Lecture 1 - Maths for Computer Science Multiple ways for solving a problem Summations

Denis TRYSTRAM
Lecture notes MoSIG1

sept. 12, 2023

Context and content

The purpose of this lecture is to experience multiple ways for solving the same mathematical problem.
Its goal is to provide the basis for gaining intuition in proving methods.

We consider the sum of squares as an illustration.

Context and content

The purpose of this lecture is to experience multiple ways for solving the same mathematical problem.
Its goal is to provide the basis for gaining intuition in proving methods.

We consider the sum of squares as an illustration.

- The core analysis: Sum of squares also called the pyramid numbers
■ One step further: the Tetrahedral numbers

Sum of squares: pyramid numbers

Definition:

Sum of the n first squares:
$\square_{n}=\sum_{k=1}^{n} k^{2}$

- Let us study various ways to establish and prove the sum of squares.

Preliminary: determine the asymptotic behavior

Rough analysis.
Upper bound
as $k^{2} \leq n^{2}, \forall k \leq n$
$\square_{n} \leq \sum_{k=1}^{n} n^{2}=n^{3}$

asymptotic behavior (2)

A slightly more precise analysis based on integral leads to:
$\square_{n} \leq c \frac{n^{3}}{3}$

In other words, the summation is in $O\left(\frac{n^{3}}{3}\right)$.

asymptotic behavior (3)

Actually, we have a bit more by bounding the sum by another integral:

asymptotic behavior (3)

Actually, we have a bit more by bounding the sum by another integral:
$\square_{n} \geq c^{\prime} \frac{n^{3}}{3}$

It is in $\Omega\left(\frac{n^{3}}{3}\right)$, thus, the sum we are looking for is $\Theta\left(\frac{n^{3}}{3}\right)$

Method 1: undetermined coefficients

■ From the previous asymptotic analysis, we know that:

$$
\square_{n}=\alpha_{0}+\alpha_{1} n+\alpha_{2} n^{2}+\alpha_{3} n^{3}
$$

- we identify the α_{i} by taking simple values of n

$$
\begin{aligned}
& \square_{0}=\alpha_{0}=0 \\
& \square_{1}=\alpha_{1}+\alpha_{2}+\alpha_{3}=1 \\
& \square_{2}=2 \alpha_{1}+4 \alpha_{2}+8 \alpha_{3}=5 \\
& \square_{3}=3 \alpha_{1}+9 \alpha_{2}+27 \alpha_{3}=14
\end{aligned}
$$

Method 1: undetermined coefficients

■ Let us solve this linear system.

$$
\begin{aligned}
& \alpha_{1}=1-\alpha_{2}-\alpha_{3} \\
& \left(1-\alpha_{2}-\alpha_{3}\right)+4 \alpha_{2}+8 \alpha_{3}=5 \\
& 3\left(1-\alpha_{2}-\alpha_{3}\right)+9 \alpha_{2}+27 \alpha_{3}=14 \\
& 3 \alpha_{2}+7 \alpha_{3}=4 \\
& 6 \alpha_{2}+24 \alpha_{3}=11
\end{aligned}
$$

- After another substitution and some arithmetic manipulations:

Method 1: undetermined coefficients

- Let us solve this linear system.
$\alpha_{1}=1-\alpha_{2}-\alpha_{3}$
$\left(1-\alpha_{2}-\alpha_{3}\right)+4 \alpha_{2}+8 \alpha_{3}=5$
$3\left(1-\alpha_{2}-\alpha_{3}\right)+9 \alpha_{2}+27 \alpha_{3}=14$
$3 \alpha_{2}+7 \alpha_{3}=4$
$6 \alpha_{2}+24 \alpha_{3}=11$
- After another substitution and some arithmetic manipulations:
$\alpha_{1}=\frac{1}{6}, \alpha_{2}=\frac{1}{2}$ and $\alpha_{3}=\frac{1}{3}$
Thus, $\square_{n}=\frac{n}{6}+\frac{n^{2}}{2}+\frac{n^{3}}{3}$

Method 2: proving by induction

Compute the first ranks:

\mathbf{n}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
n^{2}	0	1	4	9	16	25	36	49	64	81	100
Sn	0	1	5	14	30	55	91	140	204	285	385

Guess the expression (or take it in a book):
$\square_{n}=\frac{n(n+1)(2 n+1)}{6}$

Strong induction

- Basis: $\square_{1}=\frac{(2 \times 3)}{6}=1^{2}$

Strong induction

- Basis: $\square_{1}=\frac{(2 \times 3)}{6}=1^{2}$
- Assume $\square_{n}=\frac{n(n+1)(2 n+1)}{6}$

Compute $\square_{n+1}=\square_{n}+(n+1)^{2}$
$=(n+1) \frac{n(2 n+1)}{6}+(n+1)^{2}$
$=(n+1) \frac{2 n^{2}+n+6 n+6}{6}$
$=\frac{(n+1)(n+2)(2 n+3)}{6}$

Method 3: perturb the sum

Developing two ways to compute $C_{n}=\sum_{k=1}^{n} k^{3}$ allows to express \square_{n}.
(1) $C_{n+1}=1+\sum_{k=2}^{n+1} k^{3}$

$$
\begin{aligned}
& =1+\sum_{k=1}^{n}(k+1)^{3} \\
& =1+\sum_{k=1}^{n}\left(k^{3}+3 k^{2}+3 k+1\right) \\
& =1+C_{n}+3 \square_{n}+3 \Delta_{n}+n
\end{aligned}
$$

Method 3: perturb the sum

Developing two ways to compute $C_{n}=\sum_{k=1}^{n} k^{3}$ allows to express \square_{n}.

$$
\begin{aligned}
& 1 \\
& C_{n+1}=1+\sum_{k=2}^{n+1} k^{3} \\
& \quad=1+\sum_{k=1}^{n}(k+1)^{3} \\
& \quad=1+\sum_{k=1}^{n}\left(k^{3}+3 k^{2}+3 k+1\right) \\
& =1+C_{n}+3 \square_{n}+3 \Delta_{n}+n \\
& \text { 2 } \\
& C_{n+1}=(n+1)^{3}+\sum_{k=1}^{n} k^{3}=(n+1)^{3}+C_{n} \\
& \quad=n^{3}+3 n^{2}+3 n+1+C_{n}
\end{aligned}
$$

Method 3: perturb the sum

Developing two ways to compute $C_{n}=\sum_{k=1}^{n} k^{3}$ allows to express \square_{n}.

$$
\begin{aligned}
& 1 \quad C_{n+1}=1+\sum_{k=2}^{n+1} k^{3} \\
& \quad=1+\sum_{k=1}^{n}(k+1)^{3} \\
& \quad=1+\sum_{k=1}^{n}\left(k^{3}+3 k^{2}+3 k+1\right) \\
& \quad=1+C_{n}+3 \square_{n}+3 \Delta_{n}+n
\end{aligned}
$$

$2 C_{n+1}=(n+1)^{3}+\sum_{k=1}^{n} k^{3}=(n+1)^{3}+C_{n}$

$$
=n^{3}+3 n^{2}+3 n+1+C_{n}
$$

Let now equal both expression to deduce \square_{n}.
$1+3 \square_{n}+3 \frac{n^{2}+n}{2}+n=n^{3}+3 n^{2}+3 n+1$
$3 \square_{n}=n^{3}+3 n^{2}+2 n-3 \frac{n^{2}+n}{2}=n^{3}+\frac{3 n^{2}}{2}+\frac{n}{2}$

Method 4: expand and contract the sum

$$
\begin{aligned}
& \square_{n}=\sum_{k=1}^{n} k^{2} \\
& =\sum_{k=1}^{n} \sum_{i=1}^{k} k \\
& =1+(2+2)+(3+3+3)+(4+4+4+4)+\ldots+(n+n+\ldots+n)
\end{aligned}
$$

Method 4: expand and contract the sum

$$
\begin{aligned}
& \square_{n}=\sum_{k=1}^{n} k^{2} \\
& =\sum_{k=1}^{n} \sum_{i=1}^{k} k \\
& =1+(2+2)+(3+3+3)+(4+4+4+4)+\ldots+(n+n+\ldots+n) \\
& =(1+2+\ldots+n)+(2+3+\ldots+n)+(3+4+\ldots+n)+\ldots+n
\end{aligned}
$$

Method 4: expand and contract the sum

$$
\begin{aligned}
& \square_{n}=\sum_{k=1}^{n} k^{2} \\
& =\sum_{k=1}^{n} \sum_{i=1}^{k} k \\
& =1+(2+2)+(3+3+3)+(4+4+4+4)+\ldots+(n+n+\ldots+n) \\
& =(1+2+\ldots+n)+(2+3+\ldots+n)+(3+4+\ldots+n)+\ldots+n \\
& =\sum_{k=0}^{n-1}\left(\Delta_{n}-\Delta_{k}\right) \\
& =n \cdot \Delta_{n}-\sum_{k=1}^{n-1} \Delta_{k} \\
& \square_{n}=\frac{n^{2}(n+1)}{2}-\sum_{k=1}^{n-1} \frac{k^{2}}{2}-\frac{1}{2} \Delta_{n-1} \\
& \square_{n}=\frac{n^{2}(n+1)}{2}-\frac{1}{2}\left(\square_{n}-n^{2}\right)-\frac{n(n-1)}{4}
\end{aligned}
$$

Method 4: expand and contract the sum

$$
\begin{aligned}
& \square_{n}=\sum_{k=1}^{n} k^{2} \\
& =\sum_{k=1}^{n} \sum_{i=1}^{k} k \\
& =1+(2+2)+(3+3+3)+(4+4+4+4)+\ldots+(n+n+\ldots+n) \\
& =(1+2+\ldots+n)+(2+3+\ldots+n)+(3+4+\ldots+n)+\ldots+n \\
& =\sum_{k=0}^{n-1}\left(\Delta_{n}-\Delta_{k}\right) \\
& =n \cdot \Delta_{n}-\sum_{k=1}^{n-1} \Delta_{k} \\
& \square_{n}=\frac{n^{2}(n+1)}{2}-\sum_{k=1}^{n-1} \frac{k^{2}}{2}-\frac{1}{2} \Delta_{n-1} \\
& \square_{n}=\frac{n^{2}(n+1)}{2}-\frac{1}{2}\left(\square_{n}-n^{2}\right)-\frac{n(n-1)}{4} \\
& \frac{3}{2} \square_{n}=\frac{1}{2}\left(n^{3}+n^{2}+n^{2}-\frac{n^{2}-n}{2}\right) \\
& \square_{n}=\frac{1}{3}\left(n^{3}+\frac{3}{2} n^{2}+\frac{n}{2}\right)
\end{aligned}
$$

Method 5: semi-graphical proof

■ As we already remarked, the sum can be written as: $1,2+2,3+3+3$, etc.

- This is "naturally" represented by triangles of integers
- Compute three rotated triangles as follows:

Exhibit an invariant

Gather the whole in a single triangle

```
2n+1
2n+1 2n+1
2n+1 2n+1 2n+1
2n+1 2n+1 2n+1 2n+1
2n+1 2n+1 2n+1 2n+1 2n+1 2n+1
```


$$
\begin{array}{rrrrrrr}
1 & & & & \\
1 & 1 & & & \\
1 & 1 & 1 & & \\
(2 n+1) \times & 1 & \cdots & 1 & 1 & & \\
1 & 1 & \cdots & 1 & 1 & \\
1 & 1 & 1 & \cdots & 1 & 1
\end{array}
$$

Method 6: derived graphical proof

Consider 3 copies of the sum represented by unit squares.

Graphical proof

Graphical proof

Graphical proof

Graphical proof

Graphical proof

Conclusion:

- The surfaces of the 3 sums perfectly fits a rectangle.
- The whole area is $2 n+1$ by $\Delta_{n}=\frac{n(n+1)}{2}$.

Thus, $3 \square_{n}=\frac{(2 n+1) n(n+1)}{2}$

Tetrahedral numbers

Definition:

The sum of the Δ_{n} is denoted by: $\Theta_{n}=\sum_{k=1}^{n} \Delta_{k}$

Tetrahedral numbers

Definition:

The sum of the Δ_{n} is denoted by: $\Theta_{n}=\sum_{k=1}^{n} \Delta_{k}$

- Like for the sum of squares, a way to calculate it is to consider 3 copies of Θ_{n} and organize them as triangles.

Exhibit an invariant

Gather the whole in a single triangle

```
n+2
n+2 n+2
n+2 n+2 n+2
n+2 n+2 n+2 n+2
n+2 n+2 n+2 n+2 n+2 n+2
```

```
1
1 1
1 1
(n+2)x 1 \... 1 1
1 1 ... 1 1
1 1 1 \cdots
```

$$
\begin{array}{ccccccc}
& 1 & & & & & \\
& 1 & 1 & & & & \\
& 1 & 1 & 1 & & & \\
& (\mathrm{n}+2) \times & 1 & \cdots & 1 & 1 & \\
& 1 & 1 & \cdots & 1 & 1 & \\
& 1 & 1 & 1 & \cdots & 1 & 1
\end{array}
$$

$$
3 \Theta_{n}=(n+2) \cdot \Delta_{n}=(n+2) \cdot \frac{n(n+1)}{2}=\frac{n(n+1)(n+2)}{2}
$$

Another (analytical) way to look at the proof

- The proof is obtained by the double counting Fubini's principle by copying (with a rotation) the basic triangles.

The sum of the first row is equal to $n+2$.
The second one is equal to $2(n-1)+3+3=2(n+2)$.

Another (analytical) way to look at the proof

- The proof is obtained by the double counting Fubini's principle by copying (with a rotation) the basic triangles.

The sum of the first row is equal to $n+2$.
The second one is equal to $2(n-1)+3+3=2(n+2)$.
Let us sum up the elements in row k :
$\Delta_{k}+\Delta_{k}+k(n-k+1)=k(k+1)+k n-k^{2}+k=k(n+2)$
Thus, the global sum is equal to $(n+2) \times(1+2+\ldots+n)$
Finally, $3 \Theta_{n}=(n+2) \Delta_{n}$

A first synthesis

We proved some results in this lecture, in particular:
■ $l d_{n}=1+1+\ldots+1=n$

- $\Delta_{n}=1+2+3+\ldots+n=\frac{1}{2} \cdot I d_{n} \cdot(n+1)$
- $\Theta_{n}=\Delta_{1}+\Delta_{2}+\ldots+\Delta_{n}=\frac{1}{3} \cdot \Delta_{n} \cdot(n+2)$

A natural question is if we can go further following the same pattern for computing $\sum_{k=1}^{n} \Theta_{k}$, and so on.

The next family is the pentatope numbers (denoted by Π_{n}), defined as the sum of Θ_{k}.

More properties

If we write these numbers as polynomials of n, we obtain:
\square Rank 1. $I d_{n}=n$

- Rank 2. $\Delta_{n}=\frac{1}{2} n(n+1)$
- Rank 3. $\Theta_{n}=\frac{1}{6} n(n+1)(n+2)$ where $6=1 \times 2 \times 3$
- Rank 4. $\Pi_{n}=\frac{1}{24} n(n+1)(n+2)(n+3)$ where $24=1 \times 2 \times 3 \times 4$

More properties

If we write these numbers as polynomials of n, we obtain:
\square Rank 1. $I d_{n}=n$

- Rank 2. $\Delta_{n}=\frac{1}{2} n(n+1)$
- Rank 3. $\Theta_{n}=\frac{1}{6} n(n+1)(n+2)$ where $6=1 \times 2 \times 3$
- Rank 4. $\Pi_{n}=\frac{1}{24} n(n+1)(n+2)(n+3)$ where $24=1 \times 2 \times 3 \times 4$
- The next one (rank 5) is $\frac{1}{5!} n(n+1)(n+2)(n+3)(n+4)$

As these numbers are integers
$P(n)=n(n+1)(n+2)(n+3)$ is a multiple of 4 !

Exercise

Proving the expectation

- Taking into account the expressions of $I d_{n}=n$, $\Delta_{n}=\frac{1}{2} n(n+1)$ and $\Theta_{n}=\frac{1}{3!} n(n+1)(n+2)$
- Prove: $\sum_{k=1}^{n} \Theta_{k}=\frac{1}{4!} n(n+1)(n+2)(n+3)$ by an inductive argument on the rank

Coming back on pyramid numbers

■ Is there a link between pyramid and tetrahedral numbers?

Coming back on pyramid numbers

■ Is there a link between pyramid and tetrahedral numbers?
■ Yes!
There is a link between the two first ranks: $I d_{n}$ and Δ_{n} Since $n^{2}=\Delta_{n}+\Delta_{n-1}$

By summation, we deduce immediately $\square_{n}=\Theta_{n}+\Theta_{n-1}$

The proof follows directly following this definition.

Another property

■ Is there a link between triangular and tetrahedral numbers?

Another property

■ Is there a link between triangular and tetrahedral numbers?

■ Yes!
Using the expression of Method 4.
$\square_{n}=\Delta_{n}+\left(\Delta_{n}-\Delta_{1}\right)+\left(\Delta_{n}-\Delta_{2}\right)+\ldots+\left(\Delta_{n}-\Delta_{n-1}\right)$
$=n . \Delta_{n}-\sum_{1 \leq k \leq n-1} \Delta_{k}$
$=n . \Delta_{n}-\Theta_{n-1}$
$\square_{n}+\Theta_{n-1}=n . \Delta_{n}$
This can be shown again using the expanded representation of triangles!

Concluding remarks

We presented in this lecture many ways for solving the same problem.

Take home message:
Everyone can find her/his own method!

Concluding remarks

We presented in this lecture many ways for solving the same problem.

Take home message:
Everyone can find her/his own method!

- The results are interesting and they show the hidden structures of numbers.
- But, more important is the way to solve and to write the proofs.

