^n n^2 = n^3$$

asymptotic behavior (2)

A slightly more precise analysis based on integral leads to:

$$\square_n \le c \frac{n^3}{3}$$

In other words, the summation is in $O(\frac{n^3}{3})$.

asymptotic behavior (3)

Actually, we have a bit more by bounding the sum by another integral:

asymptotic behavior (3)

Actually, we have a bit more by bounding the sum by another integral:

integral:
$$\Box_n \geq c' \frac{n^3}{3}$$

It is in $\Omega(\frac{n^3}{3})$, thus, the sum we are looking for is $\Theta(\frac{n^3}{3})$

Method 1: undetermined coefficients

• From the previous asymptotic analysis, we know that:

$$\Box_n = \alpha_0 + \alpha_1 n + \alpha_2 n^2 + \alpha_3 n^3$$

• we identify the α_i by taking simple values of n

$$\Box_0 = \alpha_0 = 0
\Box_1 = \alpha_1 + \alpha_2 + \alpha_3 = 1
\Box_2 = 2\alpha_1 + 4\alpha_2 + 8\alpha_3 = 5
\Box_3 = 3\alpha_1 + 9\alpha_2 + 27\alpha_3 = 14$$

Method 1: undetermined coefficients

Let us solve this linear system.

$$\alpha_{1} = 1 - \alpha_{2} - \alpha_{3}$$

$$(1 - \alpha_{2} - \alpha_{3}) + 4\alpha_{2} + 8\alpha_{3} = 5$$

$$3(1 - \alpha_{2} - \alpha_{3}) + 9\alpha_{2} + 27\alpha_{3} = 14$$

$$3\alpha_{2} + 7\alpha_{3} = 4$$

$$6\alpha_{2} + 24\alpha_{3} = 11$$

After another substitution and some arithmetic manipulations:

Method 1: undetermined coefficients

Let us solve this linear system.

$$\alpha_{1} = 1 - \alpha_{2} - \alpha_{3}$$

$$(1 - \alpha_{2} - \alpha_{3}) + 4\alpha_{2} + 8\alpha_{3} = 5$$

$$3(1 - \alpha_{2} - \alpha_{3}) + 9\alpha_{2} + 27\alpha_{3} = 14$$

$$3\alpha_{2} + 7\alpha_{3} = 4$$

$$6\alpha_{2} + 24\alpha_{3} = 11$$

After another substitution and some arithmetic manipulations:

$$\alpha_1 = \frac{1}{6}, \ \alpha_2 = \frac{1}{2} \ \text{and} \ \alpha_3 = \frac{1}{3}$$
 Thus, $\Box_n = \frac{n}{6} + \frac{n^2}{2} + \frac{n^3}{3}$

Method 2: proving by induction

Compute the first ranks:

n	0	1	2	3	4	5	6	7	8	9	10
n ²	0	1	4	9	16	25	36	49	64	81	100
Sn	0	1	5	14	30	55	91	140	204	285	385

Guess the expression (or take it in a book):

$$\square_n = \frac{n(n+1)(2n+1)}{6}$$

Strong induction

■ Basis:
$$\square_1 = \frac{(2 \times 3)}{6} = 1^2$$

Strong induction

■ Basis:
$$\Box_1 = \frac{(2 \times 3)}{6} = 1^2$$

Assume
$$\Box_n = \frac{n(n+1)(2n+1)}{6}$$

Compute $\Box_{n+1} = \Box_n + (n+1)^2$
 $= (n+1)\frac{n(2n+1)}{6} + (n+1)^2$
 $= (n+1)\frac{2n^2+n+6n+6}{6}$
 $= \frac{(n+1)(n+2)(2n+3)}{6}$

Method 3: perturb the sum

Developing two ways to compute $C_n = \sum_{k=1}^n k^3$ allows to express \square_n .

$$C_{n+1} = 1 + \sum_{k=2}^{n+1} k^3$$

$$= 1 + \sum_{k=1}^{n} (k+1)^3$$

$$= 1 + \sum_{k=1}^{n} (k^3 + 3k^2 + 3k + 1)$$

$$= 1 + C_n + 3\Box_n + 3\Delta_n + n$$

Method 3: perturb the sum

Developing two ways to compute $C_n = \sum_{k=1}^n k^3$ allows to express \square_n .

1
$$C_{n+1} = 1 + \sum_{k=2}^{n+1} k^3$$

 $= 1 + \sum_{k=1}^{n} (k+1)^3$
 $= 1 + \sum_{k=1}^{n} (k^3 + 3k^2 + 3k + 1)$
 $= 1 + C_n + 3\Box_n + 3\Delta_n + n$
2 $C_{n+1} = (n+1)^3 + \sum_{k=1}^{n} k^3 = (n+1)^3 + C_n$
 $= n^3 + 3n^2 + 3n + 1 + C_n$

Method 3: perturb the sum

Developing two ways to compute $C_n = \sum_{k=1}^n k^3$ allows to express \square_n .

1
$$C_{n+1} = 1 + \sum_{k=2}^{n+1} k^3$$

 $= 1 + \sum_{k=1}^{n} (k+1)^3$
 $= 1 + \sum_{k=1}^{n} (k^3 + 3k^2 + 3k + 1)$
 $= 1 + C_n + 3\Box_n + 3\Delta_n + n$
2 $C_{n+1} = (n+1)^3 + \sum_{k=1}^{n} k^3 = (n+1)^3 + C_n$
 $= n^3 + 3n^2 + 3n + 1 + C_n$

Let now equal both expression to deduce \square_n .

$$1 + 3\Box_n + 3\frac{n^2 + n}{2} + n = n^3 + 3n^2 + 3n + 1$$
$$3\Box_n = n^3 + 3n^2 + 2n - 3\frac{n^2 + n}{2} = n^3 + \frac{3n^2}{2} + \frac{n}{2}$$

$$\Box_n = \sum_{k=1}^n k^2$$

$$= \sum_{k=1}^n \sum_{i=1}^k k$$

$$= 1 + (2+2) + (3+3+3) + (4+4+4+4) + \dots + (n+n+\dots+n)$$

$$\Box_{n} = \sum_{k=1}^{n} k^{2}$$

$$= \sum_{k=1}^{n} \sum_{i=1}^{k} k$$

$$= 1 + (2+2) + (3+3+3) + (4+4+4+4) + \dots + (n+n+\dots+n)$$

$$= (1+2+\dots+n) + (2+3+\dots+n) + (3+4+\dots+n) + \dots + n$$

$$\Box_{n} = \sum_{k=1}^{n} k^{2}
= \sum_{k=1}^{n} \sum_{i=1}^{k} k
= 1 + (2+2) + (3+3+3) + (4+4+4+4) + ... + (n+n+...+n)
= (1+2+....+n) + (2+3+...+n) + (3+4+...+n) + ...+n
= \sum_{k=0}^{n-1} (\Delta_{n} - \Delta_{k})
= n.\Delta_{n} - \sum_{k=1}^{n-1} \Delta_{k}
\Box_{n} = \frac{n^{2}(n+1)}{2} - \sum_{k=1}^{n-1} \frac{k^{2}}{2} - \frac{1}{2}\Delta_{n-1}
\Box_{n} = \frac{n^{2}(n+1)}{2} - \frac{1}{2}(\Box_{n} - n^{2}) - \frac{n(n-1)}{4}$$

$$\Box_{n} = \sum_{k=1}^{n} k^{2}$$

$$= \sum_{k=1}^{n} \sum_{i=1}^{k} k$$

$$= 1 + (2+2) + (3+3+3) + (4+4+4+4) + \dots + (n+n+\dots+n)$$

$$= (1+2+\dots+n) + (2+3+\dots+n) + (3+4+\dots+n) + \dots + n$$

$$= \sum_{k=0}^{n-1} (\Delta_{n} - \Delta_{k})$$

$$= n \cdot \Delta_{n} - \sum_{k=1}^{n-1} \Delta_{k}$$

$$\Box_{n} = \frac{n^{2}(n+1)}{2} - \sum_{k=1}^{n-1} \frac{k^{2}}{2} - \frac{1}{2} \Delta_{n-1}$$

$$\Box_{n} = \frac{n^{2}(n+1)}{2} - \frac{1}{2} (\Box_{n} - n^{2}) - \frac{n(n-1)}{4}$$

$$\frac{3}{2} \Box_{n} = \frac{1}{2} (n^{3} + n^{2} + n^{2} - \frac{n^{2}-n}{2})$$

$$\Box_{n} = \frac{1}{2} (n^{3} + \frac{3}{2} n^{2} + \frac{n}{2})$$

Method 5: semi-graphical proof

- As we already remarked, the sum can be written as: 1, 2+2, 3+3+3, etc.
- This is "naturally" represented by triangles of integers
- Compute three rotated triangles as follows:

Exhibit an invariant

1						n	n
2	2					n n-1	n-1 n
3	3	3				n n-1 ···	··· n-1 n
4	4	4	4			n n-1 ··· 3	3 ··· n-1 n
						n n-1 ··· 3	2 2 3 ··· n-1 n
n	n	n	n	n	n	n n-1 ··· 3	2 1 1 2 3 ··· n-1 n

1						n	n
2	2					n n-1	n-1 n
3	3	3				n n-1	··· n-1 n
4	4	4	4			n n-1 ··· 3	3 ··· n-1 n
						n n-1 ··· 3 2	2 2 3 ··· n-1 n
n	n	n	n	n	n	n n-1 ··· 3 2	2 1 1 2 3 ··· n-1 n

Gather the whole in a single triangle

```
2n+1
2n+1 2n+1
2n+1 2n+1
2n+1 2n+1 2n+1
2n+1 2n+1 2n+1 2n+1
... ... ...
2n+1 2n+1 2n+1 2n+1 2n+1
```


$$3\square_n = (2n+1) \cdot \Delta_n = (2n+1) \cdot \frac{n(n+1)}{2}$$

Method 6: derived graphical proof

Consider 3 copies of the sum represented by unit squares.

Conclusion:

- The surfaces of the 3 sums perfectly fits a rectangle.
- The whole area is 2n + 1 by $\Delta_n = \frac{n(n+1)}{2}$.

Thus,
$$3\square_n = \frac{(2n+1)n(n+1)}{2}$$

Tetrahedral numbers

Definition:

The sum of the Δ_n is denoted by: $\Theta_n = \sum_{k=1}^n \Delta_k$

Tetrahedral numbers

Definition:

The sum of the Δ_n is denoted by: $\Theta_n = \sum_{k=1}^n \Delta_k$

■ Like for the sum of squares, a way to calculate it is to consider 3 copies of Θ_n and organize them as triangles.

Exhibit an invariant

n						•	1			1					
n-1	n-1						1	2		2	1				
n-2	n-2	n-2					1	2			2	1			
							1	2	··· n-2	n-2		2	1		
2	2	2	2	2			1	2	··· n-2 n-1	n-1	n-2		2	1	
1	1	1	1	1	1		1	2	n-2 n-1 n	n	n-1	n-2		2	1

n	1	1
n-1 n-1	1 2	2 1
n-2 n-2 n-2	1 2	2 1
	1 2 ··· n-2	n-2 ··· 2 1
2 2 2 2 2	1 2 ··· n-2 n-1	n-1 n-2 ··· 2 1
1 1 1 1 1 1	1 2 ··· n-2 n-1 n	n n-1 n-2 ··· 2 1

n	1	1
n-1 n-1	1 2	2 1
n-2 n-2 n-2	1 2	··· 2 1
	1 2 ··· n-2	n-2 ··· 2 1
2 2 2 2 2	1 2 ··· n-2 n-1	n-1 n-2 ··· 2 1
1 1 1 1 1 1	1 2 ··· n-2 n-1 n	n n-1 n-2 ··· 2 1

Gather the whole in a single triangle

```
n+2
n+2 n+2
n+2 n+2 n+2
n+2 n+2 n+2
n+2 n+2 n+2
n+2 n+2 n+2 n+2 n+2
n+2 n+2 n+2 n+2 n+2
```

_ Tetrahedral numbers

```
1
1 1
1 1 1
(n+2)x 1 ··· 1 1
1 1 ··· 1 1
1 1 1 ··· 1 1
```

Tetrahedral numbers

$$3\Theta_n = (n+2) \cdot \Delta_n = (n+2) \cdot \frac{n(n+1)}{2} = \frac{n(n+1)(n+2)}{2}$$

Another (analytical) way to look at the proof

■ The proof is obtained by the double counting Fubini's principle by copying (with a rotation) the basic triangles.

The sum of the first row is equal to n + 2. The second one is equal to 2(n-1) + 3 + 3 = 2(n+2).

Another (analytical) way to look at the proof

■ The proof is obtained by the double counting Fubini's principle by copying (with a rotation) the basic triangles.

The sum of the first row is equal to n + 2.

The second one is equal to 2(n-1) + 3 + 3 = 2(n+2).

Let us sum up the elements in row k:

$$\Delta_k + \Delta_k + k(n-k+1) = k(k+1) + kn - k^2 + k = k(n+2)$$

Thus, the global sum is equal to $(n+2) \times (1+2+...+n)$

Finally,
$$3\Theta_n = (n+2)\Delta_n$$

A first synthesis

We proved some results in this lecture, in particular:

$$Id_n = 1 + 1 + ... + 1 = n$$

$$\Delta_n = 1 + 2 + 3 + ... + n = \frac{1}{2} \cdot Id_n \cdot (n+1)$$

A natural question is if we can go further following the same pattern for computing $\sum_{k=1}^{n} \Theta_k$, and so on.

The next family is the *pentatope* numbers (denoted by Π_n), defined as the sum of Θ_k .

More properties

If we write these numbers as polynomials of n, we obtain:

- Rank 1. $Id_n = n$
- Rank 2. $\Delta_n = \frac{1}{2}n(n+1)$
- Rank 3. $\Theta_n = \frac{1}{6}n(n+1)(n+2)$ where $6 = 1 \times 2 \times 3$
- Rank 4. $\Pi_n = \frac{1}{24}n(n+1)(n+2)(n+3)$ where $24 = 1 \times 2 \times 3 \times 4$

More properties

If we write these numbers as polynomials of n, we obtain:

- Rank 1. $Id_n = n$
- Rank 2. $\Delta_n = \frac{1}{2}n(n+1)$
- Rank 3. $\Theta_n = \frac{1}{6}n(n+1)(n+2)$ where $6 = 1 \times 2 \times 3$
- Rank 4. $\Pi_n = \frac{1}{24}n(n+1)(n+2)(n+3)$ where $24 = 1 \times 2 \times 3 \times 4$
- The next one (rank 5) is $\frac{1}{5!}n(n+1)(n+2)(n+3)(n+4)$

As these numbers are integers

$$P(n) = n(n+1)(n+2)(n+3)$$
 is a multiple of 4!

Exercise

Proving the expectation

- Taking into account the expressions of $Id_n = n$, $\Delta_n = \frac{1}{2}n(n+1)$ and $\Theta_n = \frac{1}{3!}n(n+1)(n+2)$
- Prove: $\sum_{k=1}^{n} \Theta_k = \frac{1}{4!} n(n+1)(n+2)(n+3)$ by an inductive argument on the rank

Coming back on pyramid numbers

Is there a link between pyramid and tetrahedral numbers?

Coming back on pyramid numbers

- Is there a link between pyramid and tetrahedral numbers?
- Yes!

There is a link between the two first ranks: Id_n and Δ_n Since $n^2 = \Delta_n + \Delta_{n-1}$

By summation, we deduce immediately

$$\Box_n = \Theta_n + \Theta_{n-1}$$

The proof follows directly following this definition.

Another property

■ Is there a link between triangular and tetrahedral numbers?

Another property

- Is there a link between triangular and tetrahedral numbers?
- Yes! Using the expression of Method 4.

 $\square_n + \Theta_{n-1} = n.\Delta_n$

$$\Box_n = \Delta_n + (\Delta_n - \Delta_1) + (\Delta_n - \Delta_2) + \dots + (\Delta_n - \Delta_{n-1})$$

$$= n \cdot \Delta_n - \sum_{1 \le k \le n-1} \Delta_k$$

$$= n \cdot \Delta_n - \Theta_{n-1}$$

This can be shown again using the expanded representation of triangles!

Concluding remarks

We presented in this lecture many ways for solving the same problem.

Take home message:

Everyone can find her/his own method!

Concluding remarks

We presented in this lecture many ways for solving the same problem.

Take home message:

Everyone can find her/his own method!

- The results are interesting and they show the hidden structures of numbers.
- But, more important is the way to solve and to write the proofs.