UNIFORM DISCRETE COMBINATORIAL OBJECTS

Discrete Random Simulation

Flipping a coin or more

Jean-Marc.Vincent@univ-grenoble-alpes.fr

University de Grenoble-Alpes, UFR IM?AG
MOSIG 1 Mathematics for Computer Science

UCA

UFR
IM?AG iz
Grenoble Alpes
November 2023
UCA
1M AG w:z:.u.h

Discrete Random Simulation 1/42

UNIFORM DISCRETE COMBINATORIAL OBJECTS

@ UNIFORM : Uniform Random Variable

UGA

IMAG 5t

Discrete Random Simulation |2 / 42

DISCRETE COMBINATORIAL OBJECTS
STORY OF DICE

Coins, dice wheels, ...

Physical mechanism :

Sequence of observations : xq,x,x3, - , Xy, -+ in{1,2,--- ,K}
Probabilistic model

The sequence of observations is modeled by a sequence of

» random variables,

» independent,

P identically distributed,

>

with a uniform distribution on the set {1, 2, - - - , K} denoted by {X},

Notations and properties
For all n and for all sequence in {xy,--- ,x,}in{1,2,--- ,K}"

P(Xy =x1,- -+, Xn = Xn)

P(Xq =xq).- -+ .P(Xy = x,) independence;
P(X = x1).--- .P(X = x,) same distribution;
1 1 1 .

— ... — = — uniform law.
K K K"

JCGA

IMAG

Discrete Random Simulation |3 / 42

DISCRETE COMBINATORIAL OBJECTS
DICE STORY (CONT.)

Coin — Dice-8

From throws of coins simulate a 8 faces dice :

Discrete Random Simulation |4 / 42

DISCRETE COMBINATORIAL OBJECTS
DICE STORY (CONT.)

Coin — Dice-8

From throws of coins simulate a 8 faces dice :

Dice-8()

Data: Function "Coin()" uniform generator in {0, 1}
Result: A sequence i.i.d. variables uniform on {1,--- ,8}
Ay =Coin()

A1 =Coin()

A, =Coin()

S:A0+2*A1 +4*A2+1

return S

Discrete Random Simulation |4 / 42

DISCRETE COMBINATORIAL OBJECTS
TALES OF DICE : PROOF OF THE ALGORITHMS

Specification :
a sequence of calls of Dice-8() function is modeled by a sequence of random variables
independent and identically distributed (i.i.d.) with uniform probability law on

{1,---,8}.

Discrete Random Simulation |5 / 42

UNIFORM

DISCRETE COMBINATORIAL OBJECTS

TALES OF DICE : PROOF OF THE ALGORITHMS

Specification :

a sequence of calls of Dice-8() function is modeled by a sequence of random variables
independent and identically distributed (i.i.d.) with uniform probability law on
{1, 8}.

Hypothesis :

Co,Cq,--+,Cn,- - - sequence of calls to Coin() i.i.d. sequence uniform on {0, 1}

Discrete Random Simulation |5 / 42

UNIFORM DISCRETE

COMBINATORIAL OBJECTS

TALES OF DICE : PROOF OF THE ALGORITHMS

Specification :

a sequence of calls of Dice-8() function is modeled by a sequence of random variables
independent and identically distributed (i.i.d.) with uniform probability law on

{1, 8}.
Hypothesis :
C07C17"' 7C717"'
Preuve :

Denote by Sp, S1,- -, Sn, - - - the sequence of random variables modeling the results
obtained by the successive calls to Dice-8() .

Letn € Nand (xg,x1,--- ,xz) € {1,---,8}"+1. We should show that

sequence of calls to Coin() i.i.d. sequence uniform on {0,1}

1
]P)(So:JCo,"' ,Sn:Xn) = W qud

Discrete Random Simulation |5 / 42

DISCRETE COMBINATORIAL OBJECTS
TALES OF DICE : PROOF OF THE ALGORITHMS (2)

We have
P(So = x0,** ,Sn = Xn)
= P(SO ZXU)---IP(Sn :xn)
car Sy depends only on Csi, Csg1, C3r42 and C; are independent;

les Sg, - ,Su, - - - are indépendent;

= P(So =xp) - -P(Sp = x1) because (Cai, Cak+1, Csrt2) have the same law

Discrete Random Simulation |6 / 42

DISCRETE COMBINATORIAL OBJECTS
TALES OF DICE : PROOF OF THE ALGORITHMS (2)

We have

P(So = x0,- -+, Sn = Xn)

= IP’(SO ZXU)---IP(Sn :xn)
car Sy depends only on Csi, Csg1, C3r42 and C; are independent;
les Sg, - ,Su, - - - are indépendent;

= P(So =xp) - -P(Sp = x1) because (Cai, Cak+1, Csrt2) have the same law

But for i dans {1, - - - ,8}, 7 — 1 has a unique binary decomposition i — 1 =5 aya;ay.
P(Sp=i) = P(Co=a,C1 =m,Cr =)
= P(Cy =a9)P(C1 = a1)P(Cy = a) calls to Coin() are independent;
111 1
= ——— = - have the same law on {0, 1}.
222 8
then
IFD(SOZXO:"' ,Sn :xn) = Sﬂj qud
UCA
IM?AG wsttun

Discrete Random Simulation |6 / 42

DISCRETE COMBINATORIAL OBJECTS
TALES OF DICE (3)

Coin — Dice-2¥

From one coin design a random generator of a 2-sided dice.

Discrete Random Simulation |7 / 42

DISCRETE COMBINATORIAL OBJECTS
TALES OF DICE (3)

Coin — Dice-2¥

From one coin design a random generator of a 2-sided dice.

Dice(k)

Data: A function "Coin()" random generator on {0, 1}
Result: A sequence of iid numbers uniformly distributed on {1, - - , 2}
5=0
fori=1tok
L S=Coin() +2.5 // cf Horner’s Scheme
S§=S5+1
return S

Preuve: Same proof as for Dice-8, based on the unicity of the binary decomposition of
an integer in {0, - - - ,2¥ — 1} by a k bits vector.

Discrete Random Simulation |7 / 42

DISCRETE COMBINATORIAL OBJECTS
BINARY REPRESENTATION :

5= 101, 2 =5 010, 42 = 101010 - -

Discrete Random Simulation | 8 / 42

DISCRETE COMBINATORIAL OBJECTS
TALES OF DICE (4)

Coin — Dice-6

From a coin design a 6-sided dice.

Discrete Random Simulation |9 / 42

DISCRETE COMBINATORIAL OBJECTS
TALES OF DICE (4)

Coin — Dice-6

From a coin design a 6-sided dice.

Dice-6()
Data: A function Dice-8() random generator on {1, --- ,8}
Result: A sequence ofi.i.d. random numbers uniformly distributed on {1, - - - , 6}

repeat

| X =Dice-8()
until X < 6
return X

Proof: later

Discrete Random Simulation |9 / 42

DISCRETE COMBINATORIAL OBJECTS
GENERATION METHODS BASED ON REJECTION

Principe

Generate uniformly on A accept if the point is
in B.

Discrete Random Simulation 10 / 42

DISCRETE COMBINATORIAL OBJECTS
GENERATION METHODS BASED ON REJECTION

Principe

Generate uniformly on A accept if the point is
in B.

Discrete Random Simulation 10 / 42

DISCRETE COMBINATORIAL OBJECTS
GENERATION METHODS BASED ON REJECTION

Principe

Generate uniformly on A accept if the point is
in B.

4

Discrete Random Simulation 10 / 42

DISCRETE COMBINATORIAL OBJECTS
GENERATION METHODS BASED ON REJECTION

Principe

Generate uniformly on A accept if the point is
in B.

Discrete Random Simulation 10 / 42

DISCRETE COMBINATORIAL OBJECTS
GENERATION METHODS BASED ON REJECTION

Principe

Generate uniformly on A accept if the point is
in B.

¥ ¥

Discrete Random Simulation 10 / 42

DISCRETE COMBINATORIAL OBJECTS
GENERATION METHODS BASED ON REJECTION

Principe

Generate uniformly on A accept if the point is
in B.

¥ ¥

Us

accept

Discrete Random Simulation 10 / 42

UNIFORM

Principe

DISCRETE

COMBINATORIAL OBJECTS

GENERATION METHODS BASED ON REJECTION

Generate uniformly on A accept if the point is

in B.

I's

¥
Us

accept

Algorithm

Generation-unif(5)

Data:

Uniform generator on A
Result:

Uniform generator on B

repeat

| X =Generator-unif(A)
until X € B
return X

Discrete Random Simulation 10 / 42

UNIFORM

DISCRETE

COMBINATORIAL OBJECTS

GENERATION METHODS BASED ON REJECTION: PROOF

Géneére-unif(B)

Data:

Uniform generator on A
Result:

Uniform generator on B

N=0

repeat
X =Generator-unif(.A)
N=N+1

until X € B

return X, N

Proof

Calls to Generation-unif(B): Xy, Xp, -+ , Xy, -+
P(X eC,N=k)

- (1_

P(X €C)

P(X1 ¢ B, -, Xx—1 & B, X €C)
P(X; ¢ B)---P(Xk—1 ¢ B)P(Xi €C)

7)k "lel
4]

+oo
Y P(XeC,N=k)
k=1

DY (R]
| Al Al 1B

k=1

Consequently the law is uniform on B

Discrete Random Simulation 11 /42

UNIFORM

DISCRETE COMBINATORIAL OBJECTS

GENERATION METHODS BASED ON REJECTION

Génere-unif(3)
Data:
Uniform generator on .A
Result:
Uniform generator on B

N=0

repeat
X =Generator-unif(.A)
N=N-+1

until X € B

return X, N

Complexity

N Number of iterations

P(N=k) = PXeBN=k)
- (e
Al | A]
Geometric probability distribution with parameter
_ 18]
Pa = 1Z]-
Expected number of iterations
+oo
EN = >k —p) T
k=1
_ 1 -1
A== " p
VarN = ! —2]!7 2
Pa

Discrete Random Simulation 12 /42

UNIFORM DISCRETE COMBINATORIAL OBJECTS

Q DISCRETE : Discrete Random Variable

UGA

IMAG 5t

Discrete Random Simulation 13 / 42

UNIFORM COMBINATORIAL OBJECTS
GENERATING RANDOM OBJECTS

Denote by X the generated object € {1,--- ,n}
Distribution (proportion of observations, input of the load injector)

pr=P(X =k).

Discrete Random Simulation 14 / 42

UNIFORM COMBINATORIAL OBJECTS
GENERATING RANDOM OBJECTS

Denote by X the generated object € {1,--- ,n}
Distribution (proportion of observations, input of the load injector)

pr=P(X =k).
Remarks :

0<p <l Y p=1
k

Discrete Random Simulation 14 / 42

UNIFORM COMBINATORIAL OBJECTS
GENERATING RANDOM OBJECTS

Denote by X the generated object € {1,--- ,n}
Distribution (proportion of observations, input of the load injector)

pr=P(X =k).
Remarks :

0<p <l Y p=1
k
For integer valued random variables X € N :

EX = Zk.IP(X =k) = kak.Expectation
k k

Variance and standard deviation

VarX =Y (k- EX)’P(X = k) = E(X — EX)* = EX* — (EX).
k

o(X) = vVarX.

Discrete Random Simulation 14 / 42

UNIFORM DISCRETE COMBINATORIAL OBJECTS

THE RANDOM FUNCTION

Random bit generator (see previous lecture)

double drand48(void) (48 bits encoded in 8 bytes) (manpage)

The rand48() family of functions generates pseudo-random numbers using a linear
congruential algorithm working on integers 48 bits in size. The particular formula
employed is r(n+1) = (a * r(n) + ¢) mod m where the default values are for the
multiplicand a = Oxfdeece66d = 25214903917 and the addend ¢ = Oxb = 11. The modulo
is always fixed at m = 2 ** 48. r(0) is called the seed of the random number generator.

The sequence of returned values from a sequence of calls to the random function is
modeled by a sequence of real independent random variables uniformly
distributed on the real interval [0, 1)

Probabilistic Model
{Un},en sequence of i.i.d real random variables
Foralln € N, for all the intervals [2;,b;) with 0<i<n and0<a; <b; <1,
P (U € [a9,bo), -+, Un € [an,bn)) = (bo — ag) X -+ X (by — an).

UCA

Discrete Random Simulation 15 /42

UNIFORM COMBINATORIAL OBJECTS
THE RANDOM FUNCTION

Discrete Random Simulation 16 / 42

UNIFORM COMBINATORIAL OBJECTS
THE RANDOM FUNCTION

Discrete Random Simulation 16 / 42

UNIFORM COMBINATORIAL OBJECTS
THE RANDOM FUNCTION

Discrete Random Simulation 16 / 42

UNIFORM COMBINATORIAL OBJECTS
THE RANDOM FUNCTION

Discrete Random Simulation 16 / 42

UNIFORM COMBINATORIAL OBJECTS
THE RANDOM FUNCTION

Discrete Random Simulation 16 / 42

UNIFORM COMBINATORIAL OBJECTS
THE RANDOM FUNCTION

Discrete Random Simulation 16 / 42

UNIFORM COMBINATORIAL OBJECTS
THE RANDOM FUNCTION

Discrete Random Simulation 16 / 42

UNIFORM COMBINATORIAL OBJECTS
THE RANDOM FUNCTION

—.—_—‘— P(U € [a,b]) = (b—a)

Discrete Random Simulation 16 / 42

UNIFORM COMBINATORIAL OBJECTS
THE RANDOM FUNCTION

—.—_—‘— P(U € [a,b]) = (b—a)

Problem

All the difficulty is to find a function (an algorithm) that maps the [0, 1[in a set with a
right probability.

Discrete Random Simulation 16 / 42

UNIFORM COMBINATORIAL OBJECTS
UNIFORM DISCRETE RANDOM VARIABLES

Example : flip a coin Roll a n-sided dice
Coin () Dice (n)
u=Randomn () Data: n : Number of possible outcomes
ifu < % Result: a single outcome in {1, - - - , n}
L Return0 // or returns Head u=Random ()

Return [n % u]
// smallest integer greater
than uXxn

else
LReturnl // or returns Tail

Bernoulli scheme

The problem

Given a discrete distribution
n
p=(prpy-op), 0<pi<l D> pi=1;
i=1

Design an algorithm that generates pseudo random numbers according probability p.
Prove such an algorithm and evaluate its (average) complexity

Discrete Random Simulation 17 / 42

UNIFORM COMBINATORIAL OBJECTS
PROBABILITIES ON A FINITE SET

J“L

1/20 3/20 2/20 4/20 6/20 1/20 2/20 1/20

Discrete Random Simulation 18 / 42

UNIFORM COMBINATORIAL OBJECTS
TABULATION METHOD

Pre-computation

My
r = — where me = m.

Create a table T with size m.

Fill T such that my, cells contains k.
Computation cost : m steps
Memory cost : m

Discrete Random Simulation 19 / 42

UNIFORM COMBINATORIAL OBJECTS
TABULATION METHOD

Pre-computation Table construction
My
Pe = -~ Where D mg=m. Build_Table (p) ‘
k Data: p a rational distribution p; = %
Create a table T with size m. Result: Tabulation of distribution p
Fill T such that my, cells contains k. 1=1)))
Computation cost : m steps fori= ,l’ isn, 14+
Memory cost : m forj=1, j<m j++
T[1]=i
1++

Discrete Random Simulation 19 / 42

UNIFORM COMBINATORIAL OBJECTS
TABULATION METHOD

Pre-computation Table construction
My
Pe = -~ Where D mg=m. Build_Table (p) ‘
k Data: p a rational distribution p; = %
Create a table T with size m. Result: Tabulation of distribution p
Fill T such that my, cells contains k. 1=1)))
Computation cost : m steps fori= ,l’ isn, 14+
Memory cost : m forj=1, j<m j++
T[1]=i
1++
Generation

Generate uniformly on the set
{17 R} m}

Returns the value in the table
Computation cost : O(1) step
Memory cost : O(m)

Discrete Random Simulation 19 / 42

UNIFORM COMBINATORIAL OBJECTS
TABULATION METHOD

Pre-computation Table construction
My
pi= - where 3 mi =m. Build_Table ()
k Data: p a rational distribution p; = %
Create a table T with size m. Result: Tabulation of distribution p
Fill T such that my, cells contains k. 1=1)))
Computation cost : m steps fori= ,1’ isn, 14+
Memory cost : m forj=1, j<m j++
T[l]=i
1++
Generation Generation algorithm
Generate uniformly on the set
{1,---,m} Generation (T)
Returns the value in the table Data: T Tabulation of distribution p
Computation cost : O(1) step Result: A random number following distribu-
Memory cost : O(m) tion p
u=Random ()
I=[m=*u
Return T[]

Discrete Random Simulation 19 / 42

UNIFORM COMBINATORIAL OBJECTS
PROBABILITIES ON A FINITE SET

J“L

1/20 3/20 2/20 4/20 6/20 1/20 2/20 1/20

Discrete Random Simulation |20 / 42

UNIFORM COMBINATORIAL OBJECTS
PROBABILITIES ON A FINITE SET

J“L

1/20 3/20 2/20 4/20 6/20 1/20 2/20 1/20

Histogram : Flat representation

1/20 3/20 2/20 4/20 6/20 1/20 2/20 1/20

1/20 4/20 6/20 10/20 16/20 17/20 19/20 20/20
Random()
K
Cost(average number of comparisons) : C(P) = E k.pr = 4.35
k=1

Discrete Random Simulation |20 / 42

UNIFORM COMBINATORIAL OBJECTS
INVERSE OF PROBABILITY DISTRIBUTION FUNCTION

P(X < x) Cumulative distribution function
1 °
’_‘
——
o1
p2
*——
1
0 1 2 3 -+ K-1 K «x

Generation

Divide [0, 1] in intervals with length pj
Find the interval in which Random falls
Returns the index of the interval
Computation cost : O(EX) steps
Memory cost : O(1)

Discrete Random Simulation |21 / 42

UNIFORM COMBINATORIAL OBJECTS
INVERSE OF PROBABILITY DISTRIBUTION FUNCTION

P(X < x) Cumulative distribution function
1 °
’_‘
-
P13
p2
—
1.
0o 1 2 3 . K-1 K «x

Generation Inverse function algorithm
Divide [0, 1] in intervals with length pj .
Find the interval in which Random falls Generation (P) o
Returns the index of the interval Data: A distribution p
Computation cost : O(EX) steps Result: A random number following
Memory cost : O(1) distribution p

u =Random ()

S=0

k=0

whileu > s

k=k+1
L §=5+pk /ﬁ\
Returnk

Discrete Random Simulation |21 / 42

UNIFORM COMBINATORIAL OBJECTS
SEARCHING OPTIMIZATION

Optimization methods

» pre-compute the pdf in a table
P rank objects by decreasing probability

» use a dichotomy algorithm

P use a tree searching algorithm (optimality = Huffmann coding tree)

UCA

IMAG 5t

Discrete Random Simulation |22 / 42

UNIFORM
SEARCHING OPTIMIZATION

Optimization methods

» pre-compute the pdf in a table
P rank objects by decreasing probability

» use a dichotomy algorithm

P use a tree searching algorithm (optimality = Huffmann coding tree)

Comments

- Depends on the usage of the generator (repeated use or not)
- pre-computation usually O(K) could be huge

COMBINATORIAL OBJECTS

Discrete Random Simulation

UCA

IMAG 5t

22 /42

UNIFORM COMBINATORIAL OBJECTS
OPTIMALITY

JdL

1/20 3/20 2/20 4/20 6/20 1/20 2/20 1/20

Discrete Random Simulation |23 / 42

UNIFORM COMBINATORIAL OBJECTS
OPTIMALITY

1/20 1/20 2/201/20

Jdily

1/20 3/20 2/20 4/20 6/20 1/20 2/20 1/20

UGA

IMAG iz

Discrete Random Simulation |23 / 42

UNIFORM COMBINATORIAL OBJECTS
OPTIMALITY

1/20 1/20 2/201/20

Jdily

1/20 3/20 2/20 4/20 6/20 1/20 2/20 1/20

Number of comparisons
Binary Search Tree Structure

K K

EN = " pi.li = 3,75, Entropie = » _ p(— logy pi) = 3.70
k=1 k=1

Discrete Random Simulation |23 / 42

UNIFORM

COMBINATORIAL OBJECTS
REJECTION BASED METHODS

J“L

1/20 3/20 2/20 4/20 6/20 1/20 2/20 1/20

Discrete Random Simulation |24 / 42

UNIFORM COMBINATORIAL OBJECTS
REJECTION BASED METHODS

6/20

1/20 3/20 2/20 4/20 6/20 1/20 2/20 1/20

Discrete Random Simulation

UNIFORM COMBINATORIAL OBJECTS
REJECTION BASED METHODS

6/20

1/20 3/20 2/20 4/20 6/20 1/20 2/20 1/20

Alea(8)

Discrete Random Simulation

UNIFORM

COMBINATORIAL OBJECTS
REJECTION BASED METHODS

Random()6/20

1/20 3/20 2/20 4/20 6/20 1/20 2/20 1/20

Alea(8)

Discrete Random Simulation

UNIFORM COMBINATORIAL OBJECTS
REJECTION BASED METHODS

Generation_Reject(p)

Data: A distribution p
Result: A random number following distribution p

N=0
repeat
u =Random ()
k= [nxu
v = Random() * Puax

N+ +
until v < py
Returnk, N

Proof Complexity

Same proof as for the uniform case Average number of iterations :

Pa = etEN = NPmax

N.Pmax

ve
IM?AG sty

Discrete Random Simulation |25 / 42

UNIFORM COMBINATORIAL OBJECTS
ALIASING METHOD

120 3/20 2/20 420 6/20 1/20 2/20 1/20 UC‘/A\
IMAG gzt

Discrete Random Simulation |26 / 42

UNIFORM COMBINATORIAL OBJECTS
ALIASING METHOD

118

120 3/20 2/20 420 6/20 1/20 2/20 1/20 UC‘/A\
IMAG gzt

Discrete Random Simulation |26 / 42

UNIFORM COMBINATORIAL OBJECTS
ALIASING METHOD

118

120 3/20 2/20 420 6/20 1/20 2/20 1/20 UC‘/A\

IMAG 5t

Discrete Random Simulation |26 / 42

UNIFORM COMBINATORIAL OBJECTS
ALIASING METHOD

118

Discrete Random Simulation |26 / 42

UNIFORM COMBINATORIAL OBJECTS
ALIASING METHOD

118

Discrete Random Simulation |26 / 42

UNIFORM COMBINATORIAL OBJECTS
ALIASING METHOD

e

Discrete Random Simulation |26 / 42

UNIFORM COMBINATORIAL OBJECTS
ALIASING METHOD

118

Discrete Random Simulation |26 / 42

UNIFORM COMBINATORIAL OBJECTS
ALIASING METHOD : ALIAS TABLE

Table_Alias(p)
Data: A distribution p

Result: A vector of thresholds sy, - - - , 5]
and a vector of aliases ay, - - - , ay
L=0U=9
fork=1ton
switch p; do
casepy < 1 doL =LuU{k}

casepy > L doU = U U {k}

n

while L #
i = Extract(L) k = Extract(U)
S =pia; = k

p=pc— (5 —p)
switch p; do
case < L doL =LuU {k}

n

case > L doU = U U {k}

n

UCA

Discrete Random Simulation |27 / 42

UNIFORM COMBINATORIAL OBJECTS
ALIASING METHOD : GENERATION

Generation_Alias(s, a)

Data: A vector of thresholds sy, - - - , s4]
and a vector of aliases a1, - - - , a4, according adistribution p
Result: A random number following distribution p

u =Randomn ()

k=[n=u]

if Random(1 < s
L Return

else
| Returnag

Complexity

Computation time :

- O(n) computation of thresholds and aliases
- O(1) generation

Memory :

- thresholds O(n) (same cost as p)

- alias O(n) (aliases)

Discrete Random Simulation |28 / 42

UNIFORM COMBINATORIAL OBJECTS
EXERCISES (1)

A typical law

Design at least 4 algorithms that simulate a pseudo-random variable according the
empirical law :

c | A| B | C|D|E|F|G]|H|
P(X=c) | 0.10 | 0.20 | 0.05 | 0.05 | 0.05 | 0.15 | 0.35 | 0.05 |

Compute the average cost of the generation for each algorithm.

The power of 2

Design an algorithm that simulate a pseudo-random variable according the empirical
law :

c \f\?\c\ \’f\f\ll\{
PX=0) [ilslm% mlslsnlslnl

Compute the average cost of the generation algorithm. What could you conclude ?

Discrete Random Simulation |29 / 42

UNIFORM DISCRETE COMBINATORIAL OBJECTS

APPLICATION EXERCISE

On web servers it has been shown experimentally that hits on pages follow a Zipf’s
law. This law appears also in documents popularity in P2P systems, words occurrences
in texts,...

Consider a web server with N pages. Pages are ranked by their popularity and let p; be
the probability of requesting page i. We have

pr=2p22--- 2PN

For the Zipf’s law we have p; = -1

T Hy i®
approximately 1/2 as often as the first, and the third page 1/3 as often as the first, and
so on. Hy is the N harmonic number :
1 1 1
Hy=1+_-+-+--+ =
N 23 N
which could be approximated by log N + ~ + o(%) with vy = 0.5772156649 the Euler
constant.
» If N is small, classical techniques could be used. But what happens when N is large (10.000 or
100.000) ?
» Propose an algorithm that generates, approximatively, with the Zipf’s law from a generator of
real numbers on [0, 1.

This means that the second web page occurs

» Generalize this algorithm for “heavy-tail” laws (Benford’s laws, Pareto’s laws) with
probability
11
Hy,a i UGA
1 IMAG:
with o some “sharpness” coefficient and the normalization coefficient Hy, o = (Zﬁ\’ ,% .

pi

Discrete Random Simulation |30 / 42

UNIFORM DISCRETE COMBINATORIAL OBJECTS

CLASSICAL LAWS EXERCISES

Binomial law

Propose several algorithms that simulate a variable X following the binomial
distribution Bin(n, k)

=k =})rta-prt
Does the optimal method depends on the parameter values ?

Geometric distribution
Propose several algorithms that simulate a variable following the geometric
distribution G (p)

P(X=k) = (1—pp"

Does the optimal method depends on the parameter values ?

Poisson distribution

Propose several algorithms that simulate a variable following the Poisson distribution
PA)
k JCA

P(X =k) = eiA% NAG £t

Discrete Random Simulation |31 / 42

UNIFORM DISCRETE COMBINATORIAL OBJECTS

© UNIFORM : Combinatorial Objects

Discrete Random Simulation |32 / 42

UNIFORM DISCRETE
GENERATION OF COMPLEX CONFIGURATIONS

Examples

P sequences of requests on a web server
path in a graph

interconnexion graph

memory configuration

mine field

vvyvyvyy

UCA

IMAG:

Discrete Random Simulation |33 / 42

MINE FIELD

Write an algorithm that generates a random mine field with exactly k(= 10) mines in a
n field. Example forn =9 x 9

UGA

IMAG 5t

Discrete Random Simulation |34 / 42

UNIFORM DISCRETE
MINE FIELD (2)

Uniform generation of a mine field with exactly exactement k mines

Method 1: There are exactly (2) different mine field, number them, generate

uniformly an index of a mine field in {1,--- , (})}

Method 2 : Generate uniformly a permutation of {1, - - - ,n} and take the first k
elements as mine positions
Method 2bis : Generate in sequence uniformly the mines on the available positions.
Method 3 : While the number of mines is not sufficient pick uniformly a position
in {1, ...,n} and put a mine if the position is free

Method 4 : We put successively a mine in position i with probability nk:iill ,

where k; is the number of mines in positions {1,--- ,i — 1}.

Generation of mean field with average density d = % de mines

Method 5 : Flip a biaised coin with probability d in each position to put mines.

Mehode 5b : Same method but reject the mine field if the average density is out of
[d—ed+e.

Discrete Random Simulation |35 / 42

UNIFORM DISCRETE
PATHS GENERATION

In a "feed-forward" communication network generate uniformly a route between 2
given nodes

Discrete Random Simulation |36 / 42

UNIFORM DISCRETE
PATHS GENERATION

In a "feed-forward" communication network generate uniformly a route between 2
given nodes

Manhattan Topology

UCA

Discrete Random Simulation |36 / 42

UNIFORM DISCRETE
PATHS GENERATION

In a "feed-forward" communication network generate uniformly a route between 2
given nodes

Manhattan Topology General topology
B Z
A/ { B
A N
UCA
IM?AG

Discrete Random Simulation |36 / 42

UNIFORM DISCRETE
GRAPH GENERATION

Typical graph

Generate a random graph uniformly (directed or non-directed)
P without constraints
» with a given number of edges
P with a fixed degree
» connected
>

imagine your own constraints

Discrete Random Simulation |37 / 42

UNIFORM DISCRETE
DOMINOES

The dominoes game is a set of all the tiles marked by 2 marks, these marks are in
{0, - -- ,n}. Then a domino is defined by a couple (i,) with0 <i <j < 6.
» Number of dominoes : Compute K¢ the number of tiles of a classical game with n = 6.
Deduce Kj, of a game with marks between 0 and n

» Generator of dominoes Write an algorithm that fe-generates uniformly a dominoe for a given
n

» Cost of the generation Compute the complexity of the generation including pre-computation
if ever

UCA

Discrete Random Simulation |38 / 42

UNIFORM DISCRETE
GENERATION OF BINARY RESEARCH TREE

Discrete Random Simulation |39 / 42

UNIFORM DISCRETE
GENERATION OF BINARY RESEARCH TREE

Uniform recursive decomposition

Random_BST (n)

Data: n number of nodes

Result: a random tree

ifn=0

| returnempty_tree ()

else
q =Random (0,n — 1)
A; =Random_BST (g)
Ay =Random_BST (n — 1 —¢q)
return join (A1, A3)

Discrete Random Simulation |39 / 42

UNIFORM

COMBINATORIAL OBJECTS

GENERATION OF BINARY RESEARCH TREE

Uniform recursive decomposition

Random_BST (n)

Data: n number of nodes

Result: a random tree

ifn=0

| returnempty_tree ()

else
q =Random (0,1 — 1)
A1 =Random_BST (g)
Ay =Random_BST (n —1 —¢q)
return join (A1, A)

Non uniform on binary trees

o
1

S

2

SRR

1
3

CETTENT
TOSTTENY

Discrete Random Simulation |39 / 42

UNIFORM

Catalan’s Numbers

Recurrence equation

Co=Ci=1;

n—1
Cn=> CiCuoi—yg
q=0

Then
n—1 n—1
chnflfq
1=> ¢ > pug
n
7=0 7=0

DISCRETE

UNIFORM GENERATION OF BINARY TREES

Discrete Random Simulation

40 / 42

UNIFORM DISCRETE
UNIFORM GENERATION OF BINARY TREES

Catalan’s Numbers Génération uniforme

Recurrence equation

Co=Ci=1;

Random_BT (n)

Data: n number of nodes
Result: a random tree

n—1
Cn=2_CiCuig. ifn=0
9=0 | returnempty_tree ()

Then else
q=Generate(p,, 0, - ,Pn,n—1)

n—1 n—1
CeCr1—4 A1 =Random_BT (g)
1= Z = an,q~ Ay =Random_BT (n — 1 —¢)
return join (A1, A4)

pre-computation py 4
Cq Cn —1—q
CH ’

Png =

Discrete Random Simulation |40 / 42

UNIFORM DISCRETE
LABELLED TREES

How many labelled trees with 1 nodes ?
Propose an algorithm that generates uniformly random trees.

Discrete Random Simulation |41 / 42

UNIFORM DISCRETE
LABELLED TREES

How many labelled trees with 1 nodes ?
Propose an algorithm that generates uniformly random trees.
Cayley’s formulae

T, = n"2.

Priifer’s coding algorithm.

UCA

IMAG

Discrete Random Simulation |41 / 42

UNIFORM DISCRETE
SYNTHESIS

Simulation is a powerful tool for computation (randomized algorithms)
> Probabilistic specification based on statistical properties (uniformity, independence, goodness
of fit,...)
> Proof of statistical properties
» Complexity (probabilistic), average computation time

» Complex objects : link between combinatorial decomposition and simulation algorithm

Based on a Random function (external)

P Primality testing (security)

Time randomization (networking)
Monte-Carlo method (scientific computations)
Test covering (verification)

Statistical learning (Bayesian approach)

vyvyVvyyvYyy

Simulated Annealing (optimization, NP-complete problems)

Discrete Random Simulation |42 / 42

	Uniform : Uniform Random Variable
	Discrete : Discrete Random Variable
	Uniform : Combinatorial Objects

