Lecture 5 – Maths for Computer Science Basic on graphs Part. 2: Structured Graphs

Denis TRYSTRAM Lecture notes MoSIG1

november 2023

Objectives

Review some structured graphs and study their properties.

- Complete graphs
- Cycles
- Meshes and torus
- Hypercubes
- Trees

Complete graphs (or cliques)

Definition.

Each vertex of K_n is connected to all the other vertices.

- Connected (D = 1)
- Regular graph ($\delta = n 1$)
- Number of edges $\sum_{1 \le k \le n-1} k = \frac{(n)(n-1)}{2}$

Rings or Cycles

Definition.

Each vertex of C_n has exactly one predecessor and one successor.

Coding of edges

$$\{\{i, i+1 \mod n\} \mid i \in \{0, 1, \dots, n-1\}\}$$

- Connected $(D = \lfloor \frac{n}{2} \rfloor)$
- Regular graph ($\delta = 2$)
- Number of edges n

An interesting observation

Proposition.

If every vertex of a graph G has degree ≥ 2 , then G contains a cycle.

An interesting observation

Proposition.

If every vertex of a graph G has degree ≥ 2 , then G contains a cycle.

Proof

Let us assume by contradiction that we have a cycle-free graph G all of whose vertices have degree ≥ 2 .

Let us view graph G as a park where every vertex of G is a statue, and every edge is a path between two statues. The fact that every vertex of G has degree ≥ 2 means that if we take a stroll through G, then every time we leave a vertex $v \in V$, we can use a *different* edge/path than we used when we came to v.

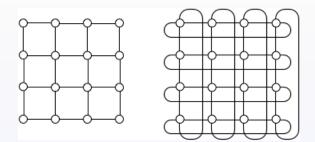
Meshes and Torus

Definition. Cartesian product of paths/cycles.

Coding of meshes (vertices and edges).

Torus is obtained by adding the wraparound links...

Example for n = 4



Properties of the square torus with n vertices

 \sqrt{n} by \sqrt{n}

- Connected (diameter $D = \Theta(\sqrt{n}) = 2 \cdot \lfloor \frac{\sqrt{n}}{2} \rfloor$)
- Regular graph (degree $\delta = 4 = \Theta(1)$)
- Number of edges $2n = \Theta(n)$

Hypercubes

Motivation:

build a graph with a trade-off beetwen the degree and the diameter.

Hypercubes

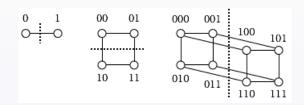
Motivation:

build a graph with a trade-off beetwen the degree and the diameter.

Recursive Definition.

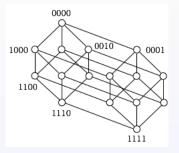
- The order-0 boolean hypercube, H_0 , has a single vertex, and no edges.
- The order-(k + 1) boolean hypercube, H_{k+1} , is obtained by taking two copies of H_k ($H_k^{(1)}$ and $H_k^{(2)}$), and creating an edge that connects each vertex of $H_k^{(1)}$ with the corresponding vertex of $H_k^{(2)}$.

Construction



The next dimension

Representation of H_4



Coding

A natural binary coding

The coding from the vertices is naturally in the binary system.

The coding of two adjacent vertices is obtained by flipping only one bit.

Characteristics of Hypercubes

The number of vertices is a power of 2: $n = 2^k$ ($k = log_2(n)$)

- Diameter $D_n = k$
- Degree $\delta_n = k$
- Number of edges?

Characteristics of Hypercubes

The number of vertices is a power of 2: $n = 2^k$ $(k = log_2(n))$

- Diameter $D_n = k$
- Degree $\delta_n = k$
- Number of edges?

 H_{k+1} is obtained by two copies of H_k plus 2^k edges for linking each relative vertex, thus:

$$N_{k+1} = 2 \times N_k + 2^k$$
 starting at $N_0 = 0$

$$N_k = k \times 2^{k-1}$$

└─ Algebraic properties

Graph isomorphism

The difficulty here is that there are many ways to draw a graph...

Property.

The hypercube H_4 is identical to the 4 by 4 torus.

-Algebraic properties

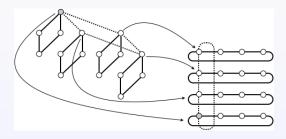
Graph isomorphism

The difficulty here is that there are many ways to draw a graph...

Property.

The hypercube H_4 is identical to the 4 by 4 torus.

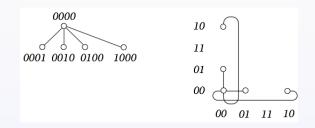
The proof is by an adequate coding of the vertices/edges.



Algebraic properties

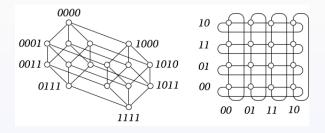
Coding schemes

The following figure (left) depicts this coding of a vertex and its neighbors.



Algebraic properties

The (almost) full picture



-Algebraic properties

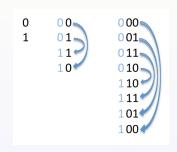
Gray Codes

Cultural aside

Let us present the most popular code, namely, the $\ensuremath{\textbf{Reflected}}\xspace{\ensuremath{\textbf{Gray}}}$ $\ensuremath{\textbf{code}}\xspace$

The 1-bit Gray code is simply 0 and 1. The next one (for 2-bits) is obtained by mirroring the 1-bit code and prefix it by 0 and 1. The next ones are obtained similarly. Algebraic properties

Gray Code



How to obtain the Gray code from the binary code?

-Algebraic properties

```
Gray code can easily be determined from the classical binary representation as follows (x_{n-1}x_{n-2}...x_1x_0)_2 shift right: (0x_{n-1}x_{n-2}...x_1)_2
```

Take the exclusive OR (bit-to-bit) between the binary code and its shifted number:

 $(x_{n-1}(x_{n-2} \oplus x_{n-1})...(x_0 \oplus x_1))_G$

For instance the binary code of $5 = (00101)_2$ is $(0 \oplus 0)(0 \oplus 0)(0 \oplus 1)(1 \oplus 0)(0 \oplus 1) = (00111)_G$.

-Algebraic properties

00001	00001
00010	00011
00011	00010
00100	00110
00101	→ 00111
00110	00101
00111	00100
01000	01100
01001	01101
01010	01111
01011	01110
01100	01010
01101	01011

• •