Discrete Random Simulation

Flipping a coin or more

Jean-Marc.Vincent@univ-grenoble-alpes.fr

University de Grenoble-Alpes, UFR IM²AG MOSIG 1 Mathematics for Computer Science

1 UNIFORM: Uniform Random Variable

(UNIFORM)

DISCRETE: Discrete Random Variable

3 UNIFORM: Combinatorial Objects

STORY OF DICE

Coins, dice wheels, ...

Physical mechanism:

Sequence of observations : $x_1, x_2, x_3, \dots, x_n, \dots$ in $\{1, 2, \dots, K\}$

Probabilistic model

The sequence of observations is modeled by a sequence of

- random variables,
- ▶ independent,
- ► identically distributed,
- ▶ with a uniform distribution on the set $\{1, 2, \dots, K\}$ denoted by $\{X_n\}_{n \in \mathbb{N}}$

Notations and properties

For all *n* and for all sequence in $\{x_1, \dots, x_n\}$ in $\{1, 2, \dots, K\}^n$

$$\mathbb{P}(X_1 = x_1, \cdots, X_n = x_n) = \mathbb{P}(X_1 = x_1), \cdots, \mathbb{P}(X_n = x_n) \text{ independence;}$$

$$= \mathbb{P}(X = x_1), \cdots, \mathbb{P}(X = x_n) \text{ same distribution;}$$

$$= \frac{1}{K} \cdots \frac{1}{K} = \frac{1}{K^n} \text{ uniform law.}$$

DICE STORY (CONT.)

Coin \mapsto Dice-8

From throws of coins simulate a 8 faces dice:

DICE STORY (CONT.)

Coin \mapsto Dice-8

From throws of coins simulate a 8 faces dice:

Dice-8()

Data: Function "Coin()" uniform generator in $\{0, 1\}$

Result: A sequence i.i.d. variables uniform on $\{1, \dots, 8\}$

 $A_0 = Coin()$

 $A_1 = Coin()$

 $A_2 = Coin()$

 $S = A_0 + 2 * A_1 + 4 * A_2 + 1$

return S

TALES OF DICE: PROOF OF THE ALGORITHMS

Specification:

a sequence of calls of **Dice-8**() function is modeled by a sequence of random variables independent and identically distributed (i.i.d.) with uniform probability law on $\{1,\cdots,8\}$.

TALES OF DICE: PROOF OF THE ALGORITHMS

Specification:

a sequence of calls of **Dice-80** function is modeled by a sequence of random variables independent and identically distributed (i.i.d.) with uniform probability law on $\{1,\cdots,8\}$.

Hypothesis:

 $C_0, C_1, \dots, C_n, \dots$ sequence of calls to **Coin()** i.i.d. sequence uniform on $\{0, 1\}$

TALES OF DICE: PROOF OF THE ALGORITHMS

Specification:

a sequence of calls of **Dice-8**() function is modeled by a sequence of random variables independent and identically distributed (i.i.d.) with uniform probability law on $\{1, \cdots, 8\}$.

Hypothesis:

 $C_0, C_1, \dots, C_n, \dots$ sequence of calls to **Coin()** i.i.d. sequence uniform on $\{0, 1\}$

Preuve:

Denote by $S_0, S_1, \dots, S_n, \dots$ the sequence of random variables modeling the results obtained by the successive calls to **Dice-80**.

Let $n \in \mathbb{N}$ and $(x_0, x_1, \dots, x_n) \in \{1, \dots, 8\}^{n+1}$. We should show that

$$\mathbb{P}(S_0 = x_0, \dots, S_n = x_n) = \frac{1}{8^{n+1}}$$
 cqfd.

TALES OF DICE: PROOF OF THE ALGORITHMS (2)

We have

$$\mathbb{P}(S_0=x_0,\cdots,S_n=x_n)$$

=
$$\mathbb{P}(S_0 = x_0) \cdots \mathbb{P}(S_n = x_n)$$

car S_k depends only on $C_{3k}, C_{3k+1}, C_{3k+2}$ and C_i are independent;
les S_0, \dots, S_n, \dots are indépendent;

=
$$\mathbb{P}(S_0 = x_0) \cdots \mathbb{P}(S_0 = x_n)$$
 because $(C_{3k}, C_{3k+1}, C_{3k+2})$ have the same law

TALES OF DICE: PROOF OF THE ALGORITHMS (2)

We have

$$\mathbb{P}(S_0 = x_0, \cdots, S_n = x_n)$$

$$= \mathbb{P}(S_0 = x_0) \cdots \mathbb{P}(S_n = x_n)$$

$$\text{car } S_k \text{ depends only on } C_{3k}, C_{3k+1}, C_{3k+2} \text{ and } C_i \text{ are independent;}$$

$$\text{les } S_0, \cdots, S_n, \cdots \text{ are indépendent;}$$

$$= \mathbb{P}(S_0 = x_0) \cdots \mathbb{P}(S_0 = x_n) \text{ because } (C_{3k}, C_{3k+1}, C_{3k+2}) \text{ have the same law}$$

But for *i* dans $\{1, \dots, 8\}$, i-1 has a unique binary decomposition $i-1 = a_2 a_1 a_0$.

$$\mathbb{P}(S_0 = i) = \mathbb{P}(C_0 = a_0, C_1 = a_1, C_2 = a_2)$$

$$= \mathbb{P}(C_0 = a_0)\mathbb{P}(C_1 = a_1)\mathbb{P}(C_2 = a_2) \text{ calls to Coin() are independent;}$$

$$= \frac{1}{2} \frac{1}{2} \frac{1}{2} = \frac{1}{8} \text{ have the same law on } \{0, 1\}.$$

then

$$\mathbb{P}(S_0 = x_0, \dots, S_n = x_n) = \frac{1}{8^{n+1}}$$
 cqfd.

TALES OF DICE (3)

 $Coin \mapsto Dice\text{-}2^k$

From one coin design a random generator of a 2^k-sided dice.

TALES OF DICE (3)

 $Coin \mapsto Dice\text{-}2^k$

From one coin design a random generator of a 2^k-sided dice.

```
Dice(k)

Data: A function "Coin()" random generator on \{0,1\}
Result: A sequence of iid numbers uniformly distributed on \{1,\cdots,2^k\}

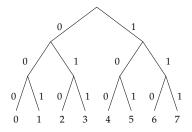
S=0
for i=1 to k

S=Coin()+2.S
// cf Hörner's Scheme

S=S+1
return S
```

Preuve: Same proof as for **Dice-8**, based on the unicity of the binary decomposition of an integer in $\{0, \dots, 2^k - 1\}$ by a k bits vector.

BINARY REPRESENTATION:



$$5 =_2 101, \ 2 =_2 010, \ 42 =_2 101010 \cdots$$

TALES OF DICE (4)

 $Coin \mapsto Dice-6$

From a coin design a 6-sided dice.

TALES OF DICE (4)

Coin \mapsto Dice-6

From a coin design a 6-sided dice.

```
Dice-6()

Data: A function Dice-8() random generator on \{1, \dots, 8\}

Result: A sequence of i.i.d. random numbers uniformly distributed on \{1, \dots, 6\}

repeat

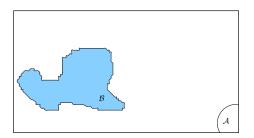
\mid X = \text{Dice-8()}

until X \le 6

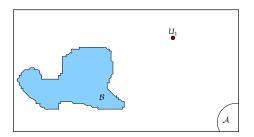
return X
```

Proof: later

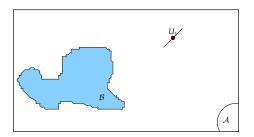
Principe



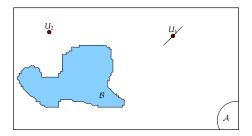
Principe



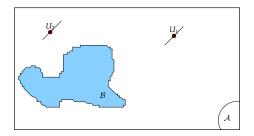
Principe



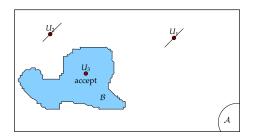
Principe



Principe

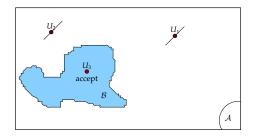


Principe



Principe

Generate uniformly on \mathcal{A} accept if the point is in \mathcal{B} .



Algorithm

Generation-unif(B)

Data:

Uniform generator on A

Result:

Uniform generator on ${\cal B}$

repeat X = Generator-unif(A)

until $X \in \mathcal{B}$

return X

Génère-unif(B)

Data:

Uniform generator on A
Result:

Uniform generator on \mathcal{B}

$$N = 0$$

repeat X = Generator-unif(A)

N = N + 1until $X \in \mathcal{B}$

return X, N

Proof

Calls to **Generation-unif**(\mathcal{B}): $X_1, X_2, \dots, X_n, \dots$

$$\mathbb{P}(X \in \mathcal{C}, N = k)$$

$$= \mathbb{P}(X_1 \notin \mathcal{B}, \dots, X_{k-1} \notin \mathcal{B}, X_k \in \mathcal{C})$$

$$= \mathbb{P}(X_1 \notin \mathcal{B}) \dots \mathbb{P}(X_{k-1} \notin \mathcal{B}) \mathbb{P}(X_k \in \mathcal{C})$$

$$= \left(1 - \frac{|\mathcal{B}|}{|\mathcal{A}|}\right)^{k-1} \frac{|\mathcal{C}|}{|\mathcal{A}|}$$

$$\mathbb{P}(X \in \mathcal{C}) = \sum_{k=1}^{+\infty} \mathbb{P}(X \in \mathcal{C}, N = k)$$
$$= \sum_{k=1}^{+\infty} \left(1 - \frac{|\mathcal{B}|}{|\mathcal{A}|}\right)^{k-1} \frac{|\mathcal{C}|}{|\mathcal{A}|} = \frac{|\mathcal{C}|}{|\mathcal{B}|}$$

Consequently the law is **uniform** on \mathcal{B}

Génère-unif(B)

Data:

Uniform generator on A

Result:

Uniform generator on \mathcal{B}

$$N = 0$$

repeat X = Generator-unif(A)N = N + 1

$$N = N + 1$$

until $X \in \mathcal{B}$

return X, N

Complexity

N Number of iterations

$$\mathbb{P}(N=k) = \mathbb{P}(X \in \mathcal{B}, N=k)$$
$$= \left(1 - \frac{|\mathcal{B}|}{|\mathcal{A}|}\right)^{k-1} \frac{|\mathcal{B}|}{|\mathcal{A}|}$$

Geometric probability distribution with parameter

$$p_a = \frac{|\mathcal{B}|}{|\mathcal{A}|}.$$

Expected number of iterations

$$\mathbb{E}N = \sum_{k=1}^{+\infty} k(1 - p_a)^{k-1} p_a$$

$$= \frac{1}{(1 - (1 - p_a))^2} p_a = \frac{1}{p_a}.$$

$$Var N = \frac{1 - p_a}{p_a^2}$$

1 UNIFORM: Uniform Random Variable

2 DISCRETE: Discrete Random Variable

3 UNIFORM: Combinatorial Objects

GENERATING RANDOM OBJECTS

Denote by *X* the generated object $\in \{1, \cdots, n\}$ Distribution (proportion of observations, input of the load injector)

$$p_k = \mathbb{P}(X = k).$$

GENERATING RANDOM OBJECTS

Denote by X the generated object $\in \{1, \dots, n\}$ Distribution (proportion of observations, input of the load injector)

$$p_k = \mathbb{P}(X = k).$$

Remarks:

$$0 \leqslant p_i \leqslant 1; \quad \sum_k p_k = 1.$$

GENERATING RANDOM OBJECTS

Denote by X the generated object $\in \{1, \dots, n\}$ Distribution (proportion of observations, input of the load injector)

$$p_k = \mathbb{P}(X = k).$$

Remarks:

$$0 \leqslant p_i \leqslant 1; \quad \sum_k p_k = 1.$$

For integer valued random variables $X \in \mathbb{N}$:

$$\mathbb{E}X = \sum_{k} k.\mathbb{P}(X = k) = \sum_{k} kp_{k}.\text{Expectation}$$

Variance and standard deviation

$$\mathbb{V}arX = \sum_{k} (k - \mathbb{E}X)^2 \mathbb{P}(X = k) = \mathbb{E}(X - \mathbb{E}X)^2 = \mathbb{E}X^2 - (\mathbb{E}X)^2.$$

$$\sigma(X) = \sqrt{\mathbb{V}arX}.$$

Random bit generator (see previous lecture)

double drand48(void) (48 bits encoded in 8 bytes)

(manpage)

The rand48() family of functions generates pseudo-random numbers using a linear congruential algorithm working on integers 48 bits in size. The particular formula employed is $r(n+1) = (a * r(n) + c) \mod m$ where the default values are for the multiplicand a = 0xfdeece66d = 25214903917 and the addend c = 0xb = 11. The modulo is always fixed at m = 2 ** 48. r(0) is called the seed of the random number generator.

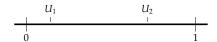
The sequence of returned values from a sequence of calls to the random function is modeled by a sequence of real independent random variables uniformly distributed on the real interval [0, 1)

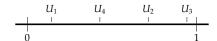
Probabilistic Model

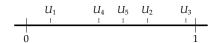
 $\{U_n\}_{n\in\mathbb{N}}$ sequence of i.i.d real random variables

For all $n \in \mathbb{N}$, for all the intervals $[a_i, b_i)$ with $0 \le i \le n$ and $0 \le a_i < b_i \le 1$,

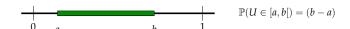
$$\mathbb{P}(U_0 \in [a_0, b_0), \dots, U_n \in [a_n, b_n)) = (b_0 - a_0) \times \dots \times (b_n - a_n).$$







THE RANDOM FUNCTION



THE RANDOM FUNCTION

Problem

All the difficulty is to find a function (an algorithm) that maps the [0,1[in a set with a right probability.

UNIFORM DISCRETE RANDOM VARIABLES

Example: flip a coin

```
\begin{array}{l} {\rm Coin}\,() \\ u = {\rm Random}\,() \\ {\rm if}\, u \,<\, \frac{1}{2} \\ \quad \bigsqcup \ {\rm Return}\,0 \quad // \ {\rm or} \ {\rm returns} \ {\rm Head} \\ {\rm else} \\ \quad \bigsqcup \ {\rm Return}\,1 \quad // \ {\rm or} \ {\rm returns} \ {\rm Tail} \end{array}
```

Roll a n-sided dice

```
Dice (n)
Data: n: Number of possible outcomes Result: a single outcome in \{1, \cdots, n\} u=Random()
Return \lceil n*u \rceil
// smallest integer greater than u \times n
```

The problem

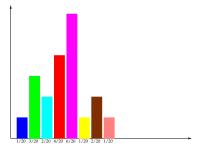
Bernoulli scheme

Given a discrete distribution

$$p = (p_1, p_2, \dots, p_n), \quad 0 \leqslant p_i \leqslant 1 \quad \sum_{i=1}^n p_i = 1;$$

Design an algorithm that generates pseudo random numbers according probability p. **Prove** such an algorithm and evaluate its (average) **complexity**

PROBABILITIES ON A FINITE SET



Pre-computation

$$p_k = \frac{m_k}{m}$$
 where $\sum_k m_k = m$.

Create a table T with size m. Fill T such that m_k cells contains k.

Computation cost : *m* steps

Memory cost: m

Pre-computation

$$p_k = \frac{m_k}{m}$$
 where $\sum_k m_k = m$.

Create a table T with size m. Fill T such that m_k cells contains k. Computation cost : m steps Memory cost : m

Table construction

Build_Table (
$$p$$
)

Data: p a rational distribution $p_i = \frac{m_i}{m}$
Result: Tabulation of distribution p

l=1

for $i = 1, i \le n, i + +$

for $j = 1, j \le m_i, j + +$
 $T[l] = i$

Pre-computation

$$p_k = \frac{m_k}{m}$$
 where $\sum_k m_k = m$.

Create a table T with size m. Fill T such that m_k cells contains k. Computation cost : m steps Memory cost : m

Generation

Generate uniformly on the set $\{1, \dots, m\}$ Returns the value in the table Computation cost : $\mathcal{O}(1)$ step Memory cost : $\mathcal{O}(m)$

Table construction

Build_Table (
$$p$$
)

Data: p a rational distribution $p_i = \frac{m_i}{m}$
Result: Tabulation of distribution p

l=1

for $i = 1, i \le n, i + +$

for $j = 1, j \le m_i, j + +$

| $T[l] = i$

Pre-computation

$$p_k = \frac{m_k}{m}$$
 where $\sum_k m_k = m$.

Create a table T with size m. Fill T such that m_k cells contains k. Computation cost: *m* steps Memory cost: m

Generation

Generate uniformly on the set $\{1,\cdots,m\}$ Returns the value in the table Computation cost : $\mathcal{O}(1)$ step

Memory cost : $\mathcal{O}(m)$

Table construction

Build_Table (*p*) **Data:** p a rational distribution $p_i = \frac{m_i}{m}$ **Result:** Tabulation of distribution *p* 1=1 for i = 1, $i \leq n$, i + + $\mathbf{for} j = 1, \quad j \leqslant m_i \quad j + + \\
\mid \quad \mathbf{T[l]=i}$

Generation algorithm

Generation (T)

Data: T Tabulation of distribution p

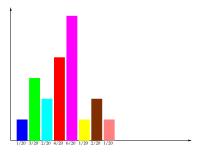
Result: A random number following distribution p

u=Random()

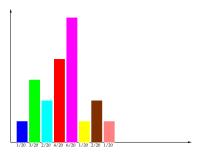
 $l = \lceil m * u \rceil$

Return T[l]

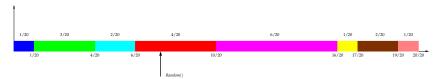
PROBABILITIES ON A FINITE SET



PROBABILITIES ON A FINITE SET

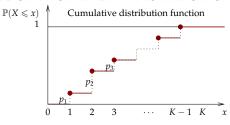


Histogram: Flat representation



Cost(average number of comparisons) :
$$\hat{C}(P) = \sum_{k=1}^{K} k.p_k = 4.35$$

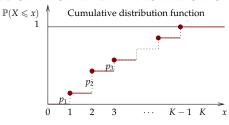
INVERSE OF PROBABILITY DISTRIBUTION FUNCTION



Generation

Divide [0, 1[in intervals with length p_k Find the interval in which *Random* falls Returns the index of the interval Computation cost : $\mathcal{O}(\mathbb{E}X)$ steps Memory cost : $\mathcal{O}(1)$

INVERSE OF PROBABILITY DISTRIBUTION FUNCTION



Generation

Divide [0, 1[in intervals with length p_k Find the interval in which *Random* falls Returns the index of the interval Computation cost : $\mathcal{O}(\mathbb{E}X)$ steps Memory cost : $\mathcal{O}(1)$

Inverse function algorithm

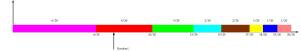
Return k

Generation (p)Data: A distribution pResult: A random number following distribution p u = Random () S = 0 k = 0while u > s k = k + 1 $s = s + p_k$

SEARCHING OPTIMIZATION

Optimization methods

- pre-compute the pdf in a table
- ► rank objects by decreasing probability

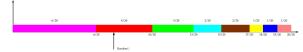


- ▶ use a dichotomy algorithm
- ▶ use a tree searching algorithm (optimality = Huffmann coding tree)

SEARCHING OPTIMIZATION

Optimization methods

- pre-compute the pdf in a table
- ► rank objects by decreasing probability



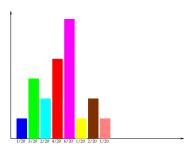
- ▶ use a dichotomy algorithm
- ▶ use a tree searching algorithm (optimality = Huffmann coding tree)

Comments

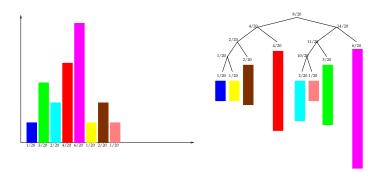
- Depends on the usage of the generator (repeated use or not)
- pre-computation usually $\mathcal{O}(K)$ could be huge

_

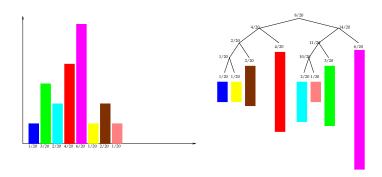
OPTIMALITY



OPTIMALITY



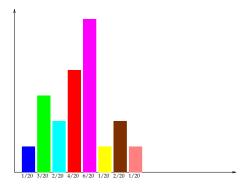
OPTIMALITY

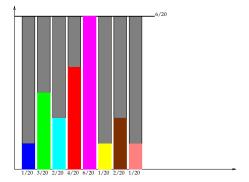


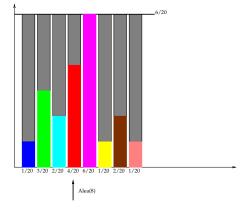
Number of comparisons

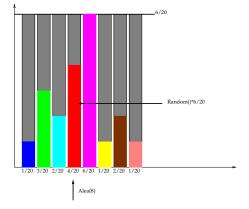
Binary Search Tree Structure

$$\mathbb{E}N = \sum_{k=1}^{K} p_k . l_k = 3,75$$
, Entropie $= \sum_{k=1}^{K} p_k (-\log_2 p_k) = 3.70$










```
Generation_Reject(p)

Data: A distribution p

Result: A random number following distribution p

N = 0

repeat

u = \text{Random } ()

k = \lceil n * u \rceil

v = Random() * p_{max}

N + +

until v \le p_k
```

Proof

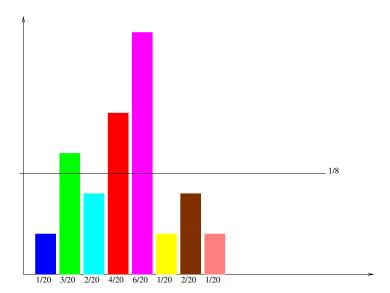
Same proof as for the uniform case

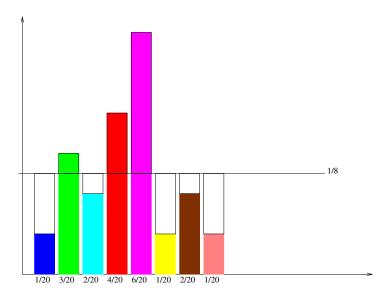
Return k, N

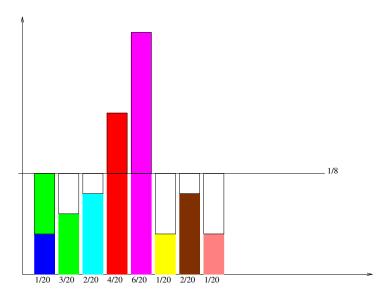
Complexity

Average number of iterations:

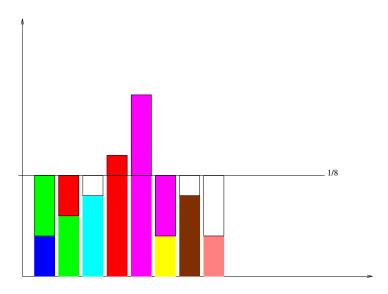
$$p_a = \frac{1}{n.p_{max}} \text{ et } \mathbb{E}N = np_{max}$$

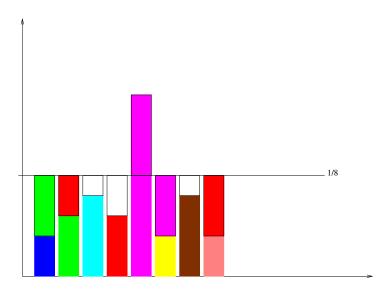


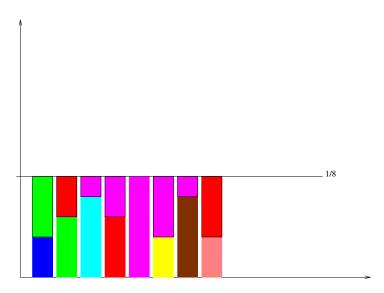












ALIASING METHOD: ALIAS TABLE

```
Table_Alias(p)
  Data: A distribution p
  Result: A vector of thresholds s_1, \dots, s_n
              and a vector of aliases a_1, \dots, a_n
  L = \emptyset U = \emptyset
  for k = 1 to n
       switch p_k do
            case p_k < \frac{1}{n} do L = L \cup \{k\}
            case p_k > \frac{1}{n} do U = U \cup \{k\}
  while L \neq \emptyset
       i = Extract(L) k = Extract(U)
       s_i = p_i a_i = k
       p_k = p_k - (\frac{1}{n} - p_i)
       switch p_k do
            case <\frac{1}{n} do L=L\cup\{k\}
            case > \frac{1}{n} do U = U \cup \{k\}
```


ALIASING METHOD: GENERATION

```
Generation_Alias(s, a)

Data: A vector of thresholds s_1, \cdots, s_n]

and a vector of aliases a_1, \cdots, a_n according adistribution p

Result: A random number following distribution p

u = \text{Random}()

k = \lceil n * u \rceil

if \text{Random}() \frac{1}{n} < s_k

\sqsubseteq \text{Return } k

else

\sqsubseteq \text{Return } a_k
```

Complexity

Computation time:

- $\mathcal{O}(n)$ computation of thresholds and aliases
- $\mathcal{O}(1)$ generation

Memory:

- thresholds O(n) (same cost as p)
- alias $\mathcal{O}(n)$ (aliases)

Exercises (1)

A typical law

Design at least 4 algorithms that simulate a pseudo-random variable according the empirical law:

Compute the average cost of the generation for each algorithm.

The power of 2

Design an algorithm that simulate a pseudo-random variable according the empirical law:

Compute the average cost of the generation algorithm. What could you conclude?

APPLICATION EXERCISE

On web servers it has been shown experimentally that hits on pages follow a Zipf's law. This law appears also in documents popularity in P2P systems, words occurrences in texts,...

Consider a web server with N pages. Pages are ranked by their popularity and let p_i be the probability of requesting page i. We have

$$p_1 \geqslant p_2 \geqslant \cdots \geqslant p_N$$

For the Zipf's law we have $p_i = \frac{1}{H_M} \frac{1}{i}$. This means that the second web page occurs approximately 1/2 as often as the first, and the third page 1/3 as often as the first, and so on. H_N is the N^{th} harmonic number :

$$H_N = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{N}$$

which could be approximated by $\log N + \gamma + o(\frac{1}{N})$ with $\gamma = 0.5772156649$ the Euler constant.

- ▶ If N is small, classical techniques could be used. But what happens when N is large (10.000 or 100.000)?
- ▶ Propose an algorithm that generates, approximatively, with the Zipf's law from a generator of real numbers on [0, 1].
- ► Generalize this algorithm for "heavy-tail" laws (Benford's laws, Pareto's laws) with probability

$$p_i = \frac{1}{H_{N,\alpha}} \frac{1}{i^{\alpha}},$$

with α some "sharpness" coefficient and the normalization coefficient $H_{N,\alpha} = \left(\sum_{1}^{N} \frac{1}{7\alpha}\right)^{-1}$.

CLASSICAL LAWS EXERCISES

Binomial law

Propose several algorithms that simulate a variable X following the binomial distribution $\mathcal{B}in(n,k)$

$$\mathbb{P}(X=k) = \binom{n}{k} p^k (1-p)^{n-k}$$

Does the optimal method depends on the parameter values?

Geometric distribution

Propose several algorithms that simulate a variable following the geometric distribution $\mathcal{G}(p)$

$$\mathbb{P}(X = k) = (1 - p)p^{k-1}$$

Does the optimal method depends on the parameter values?

Poisson distribution

Propose several algorithms that simulate a variable following the Poisson distribution $\mathcal{P}(\lambda)$

$$\mathbb{P}(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}$$

1 UNIFORM: Uniform Random Variable

2 DISCRETE: Discrete Random Variable

3 UNIFORM: Combinatorial Objects

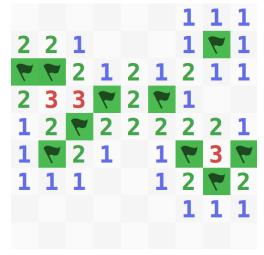
GENERATION OF COMPLEX CONFIGURATIONS

Examples

- ► sequences of requests on a web server
- path in a graph
- ► interconnexion graph
- ► memory configuration
- mine field
- ▶

MINE FIELD

Write an algorithm that generates a random mine field with exactly k(=10) mines in a n field. Example for $n=9\times 9$



MINE FIELD (2)

Uniform generation of a mine field with exactly exactement k mines

Method 1: There are exactly $\binom{n}{k}$ different mine field, number them, generate uniformly an index of a mine field in $\{1, \dots, \binom{n}{k}\}$

Method 2 : Generate uniformly a permutation of $\{1, \dots, n\}$ and take the first k elements as mine positions

Method 2bis: Generate in sequence uniformly the mines on the available positions.

Method 3: While the number of mines is not sufficient pick uniformly a position in $\{1, ..., n\}$ and put a mine if the position is free

Method 4: We put successively a mine in position i with probability $\frac{k-k_i}{n-i+1}$, where k_i is the number of mines in positions $\{1, \dots, i-1\}$.

Generation of mean field with average density $d = \frac{k}{n}$ de mines

Method 5: Flip a biaised coin with probability d in each position to put mines.

Mehode 5b : Same method but reject the mine field if the average density is out of $[d-\epsilon,d+\epsilon].$

PATHS GENERATION

In a "feed-forward" communication network generate uniformly a route between 2 given nodes

PATHS GENERATION

In a "feed-forward" communication network generate uniformly a route between 2 given nodes

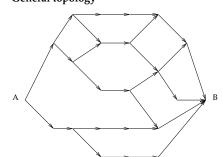
Manhattan Topology

PATHS GENERATION

In a "feed-forward" communication network generate uniformly a route between 2 given nodes

Manhattan Topology

General topology



GRAPH GENERATION

Typical graph

Generate a random graph uniformly (directed or non-directed)

- without constraints
- ▶ with a given number of edges
- ▶ with a fixed degree
- connected
- ▶ imagine your own constraints

DOMINOES

The dominoes game is a set of all the tiles marked by 2 marks, these marks are in $\{0, \dots, n\}$. Then a domino is defined by a couple (i, j) with $0 \le i \le j \le 6$.

- Number of dominoes: Compute K_6 the number of tiles of a classical game with n = 6. Deduce K_n of a game with marks between 0 and n
- Generator of dominoes Write an algorithm that fe-generates uniformly a dominoe for a given
- ► Cost of the generation Compute the complexity of the generation including pre-computation if ever

GENERATION OF BINARY RESEARCH TREE

GENERATION OF BINARY RESEARCH TREE

Uniform recursive decomposition

GENERATION OF BINARY RESEARCH TREE

Uniform recursive decomposition

Random_BST (n)

Data: *n* number of nodes **Result:** a random tree

else

$$q = \text{Random}(0, n-1)$$

 $A_1 = \text{Random_BST}(q)$
 $A_2 = \text{Random_BST}(n-1-q)$
return join (A_1, A_2)

Non uniform on binary trees

Uniform Generation of Binary Trees

Catalan's Numbers

Recurrence equation

$$C_0 = C_1 = 1;$$

$$C_N = \sum_{q=0}^{n-1} C_q C_{n-1-q}.$$

Then

$$1 = \sum_{q=0}^{n-1} \frac{C_q C_{n-1-q}}{C_n} = \sum_{q=0}^{n-1} p_{n,q}.$$

$$C_n = \frac{1}{n+1} \binom{2n}{n}$$

UNIFORM GENERATION OF BINARY TREES

Catalan's Numbers

Recurrence equation

$$C_0 = C_1 = 1$$
;

$$C_N = \sum_{q=0}^{n-1} C_q C_{n-1-q}.$$

Then

$$1 = \sum_{q=0}^{n-1} \frac{C_q C_{n-1-q}}{C_n} = \sum_{q=0}^{n-1} p_{n,q}.$$

$$C_n = \frac{1}{n+1} \binom{2n}{n}$$

Génération uniforme

Random BT (n)

Data: *n* number of nodes **Result:** a random tree

if
$$n = 0$$
return empty_tree()

else

$$\begin{array}{c} \text{q=Generate}(p_{n,0},\cdots,p_{n,n-1}) \\ A_1 = \text{Random_BT}\left(q\right) \\ A_2 = \text{Random_BT}\left(n-1-q\right) \\ \text{return join}\left(A_1,A_2\right) \end{array}$$

pre-computation $p_{n,q}$

$$p_{n,q} = \frac{C_q C_{n-1-q}}{C_n}.$$

LABELLED TREES

How many labelled trees with n nodes? Propose an algorithm that generates uniformly random trees.

LABELLED TREES

How many labelled trees with n nodes? Propose an algorithm that generates uniformly random trees. Cayley's formulae

$$T_n=n^{n-2}.$$

Prüfer's coding algorithm.

SYNTHESIS

Simulation is a powerful tool for computation (randomized algorithms)

- Probabilistic specification based on statistical properties (uniformity, independence, goodness of fit,...)
- ▶ Proof of statistical properties
- ► Complexity (probabilistic), average computation time
- ▶ Complex objects : link between combinatorial decomposition and simulation algorithm

Based on a Random function (external)

- ► Primality testing (security)
- Time randomization (networking)
- ► Monte-Carlo method (scientific computations)
- ► Test covering (verification)
- Statistical learning (Bayesian approach)
- ► Simulated Annealing (optimization, NP-complete problems)

